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Abstract. Let x ∈ Sn−1 be a unit eigenvector of an n×n random matrix. This
vector is delocalized if it is distributed roughly uniformly over the real or complex
sphere. This intuitive notion can be quantified in various ways. In these lectures,
we will concentrate on the no-gaps delocalization. This type of delocalization means
that with high probability, any non-negligible subset of the support of x carries
a non-negligible mass. Proving the no-gaps delocalization requires establishing
small ball probability bounds for the projections of random vector. Using Fourier
transform, we will prove such bounds in a simpler case of a random vector having
independent coordinates of a bounded density. This will allow us to derive the no-
gaps delocalization for matrices with random entries having a bounded density.
In the last section, we will discuss the applications of delocalization to the spectral
properties of Erdős-Rényi random graphs.

1. Introduction

Let G be a symmetric random matrix with independent above the diagonal
normal random entries having expectation 0 and variance 1 (N(0, 1) random vari-
ables). The distribution of such matrices is invariant under the action of the
orthogonal group O(n). Consider a unit eigenvector v ∈ Sn−1 of this matrix.
The distribution of the eigenvector should share the invariance of the distribu-
tion of the matrix itself, so v is uniformly distributed over the real unit sphere
Sn−1

R . Similarly, if Γ is an n× n complex random matrix with independent en-
tries whose real and imaginary part are independent N(0, 1) random variables,
then the distribution of Γ is invariant under the action of the unitary group U(n).
This means that any unit eigenvector of Γ is uniformly distributed over the com-
plex unit sphere Sn−1

C
. For a general distribution of entries, we cannot expect

such strong invariance properties. Indeed, if the entries of the matrix are random
variables taking finitely many values, the eigenvectors will take finitely many val-
ues as well, so the invariance is impossible. Nevertheless, as n increases, a central
limit phenomenon should kick in, so the distribution of an eigenvector should
be approximately uniform. This vague idea called delocalization can be made
mathematically precise in a number of ways. Some of these formalizations use
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the local structure of a vector. One can fix in advance several coordinates of the
eigenvector and show that the joint distribution of these coordinates approaches
the distribution of a properly normalized gaussian vector, see [6].

In these notes, we adopt a different approach to delocalization coming from
the non-asymptotic random matrix theory. The asymptotic theory is concerned
with establishing limit distributions of various spectral characteristics of a family
of random matrices when the sizes of these matrices tend to infinity. In contrast to
it, the non-asymptotic theory strives to obtain explicit, valid with high probability
bounds for the matrices of a large fixed size. This approach is motivated by
applications primarily to convex geometry, combinatorics, and computer science.
For example, while analyzing performance of an algorithm solving a noisy linear
system, one cannot let the size of the system go to infinity. An interested reader
can find an introduction to the non-asymptotic theory in [21,22,27]. In this type of
problems, strong probabilistic guarantees are highly desirable, since one typically
wants to show that many “good” events occur at the same time. This will be the
case in our analysis of the delocalization behavior as well.

We will consider the global structure of the eigenvector of a random matrix
controlling all coordinates of it at once. The most classical type of such delo-
calization is the `∞ norm bound. If v ∈ Sn−1 is a random vector uniformly
distributed over the unit sphere, then with high probability, all its coordinates
are small. This is easy to check using the concentration of measure. Indeed, the
vector v has the same distribution as g/ ‖g‖2, where g ∈ Rn or Cn is the standard
Gaussian vector, i.e., a vector with the independent N(0, 1) coordinates. By the
concentration of measure, ‖g‖2 =

√
n(1 + o(1)) with high probability. Also, since

the coordinates of g are independent,

E ‖g‖∞ = E max
j∈[n]

|gj| 6 C
√

logn,

and the measure concentration yields that ‖g‖∞ 6 C ′√logn with high probabil-
ity. Therefore, with high probability,

‖v‖∞ 6 C
√

logn
√
n

.

Here and below, C, C̄,C ′, c, etc. denote absolute constants which can change from
line to line, or even within the same line.

One would expect to have a similar `∞ delocalization for a general random
matrix. The bound

‖v‖∞ 6 C logc n√
n

for unit eigenvectors was proved in [12, 13] for Hermitian random matrices and
in [24] for random matrices all whose entries are independent. Moreover, in
the case of the Hermitian random matrix with entries having more than four
moments, the previous estimate has been established with the optimal power of
the logarithm c = 1/2, see [14, 28]. We will not discuss the detailed history and
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the methods of obtaining the `∞ delocalization in these notes, and refer a reader
to a comprehensive recent survey [20].

Instead, we are going to concentrate on a different manifestation of the delo-
calization phenomenon. The `∞ delocalization rules out peaks in the distribution
of mass among the coordinates of a unit eigenvector. In particular, it means that
with high probability, most of the mass, i.e., `2 norm of a unit eigenvector cannot
be localized on a few coordinates. We will consider a complementary phenome-
non, namely ruling out chasms in the mass distribution. More precisely, we aim
at showing that with high probability, any non-negligible set of the coordinates
of a unit eigenvector carries a relatively large mass. We call this property of lack
of almost empty zones in the support of the eigenvector the no-gaps delocalization
property.

No-gaps delocalization property holds for the eigenvectors of many natural
classes of random matrices. This includes matrices, whose all entries are indepen-
dent, random real symmetric and skew-symmetric matrices, random complex
hermitian matrices with independent real and imaginary parts of the entries, etc.
We formulate the explicit assumption on the dependencies of the entries below.

Assumption 1.0.1 (Dependencies of entries). Let A be an n× n random matrix.
Assume that for any i, j ∈ [n], the entry Aij is independent of the rest of the
entries except possibly Aji. We also assume that the real part of A is random and
the imaginary part is fixed.

Fixing the imaginary part in Assumption 1.0.1 allows us to handle real ran-
dom matrices. This assumption can also be arranged for complex matrices with
independent real and imaginary parts, once we condition on the imaginary part.
One can even consider a more general situation where the real parts of the entries
conditioned on the imaginary parts have variances bounded below.

We will also assume that the operator norm of the matrix A satisfies ‖A‖ =

O(
√
n) with high probability. This natural condition holds, in particular, if the

entries of A have mean zero and bounded fourth moments (see, e.g., [26]). To
make this rigorous, we fix a number M > 1 and introduce the boundedness event

(1.0.2) BA,M :=
{
‖A‖ 6M

√
n
}

.

We will give two versions of the no-gaps delocalization theorem, for absolutely
continuous entries with bounded density and for general entries. Although the
second case includes the first, the results assuming bounded density are stronger
and the proofs significantly easier. We formulate the first assumption explicitly.

Assumption 1.0.3 (Continuous distributions). We assume that the real parts of
the matrix entries have densities bounded by some number K > 1.

Under Assumptions 1.0.1 and 1.0.3, we show that every subset of at least eight
coordinates carries a non-negligible part of the mass of any eigenvector. This is
summarized in the following theorem [25].
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Theorem 1.0.4 (Delocalization: continuous distributions). Let A be an n× n ran-
dom matrix which satisfies Assumptions 1.0.1 and 1.0.3. ChooseM > 1. Let ε ∈ [8/n, 1)
and s > 0. Then, the following event holds with probability at least

1 − (Cs)εn − P (BcA,M).

Every eigenvector v of A satisfies

‖vI‖2 > (εs)6‖v‖2 for all I ⊂ [n], |I| > εn.

Here C = C(K,M) > 1, and [n] denotes the set of all natural numbers from 1 to n.

Note that we do not require any moments for the matrix entries, so heavy-
tailed distributions are allowed. However, the boundedness assumption formal-
ized by (1.0.2) implicitly yields some upper bound on the tails.

Further, we do not require that the entries of A have mean zero. Therefore,
adding to A any fixed matrix of the operator norm O(

√
n) does not affect our

results.

Extending Theorem 1.0.4 to general, possibly discrete distributions, is a chal-
lenging task. We are able to do this for matrices with identically distributed
entries and under the mild assumption that the distributions of entries are not
too concentrated near a single number.

Assumption 1.0.5 (General distribution of entries). We assume that the real parts
of the matrix entries are distributed identically with a random variable ξ that
satisfies

(1.0.6) sup
u∈R

P
{
|ξ− u| 6 1

}
6 1 − p, P

{
|ξ| > K

}
6 p/2 for some K,p > 0.

Assumption 1.0.5 holds for any non-constant random variable with some p,K
after a proper scaling. Its meaning therefore is not to restrict the class of ran-
dom variables, but to introduce parameters p and K which will be used in the
formulation of Theorem 1.0.7 below.

With Assumption 1.0.3 replaced by Assumption 1.0.5, we can prove a general
no-gaps delocalization result [25].

Theorem 1.0.7 (Delocalization: general distributions). Let A be an n× n random
matrix which satisfies Assumptions 1.0.1 and 1.0.5. Let M > 1. Let ε > 1/n and
s > c1ε

−7/6n−1/6 + e−c2/
√
ε. Then, the following event holds with probability at least

1 − (Cs)εn − P (BcA,M).

Every eigenvector v of A satisfies

‖vI‖2 > (εs)6‖v‖2 for all I ⊂ [n], |I| > εn.

Here ck = ck(p,K,M) > 0 for k = 1, 2 and C = C(p,K,M) > 1.

Remark 1.0.8. The assumption on s appearing in Theorem 1.0.7 forces us to con-
sider only ε > Cn−1/7 in contrast with Theorem 1.0.4 which yields non-trivial
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results as long as ε > 8/n. This assumption can be probably relaxed if one re-
places using Berry-Esseen Theorem in the proof of Theorem 1.0.7 in [25] by a
more complicated argument based on the least common denominator.

Remark 1.0.9. The proof of Theorem 1.0.7 presented in [25] can be modified to
allow an extension to random matrices shifted by a constant multiple of the all
ones matrix 1n. More precisely, for a given µ ∈ C, the event described in the the-
orem holds with probability at least 1 − (Cs)εn − P (BcA−µ1n,M). This allows to
consider random matrices with identically distributed entries having a non-zero
expectation, in particular, with Bernoulli(p) entries for p being a constant. More-
over, tracing the proof appearing in [25], one can see that the constants ck and
C depend polynomially on p, which allows to extend no-gaps delocalization to
matrices with i.i.d. Bernoulli entries for p = Ω(n−c ′) for some absolute constant
c ′ ∈ (0, 1).

Remark 1.0.10. The no-gaps delocalization phenomenon holds also for any unit
vector which is a linear combination of eigenvectors whose eigenvalues are not
too far apart, see Remark 2.1.8 for the details.
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author is grateful to Alex Samorodnitsky, Alexey Borodin, Ivan Corwin, and Alice
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thor is grateful to Feng Wei for for running problem sessions at PCMI which were
an integral part of the mini-course. He would also like to thank Anirban Basak,
Konstantin Tikhomirov, and Feng Wei for careful reading of the manuscript and
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2. Reduction of no-gaps delocalization to invertibility of submatrices

2.1. From no-gaps delocalization to the smallest singular value bounds The
first step in proving no-gaps delocalization is pretty straightforward. Let us con-
sider the toy case when there exists a unit eigenvector u of the matrix A with
uj = 0 for all j ∈ J, where J is some subset of [n]. If we denote the corresponding
eigenvalue by λ and the submatrix of Awith columns from the set Jc by AJc , then
we have that (AJc − λIJc)uJc = 0 so the kernel of AJc − λIJc is non-trivial. Here,
AJc − λIJc is a “tall” matrix with the number of rows larger than the number
of columns. A linear operator defined by a tall rectangular random matrix with
sufficiently many independent entries is an injection with high probability. This
means that the event that the probability of this “toy” case should be small. This
idea is not directly applicable since the random eigenvalue λ depends on all en-
tries of the matrix A, but this obstacle is easy to circumvent by discretizing the set
of plausible values of λ and considering a deterministic λ from this discretization.
If the probability that AJc −λIJc is close to a singular matrix is small for any fixed
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λ, we can use the union bound over the dicretisation along with approximation to
show that, with high probability, the matrix AJc − λIJc has a trivial kernel for all
λ from this plausible set simultaneously. This would imply the same statement
for a random λ allowing us to avoid using hard to obtain information about its
distribution except for a very rough bound defining the plausible set.

To implement this idea for a real setup, recall the definition of the singular
values of a matrix. Let B be a real or complex N×n matrix, N > n. The singular
values of B are defined as the square roots of eigenvalues of B∗B arranged in the
decreasing order:

s1(B) > s2(B) > . . . > sn(B) > 0.

If B is real, and we consider this matrix as a linear operator B : Rn → RN,
then the image of the Euclidean unit ball will be an ellipsoid whose semi-axes
have lengths s1(B), . . . , sn(B). The extreme singular values have also an analytic
meaning with

s1(B) = max
x∈Sn−1

‖Bx‖2 and

sn(B) = min
x∈Sn−1

‖Bx‖2 ,

so s1(B) = ‖B‖, the operator norm of B, and sn(B) is the distance from B to the
set of matrices of a rank smaller than n in the operator norm. Throughout these
notes, we will also denote the smallest singular value by smin(B). We will also
abbreviate A− λI to A− λ.

Let us introduce the event that one of the eigenvectors is localized. Define the
localization event by

Loc(A, ε, δ) :=
{
∃ eigenvector v ∈ Sn−1

C
, ∃I ⊂ [n], |I| = εn : ‖vI‖2 < δ

}
.

Since we assume in Theorem 1.0.4 that the boundedness event BA,M holds with
probability at least 1/2, the conclusion of that theorem can be stated as follows:

(2.1.1) P
{

Loc(A, ε, (εs)6) and BA,M

}
6 (cs)εn.

The following proposition reduces proving a delocalization result like (2.1.1) to
an invertibility bound.

Proposition 2.1.2 (Reduction of delocalization to invertibility). Let A be an n× n
random matrix with arbitrary distribution. Let M > 1 and ε,p0, δ ∈ (0, 1/2). Assume
that for any number λ0 ∈ C, |λ0| 6M

√
n, and for any set I ⊂ [n], |I| = εn, we have

(2.1.3) P
{
smin

(
(A− λ0)Ic

)
6 8δM

√
n and BA,M

}
6 p0.

Then

P
{

Loc(A, ε, δ) and BA,M
}
6 5δ−2(e/ε)εnp0.

Proof. Assume both the localization event and the boundedness event BA,M oc-
cur. Use the definition of Loc(A, ε, δ) to choose a localized eigenvalue-eigenvector
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pair (λ, v) and an index subset I. Decomposing the eigenvector as

v = vI + vIc

and multiplying it by A− λ, we obtain

(2.1.4) 0 = (A− λ)v = (A− λ)IvI + (A− λ)IcvIc .

By triangle inequality, this yields

‖(A− λ)IcvIc‖2 = ‖(A− λ)IvI‖2 6 (‖A‖+ |λ|)‖vI‖2.

By the localization event Loc(A, ε, δ), we have ‖vI‖2 6 δ. By the boundedness
event BA,M and since λ is an eigenvalue of A, we have |λ| 6 ‖A‖ 6 M

√
n.

Therefore

(2.1.5) ‖(A− λ)IcvIc‖2 6 2Mδ
√
n.

This happens for some λ in the disc {z ∈ C : |z| 6 M
√
n}. We will now run a

covering argument in order to fix λ. Let N be a (2Mδ
√
n)-net of that disc. One

can construct N so that

|N| 6
5
δ2 .

Choose λ0 ∈ N so that |λ0 − λ| 6 2Mδ
√
n. By (2.1.5), we have

(2.1.6) ‖(A− λ0)IcvIc‖2 6 4Mδ
√
n.

Since ‖vI‖2 6 δ 6 1/2, we have ‖vIc‖2 > ‖v‖2 − ‖vI‖2 > 1/2. Therefore, (2.1.6)
implies that

(2.1.7) smin((A− λ0)Ic) 6 8Mδ
√
n.

Summarizing, we have shown that the events Loc(A, ε, δ) and BA,M imply the
existence of a subset I ⊂ [n], |I| = εn, and a number λ0 ∈ N, such that (2.1.7) holds.
Furthermore, for fixed I and λ0, assumption (2.1.3) states that (2.1.7) together with
BA,M hold with probability at most p0. So by the union bound we conclude that

P
{

Loc(A, ε, δ) and BA,M
}
6

(
n

εn

)
· |N| · p0 6

(e
ε

)εn
· 5
δ2 · p0.

This completes the proof of the proposition. �

Remark 2.1.8. A simple analysis of the proof of Proposition 2.1.2 shows that it
holds not only for eigenvectors of the matrix A, but for its approximate eigen-
vectors as well. Namely, instead of the event Loc(A, ε, δ) one can consider the
following event

L̃oc(A, ε, δ) :=
{
∃v ∈ Sn−1

C
, ∃λ ∈ C |λ| 6M

√
n ∃I ⊂ [n], |I| = εn :

‖(A− λI)v‖2 6Mδ
√
n and ‖vI‖2 < δ

}
.

This event obeys the same conclusion as Loc(A, ε, δ):

P
{

L̃oc(A, ε, δ) and BA,M

}
6 5δ−2(e/ε)εnp0.
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Indeed, equation (2.1.4) is replaced by

w = (A− λ)v = (A− λ)IvI + (A− λ)IcvIc ,

where w is a vector of a norm not exceeding Mδ
√
n. This in turn results in

replacing 2Mδ
√
n by 3Mδ

√
n in (2.1.5) and 3Mδ

√
n by 4Mδ

√
n in (2.1.6). This

observation shows, in particular, that the no-gaps delocalization phenomenon
holds for any unit vector which is a linear combination of eigenvectors whose
eigenvalues are at most Mδ

√
n apart.

2.2. The ε-net argument. We have reduced the proof of the no-gaps delocaliza-
tion to establishing quantitative invertibility of a matrix whose number of rows
is larger than number of columns. This problem has been extensively studied, so
before embarking on the real proof, let us check whether we can apply an elemen-
tary bound based on the discretization of the sphere. Assume for simplicity that
all entries of the matrix A are real and independent, and the entries are centered
and of the unit variance. We will formulate the result in a bigger generality than
we need at this moment.

Lemma 2.2.1. Let M > 0 and let A be an m× n matrix with real independent entries
Ai,j satisfying

Eai,j = 0, Ea2
i,j = 1, and Ea4

i,j 6 C.

Let E be a linear subspace of Rn of dimension

k = dim(E) < c
m

log(2 +n/m)
.

Then with probability at least 1 − exp(−c ′m) − P
{
BcA,M

}
, all vectors x ∈ E satisfy

‖Ax‖2 > c
√
m.

The parameters c, c ′ here may depend on C.

Recall the definition of the ε-net. Let (X,d) be a metric space, and let ε > 0. A
set N ⊂ X is called an ε-net for a set V ⊂ X if for any x ∈ V , there exists y ∈ N with
d(x,y) < ε. We will consider ε-nets for various subsets of Rn in the Euclidean
metric below. These nets are useful in discretization of continuous structures. For
instance, it is easy to show that if N ⊂ Sn−1 is a (1/2)-net in the unit sphere Sn−1,
then the operator norm of an m×n matrix A and the maximum of the Euclidean
norm of Ax over the net are commensurate:

max
x∈N

‖Ax‖2 6 ‖A‖ 6 2 max
x∈N

‖Ax‖2 .

The proof of Lemma 2.2.1 is based on the ε-net argument. To implement it, we
need an elementary lemma.

Lemma 2.2.2. Let ε ∈ (0, 1] and let V ⊂ Sk−1
R be any set. The set V contains an ε-net

of cardinality at most (1 + 2/ε)k.

The proof of Lemma 2.2.2 relies on a simple volume comparison. Notice that
the balls of radius ε/2 centered at the points of the net are disjoint. On the other
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hand, the union of these balls is contained in the ball of radius (1+ ε/2) centered
at 0. We leave the details to a reader.

Proof of Lemma 2.2.1. Let ε > 0. It is enough to prove the norm bound for all
vectors of V := E∩ Sn−1. Since the dimension of E is k, this set admits an ε-net N
of cardinality (1 + 2/ε)k. Let y ∈ N, and let zj = (Ay)j be the j-th coordinate of
the vector Ay.

The Paley–Zygmund inequality asserts that a random variable Y > 0 satisfies

P
{
Y > t

}
>

(EY − t)2

EY2 for any t ∈ (0, EY).

If Y = z2
j , the assumptions on ai,j imply EY = 1 and EY2 6 C ′. Applying the

Paley–Zygmund inequality with t = 1/2, we conclude that P
{
|zj| > 1/2

}
> c.

Using Chernoff’s inequality, we derive that

P

{
‖Ay‖2 6

1
4
√
m

}
= P


m∑
j=1

|zj|
2 6

1
16
m


6 P

{
|{j : |zj| 6 1/2}| >

m

2

}
6 exp(−c2m).(2.2.3)

In combination with the union bound, this yields

(2.2.4) P
{
∃y ∈ N ‖Ay‖2 6 (1/4)

√
m
}
6 (1 + 2/ε)k exp(−c2m).

Let Ω be the event that ‖Ay‖2 > (1/4)
√
m for all y ∈ N intersected with BA,M.

Assuming that Ω occurs, we will show that the matrix is invertible on the whole
V . To this end, take any x ∈ V , and find y ∈ N such that ‖x− y‖2 < ε. Then

‖Ax‖2 > ‖Ay‖2 − ‖A‖ · ‖x− y‖2 >
1
4
√
m−M

√
n · ε > 1

8
√
m

if we set

ε =
1

8M
·
√
m

n
∧ 1.

It remains to estimate the probability that Ω does not occur. By (2.2.4),

P
{
Ωc
}
6 exp(k log(1 + 2/ε) − c2m) + P

{
BcA,M

}
6 exp

(
−
c2

2
m
)
+ P
{
BcA,M

}
if we choose

k 6 c
m

log(2 +n/m)
. �

Comparing the bound (2.1.3) needed to establish delocalization with the small-
est singular value estimate of lemma 2.2.1, we see several obstacles preventing
the direct use of the ε-net argument.

Lack of independence As we recall from Assumption 1.0.1, we are looking for
ways to control symmetric and non-symmetric matrices simultaneously. This
forces us to consider random matrices with dependent entries making Chernoff’s
inequality inapplicable.
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Small exceptional probability required Lemma 2.2.1 provides the smallest sin-
gular value bound for rectangular matrices whose number of rows is significantly
greater than the number of columns. If we are to apply it in combination with
Proposition 2.1.2, we would have to assume in addition that ε > 1 − ε0 for some
small ε0 < 1. Considering smaller values of ε would require a small ball prob-
ability bound better than (2.2.3) that we used in the proof. We will show that
such bound is possible to obtain in the case when the entries have a bounded
density. In the general case, however, such bound is unavailable. Indeed, if
the entries of the matrix may take the value 0 with a positive probability, then
P (Ae1 = 0) = exp(−cm), which shows that the bound (2.2.3) is, in general, opti-
mal. Overcoming this problem for a general distribution would require a delicate
stratification of the unit sphere according to the number-theoretic structure of the
coordinates of a vector governing the small ball probability bound.

A closer look at Proposition 2.1.2 demonstrates that the demands for a small
ball probability bound are even higher. We need that the delocalization result,
and thus the invertibility bound (2.1.6), hold uniformly over all index subsets I of
size εn. Since there are

(
n
εn

)
∼ ε−εn such sets, we would need the probability in

(2.1.3) to be at most εεn. Such small exceptional probabilities (smaller than e−εn)
are hard to achieve in the general case.

Complex entries Even if the original matrix is real, its eigenvalues may be com-
plex. This observation forces us to work with complex random matrices. Ex-
tending the known invertibility results to complex matrices poses two additional
challenges. First, in order to preserve the matrix-vector multiplication, we replace
a complex n×m random matrix B = R+ iT by the real 2m× 2n random matrix[
R −T
T R

]
. The real and imaginary parts R and T each appear twice in this matrix,

which causes extra dependencies of the entries. Besides that, we encounter a
major problem while trying to apply the ε-net argument to prove the smallest
singular value bound. Indeed, since we have to consider a real 2m× 2n matrix,
we will have to construct a net in a subset of the real sphere of dimension 2n.
The size of such net is exponential in the dimension. On the other hand, the
number of independent rows of R is only m, so the small ball probability will be
exponential in terms of m. If m < 2n, the union bound would not be applicable.

Each of these obstacles requires a set of rather advanced tools to deal with
in general case, i.e. under Assumption 1.0.5. Fortunately, under Assumption
1.0.3, these problems can be addressed in a much easier way allowing a short and
rather non-technical proof. For this reason, we are going to concentrate on the
continuous density case below.

3. Small ball probability for the projections of random vectors

3.1. Density of a marginal of a random vector. The proof of the no-gaps delocal-
ization theorem requires a result on the distribution of the marginals of a random
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vector which is of an independent interest. To simplify the presentation, we will
consider a vector with independent coordinates having a bounded density. Let
X = (X1, . . . ,Xn) be independent real valued random variables with densities
fX1 , . . . , fXn satisfying

fXj(t) 6 K for all j ∈ [n], t ∈ R.

The independence implies that the density of the vector is the product of the
densities of the coordinates, and so, fX(x) 6 Kn for all x ∈ Rn. Obviously, we
can extend the previous observation to the coordinate projections of X showing
that fPJX(y) 6 K|J| for any set J ⊂ [n] and any y ∈ RJ with PJ standing for
the coordinate projection of Rn to RJ. It seems plausible that the same property
should hold for the densities of all orthogonal projections to subspaces E ⊂ Rn

with the dimension of E playing the role of |J|. Yet, a simple example shows
that this statement fails even in dimension 2. Let X1,X2 be random variables
uniformly distributed on the interval [−1/2, 1/2], and consider the projection on
the subspace E ⊂ R2 spanned by the vector (1, 1). Then Y = PEX is the normalized
sum of the coordinates of X:

PY =

√
2

2
(X1 +X2) .

A direct calculation shows that fY(0) =
√

2 > 1. A delicate result of Ball [2]
shows that this is the worst case for the uniform distribution. More precisely,
consider a vector X ∈ Rn with i.i.d. coordinates uniformly distributed in the
interval [−1/2, 1/2]. Then the projection of X onto any one-dimensional subspace
E = span(a) with a = (a1, . . . ,an) ∈ Sn−1 is a weighted linear combination of
the coordinates: PE(X) =

∑n
j=1 ajXj. The theorem of Ball asserts that the density

of such linear combination does not exceed
√

2 making a = (
√

2/2,
√

2/2, 0, . . . , 0)
the worst sequence of weights. This result can be combined with a theorem of
Rogozin claiming that the density of a linear combination of independent ran-
dom variables increases the most if these variables are uniformly distributed.
This shows that if the coordinates of X are independent absolutely continuous
random variables having densities uniformly bounded by K, then the density of
Y =
∑n
j=1 ajXj does not exceed

√
2K for any a = (a1, . . . ,an) ∈ Sn−1.

Instead of discussing the proofs of the theorems of Ball and Rogozin, we will
present here a simpler argument due to Ball and Nazarov [4] showing that the
density of Y is bounded by CK for some unspecified absolute constant C. More-
over, we will show that this fact allows a multidimensional extension which we
formulate in the following theorem [23].

Theorem 3.1.1 (Densities of projections). Let X = (X1, . . . ,Xn) where Xi are real-
valued independent random variables. Assume that the densities of Xi are bounded by
K almost everywhere. Let P be the orthogonal projection in Rn onto a d-dimensional
subspace. Then the density of the random vector PX is bounded by (CK)d almost every-
where.
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To avoid ambiguity, let us mention that we consider the density in the range
PRn, as the density in Rn does not exist.

This theorem shows that the density bound Kd for coordinate projections holds
also for general ones if we include a multiplicative factor depending only on the
dimension. Recently, Livshyts et al. [18] proved a multidimensional version of
Rogozin’s theorem. Combining it with the multidimensional version of Ball’s
theorem [3], one can show that the optimal value of the constant C is

√
2 as in the

one-dimensional case.

Proof. We will start the proof from the one-dimensional case. The proof in this
case is a nice illustration of the power of characteristic functions approach in
deriving the small ball and density estimates. As before, we restate the one-
dimensional version of the theorem as a statement about the density of a linear
combination.

Step 1. Linear combination of independent random variables.
Fix X1, . . . ,Xn be real-valued independent random variables with densities

bounded by K almost everywhere and α1, . . . ,an real numbers with
n∑
j=1

a2
j = 1.

Then the density of
∑n
j=1 ajXj is bounded by CK almost everywhere.

We begin with a few easy reductions. By replacing Xj with KXj we can assume
that K = 1. By replacing Xj with −Xj when necessary we can assume that all
aj > 0. We can further assume that aj > 0 by dropping all zero terms from the
sum. If there exists j0 with aj0 > 1/2, then the conclusion follows by conditioning
on all Xj except Xj0 . Thus we can assume that

0 < aj <
1
2

for all j.

Finally, by translating Xj if necessary we reduce the problem to bounding the
density of S =

∑
j ajXj at the origin.

After these reductions, we proceed to bounding fS(0) in terms of the charac-
teristic function

φS(t) = EeitS.

We intend to use the Fourier inversion formula

fS(0) =
1

2π

∫
R

φS(x)dx.

This formula requires the assumption that φS ∈ L1(R), while we only know that
‖φS‖∞ 6 1. This, however, is not a problem. We can add an independentN(0,σ2)

random variable to each coordinate of X. In terms of the characteristic functions,
this amounts to multiplying each φXj ∈ L∞(R) by a scaled Gaussian density
making it an L1-function. The bound on the density we are going to obtain will
not depend on σ which would allow taking σ→ 0.
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By independence of the coordinates of X, φS(x) =
∏
jφXj(ajt). Combining it

with the Fourier inversion formula, we obtain

(3.1.2) fS(0) =
1

2π

∫
R

∏
j

φXj(ajx)dx 6
1

2π

∏
j

( ∫
R

|φXj(ajx)|
1/a2

j dx
)a2

j ,

where we used Holder’s inequality with exponents 1/a2
j whose reciprocals sum

up to 1.
We will estimate each integral appearing in the right hand side of (3.1.2) sep-

arately. Denote by λ the Lebesgue measure on R. Using the Fubini theorem, we
can rewrite each integral as

(3.1.3)
1
aj
·
∫

R

|φXj(x)|
1/a2

j dx =

∫1

0

1
a3
j

· t1/a
2
j−1
λ{x : |φXj(x)| > t}dt.

To estimate the last integral, we need a bound on the measure of points where
the characteristic function is large. Such bound is provided in the lemma below.

Lemma 3.1.4 (Decay of a characteristic function). Let X be a random variable whose
density is bounded by 1. Then the characteristic function of X satisfies

λ{x : |φX(x)| > t} 6

{
2π
t2 , t ∈ (0, 3/4)

C
√

1 − t2, t ∈ [3/4, 1].

The value 3/4 in Lemma 3.1.4 was chosen arbitrarily. It can be replaced by any
other number t0 ∈ (0, 1) at the price of changing the constant C.

Let us postpone the proof of the lemma for a moment and finish the proof of
the one-dimensional case of Theorem 3.1.1. Fix j ∈ [n] and denote for shortness
p = 1/a2

j > 4. Combining Lemma 3.1.4 and (3.1.3), we obtain

1
aj
·
∫

R

|φXj(x)|
1/a2

j dx

6 p3/2 ·

(∫3/4

0
tp−1 · 2π

t2
dt+

∫1

3/4
tp−1 ·C

√
1 − t2 dt

)

6 p3/2 ·

(
2π
p− 2

· (3/4)p−2 +C

∫√7/4

0
(1 − s2)(p−2)/2 · s2 ds

)
,

where we used the substitution s2 = 1 − t2 in the second term. The function

u(p) = p3/2 · 2π
p− 2

· (3/4)p−2

is uniformly bounded for p ∈ [4,∞). To estimate the second term, we can use the
inequality 1 − s2 6 exp(−s2), which yields

p3/2
∫√7/4

0
(1 − s2)(p−2)/2 · s2 ds 6 p3/2

∫∞
0

exp
(
−
p− 2

2
s2
)
s2 ds.

The last expression is also uniformly bounded for p ∈ [4,∞). This proves that
1
aj
·
∫

R

|φXj(x)|
1/a2

j dx 6 C
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for all j, where C is an absolute constant. Substituting this into (3.1.2) and using
that
∑n
j=1 a

2
j = 1 yields fs(0) 6 C ′ completing the proof of Step 1 modulo Lemma

3.1.4. �

Let us prove the lemma now.

Proof of Lemma 3.1.4. The first bound in the lemma follows from Markov’s in-
equality

λ{x : |φX(x)| > t} 6
‖φX‖2

2
t2

.

To estimate the L2-norm, we apply the Plancherel identity:

(3.1.5) ‖φX‖2
2 = 2π ‖fX‖2

2 6 2π ‖fX‖∞ · ‖fX‖1 6 2π.

The estimate for t ∈ [3/4, 1] will be based on a regularity argument going back
to Halasz [15].

We will start with the symmetrization. Let X ′ denote an independent copy of
X. Then

|φX(t)|
2 = EeitXEeitX = EeitXEe−itX

′
= Eeit(X−X

′)

= φX̃(t), where X̃ := X−X ′.

Further, by symmetry of the distribution of X̃, we have

φX̃(t) = E cos(tX̃) = 1 − 2E sin2
(1

2
tX̃
)
=: 1 −ψ(t).

Denoting s2 = 1 − t2, we see that to prove that

λ{x : |φX(x)| > t} 6 C
√

1 − t2 for t ∈ [3/4, 1],

it is enough to show that

(3.1.6) λ{τ : ψ(τ) 6 s2} 6 Cs, for 0 < s 6 1/2.

Observe that (3.1.6) holds for some fixed constant value of s. This follows from
the identity |φX(τ)|

2 = 1 −ψ(τ) and inequality (3.1.5):

(3.1.7) λ
{
τ : ψ(τ) 6

1
4
}
= λ{τ : |φX(τ)| >

√
3/4} 6 8π/3 6 9.

Next, the definition of ψ(·) and the inequality | sin(mx)| 6 m| sin x| valid for x ∈ R

and m ∈N imply that

ψ(mt) 6 m2ψ(t), t > 0, m ∈N.

Therefore

(3.1.8) λ
{
τ : ψ(τ) 6

1
4m2

}
6 λ
{
τ : ψ(mτ) 6

1
4
}
=

1
m
λ
{
τ : ψ(τ) 6

1
4
}
6

9
m

,

where in the last step we used (3.1.7). This establishes (3.1.6) for the discrete set
of values s = 1

2m , m ∈ N. We can extend this to arbitrary s > 0 in a standard
way, by applying (3.1.8) for m ∈ N such that s ∈ ( 1

4m , 1
2m ]. This proves (3.1.6)

and completes the proof of Lemma 3.1.4. �
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We now pass to the multidimensional case. As for one dimension, our strategy
will depend on whether all vectors Pej are small or some Pej are large. In the first
case, we proceed with a high-dimensional version of the argument from Step 1,
where Hölder’s inequality will be replaced by Brascamp-Lieb’s inequality. In the
second case, we will remove the large vectors Pej one by one, using the induction
over the dimension.

Step 2. Let X be a random vector and P be a projection which satisfy the
assumptions of Theorem 3.1.1. Assume that

‖Pej‖2 6 1/2 for all j = 1, . . . ,n.

Then the density of the random vector PX is bounded by (CK)d almost every-
where.

The proof will be based on Brascamp-Lieb’s inequality.

Theorem 3.1.9 (Brascamp-Lieb [7], see also [3]). Let u1, . . . ,un ∈ Rd be unit vectors
and c1, . . . , cn > 0 be real numbers satisfying

n∑
i=1

cjuju
>
j = Id.

Let f1, . . . , fn : R→ [0,∞) be integrable functions. Then∫
Rn

n∏
j=1

fj(
〈
x,uj

〉
)cj dx 6

n∏
j=1

( ∫
R

fj(t) dt
)cj

.

A short and very elegant proof of the Brascamp-Lieb inequality based on the
measure transportation ideas can be found in [5].

The singular value decomposition of P yields the existence of a d×n matrix R
satisfying

P = R>R, RR> = Id.

It follows that ‖Px‖2 = ‖Rx‖2 for all x ∈ Rn. This allows us to work with the
matrix R instead of P. As before, replacing each Xj by KXj, we may assume that
K = 1. Finally, translating X if necessary we reduce the problem to bounding the
density of RX at the origin.

As in the previous step, Fourier inversion formula associated with the Fourier
transform in n dimensions yields that the density of RX at the origin can be
reconstructed from its Fourier transform as

(3.1.10) fRX(0) = (2π)−d
∫

Rd
φRX(x) dx 6 (2π)−d

∫
Rd

|φRX(x)| dx,

where

(3.1.11) φRX(x) = E exp
(
i 〈x,RX〉

)
is the characteristic function of RX. Therefore, to complete the proof, it suffices to
bound the integral in the right hand side of (3.1.10) by Cd.
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In order to represent φRX(x) more conveniently for application of Brascamp-
Lieb inequality, we denote

aj := ‖Rej‖2, uj :=
Rej

‖Rej‖2
.

Then R =
∑n
j=1 ajuje

>
j , so the identity RR> = Id can be written as

(3.1.12)
n∑
j=1

a2
juju

>
j = Id.

Moreover, we have 〈x,RX〉 =
∑n
i=1 aj

〈
x,uj

〉
Xj. Substituting this into (3.1.11) and

using independence, we obtain

φRX(x) =

n∏
j=1

E exp
(
iaj
〈
x,uj

〉
Xj
)
.

Define the functions f1, . . . , fn : R→ [0,∞) as

fj(t) :=
∣∣E exp(iajtXj)

∣∣∣1/a2
j
=
∣∣φXj(ajt)∣∣1/a2

j .

Recalling (3.1.12), we apply Brascamp-Lieb inequality for these functions and
obtain∫

Rd
|φRX(x)| dx =

∫
Rd

n∏
j=1

fj
( 〈
x,uj

〉 )a2
j dx

6
n∏
j=1

( ∫
R

fj(t) dt
)a2

j
=

n∏
j=1

( ∫
R

∣∣φXj(ajt)∣∣1/a2
j dt

)a2
j .(3.1.13)

We arrived at the same quantity as we encountered in one-dimensional argument
in (3.1.2). Following that argument, which uses the assumption that all aj 6 1/2,
we bound the product above by

(2C)
∑n
j=1 a

2
j .

Recalling that aj = ‖Rej‖2 and , we find that
n∑
j=1

a2
j =

n∑
j=1

‖Rej‖2
2 = Tr(RR>) = Tr(Id) = d.

Thus the right hand side of (3.1.13) is bounded by (2C)d. The proof of Theorem
3.1.1 in the case where all

∥∥Pej∥∥2 are small is complete.

Step 3. Inductive argument.

We will prove Theorem 3.1.1 by induction on the rank of the projection. The
case rank(P) = 1 has been already established. We have also proved the Theorem
when

∥∥Pej∥∥2 < 1/2 for all j. Assume that the theorem holds for all projections Q
with rank(Q) = d− 1 and ‖Pe1‖2 > 1/2.

The density function is not a convenient tool to run the inductive argument
since the density of PX does not usually splits into a product of densities related
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to the individual coordinates. Let us consider the Lévy concentration function of a
random vector which would replace the density in our argument.

Definition 3.1.14. Let r > 0. For a random vector Y ∈ Rn, define its Lévy concen-
tration function by

L(Y, r) := sup
y∈Rn

P
{
‖Y − y‖2 6 r

}
.

Note that the condition that the density of Y is bounded is equivalent to

L(Y, r
√
n) 6 (Cr)n for any r > 0.

One direction of this equivalence follows from the integration of the density func-
tion over the ball of radius t

√
n with the center at any y ∈ Rn; another one from

the Lebesgue differentiation theorem.
In terms of the Lévy concentration function, the statement of the theorem is

equivalent to the claim that for for any y ∈ PRn and any t > 0,

(3.1.15) P
{
‖PX− y‖2 6 t

√
d
}
6 (Mt)d

for some absolute constant M and with d = rank(P). The induction assumption
then reads: for all projections Q of rank d− 1, z ∈ QRn, and t > 0, we have

(3.1.16) P
{
‖QX− z‖2 6 t

√
d− 1

}
6 (Mt)d−1 .

Comparison of (3.1.16) and (3.1.15) immediately shows the difficulties we are fac-
ing: the change from d− 1 to d in the left hand side of these inequalities indicates
that we have to work accurately to preserve the constantMwhile deriving (3.1.15)
from (3.1.16). This is achieved by a delicate tensorization argument. By consider-
ing an appropriate shift of X, we can assume without loss of generality that y = 0.
Let us formulate the induction step as a separate proposition.

Proposition 3.1.17 (Removal of large Pei). Let X be a random vector satisfying the
assumptions of Theorem 3.1.1 with K = 1, and let P be an orthogonal projection in Rn

onto a d-dimensional subspace. Assume that

‖Pe1‖2 > 1/2.

Define Q to be the orthogonal projection in Rn such that

ker(Q) = span{ker(P),Pe1}.

Let M > C0 where C0 is an absolute constant. If

(3.1.18) P
{
‖QX‖2 6 t

√
d− 1

}
6 (Mt)d−1 for all t > 0,

then

P
{
‖PX‖2 6 t

√
d
}
6 (Mt)d for all t > 0.

Proof. Let us record a few basic properties of Q. It is straightforward to see that

(3.1.19) P−Q is the orthogonal projection onto span(Pe1).
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Then (P−Q)e1 = Pe1, since the orthogonal projection of e1 onto span(Pe1) equals
Pe1. Canceling Pe1 on both sides, we have

(3.1.20) Qe1 = 0.

It follows from (3.1.19) that P has the form

(3.1.21) Px =
( n∑
j=1

ajxj

)
Pe1 +Qx for x = (x1, . . . , xn) ∈ Rn,

where aj are fixed numbers (independent of x). Substituting x = e1, we obtain
using (3.1.20) that Pe1 = a1Pe1 +Qe1 = a1Pe1. Thus

(3.1.22) a1 = 1.

Furthermore, we note that

(3.1.23) Qx does not depend on x1

since Qx = Q(
∑n
i=1 xjej) =

∑n
i=1 xjQej and Qe1 = 0 by (3.1.20). Finally, since

Pe1 is orthogonal to the image of Q, the two vectors in the right side of (3.1.21)
are orthogonal. Thus

(3.1.24) ‖Px‖2
2 =

( n∑
j=1

ajxj

)2
‖Pe1‖2

2 + ‖Qx‖
2
2.

Now let us estimate ‖PX‖2 for a random vector X. We express ‖PX‖2
2 using

(3.1.24) and (3.1.22) as

‖PX‖2
2 =

(
X1 +

n∑
j=2

ajXj

)2
‖Pe1‖2

2 + ‖QX‖
2
2 =: Z2

1 +Z
2
2.

Since by (3.1.23) Z2 is determined by X2, . . . ,Xn (and is independent of X1), and
‖Pei‖2 > 1/2 by a hypothesis of the proposition, we have

P
{
Z1 6 t | Z2

}
6 max
X2,...,Xn

P

∣∣∣X1 +

n∑
j=2

ajXj

∣∣∣ 6 t/ ‖Pe1‖2

∣∣∣ X2, . . . ,Xn


6 max
u∈R

P
{
|X1 − u| 6 2t

}
6 2t.

The proof of the inductive step thus reduces to a two-dimensional statement,
which we formulate as a separate lemma.

Lemma 3.1.25 (Tensorization). Let Z1,Z2 > 0 be random variables and K1,K2 > 0,
d > 1 be real numbers. Assume that

(1) P
{
Z1 6 t | Z2

}
6 2t almost surely in Z2 for all t > 0;

(2) P
{
Z2 6 t

√
d− 1

}
6 (Mt)d−1 for all t > 0.

for a sufficiently large absolute constant M. Then

P

{√
Z2

1 +Z
2
2 6 t

√
d

}
6 (Mt)d for all t > 0.
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The proof of the tensorization lemma requires an accurate though straightfor-
ward calculation. We write

P

{√
Z2

1 +Z
2
2 6 t

√
d

}
=

∫t2d

0
P
{
Z1 6 (t2d− x)1/2 | Z2

2 = x
}
dF2(x)

where F2(x) = P
{
Z2

2 6 x
}

is the cumulative distribution function of Z2
2. Using

hypothesis (1) of the lemma, we can bound the right hand side by

2
∫t2d

0
(t2d− x)1/2 dF2(x) =

∫t2d

0
F2(x)(t

2d− x)−1/2 dx,

where the last equation follows by integration by parts. Hypothesis (2) of the
lemma states that

F2(x) 6M
d−1

(
x

d− 1

)(d−1)/2
.

Substituting this into the equality above and estimating the resulting integral
explicitly, we obtain

P

{√
Z2

1 +Z
2
2 6 t

√
d

}
6
∫t2d

0
Md−1

(
x

d− 1

)(d−1)/2
(t2d− x)−1/2 dx

= td ·Md−1 dd/2

(d− 1)(d−1)/2

∫1

0
y(d−1)/2(1 − y)−1/2 dy 6 td ·Md−1 ·C,

where the last inequality follows with an absolute constant C from the known
asymptotic of the beta-function. Alternatively, notice that

dd/2

(d− 1)(d−1)/2 6
√
ed,

and∫1

0
y(d−1)/2(1 − y)−1/2 dy 6

∫1−1/d

0
y(d−1)/2

√
ddy+

∫1

1−1/d
(1 − y)−1/2 dy

6
2√
ed

+
1

2
√
d

.

This completes the proof of the lemma if we assume that M > C. �

3.2. Small ball probability for the image of a vector. Let us derive an applica-
tion of Theorem 3.1.1 which will be important for us in the proof of the no-gaps
delocalization theorem. We will prove a small ball probability estimate for the
image of a fixed vector under the action of a random matrix with independent
entries of bounded density.

Lemma 3.2.1 (Lower bound for a fixed vector). Let G be an l ×m matrix with
independent complex random entries. Assume that the real parts of the entries have
uniformly bounded densities, and the imaginary parts are fixed. For each x ∈ Sm−1

C
and

θ > 0, we have

P
{
‖Gx‖2 6 θ

√
l
}
6 (C0θ)

l.
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To prove this lemma, let us derive the small ball probability bound for a fixed
coordinate of Gx first.

Lemma 3.2.2 (Lower bound for a fixed row and vector). Let Gj denote the j-th row
of G. Then for each j, z ∈ Sn−1

C
, and θ > 0, we have

(3.2.3) P
{
|
〈
Gj, z

〉
| 6 θ

}
6 C0Kθ.

Proof. Fix j and consider the random vector Z = Gj. Expressing Z and z in terms
of their real and imaginary parts as

Z = X+ iY, z = x+ iy,

we can write the inner product as

〈Z, z〉 = [〈X, x〉− 〈Y,y〉] + i [〈X,y〉+ 〈Y, x〉] .

Since z is a unit vector, either x or y has norm at least 1/2. Assume without
loss of generality that ‖x‖2 > 1/2. Dropping the imaginary part, we obtain

| 〈Z, z〉 | > |〈X, x〉− 〈Y,y〉| .

The imaginary part Y is fixed. Thus

(3.2.4) P
{
| 〈Z, z〉 | 6 θ

}
6 L(〈X, x〉 , θ).

We can express 〈X, x〉 in terms of the coordinates of X and x as the sum

〈X, x〉 =
n∑
k=1

Xkxk.

Here Xk are independent random variables with densities bounded by K. Recall-
ing that

∑m
k=1 x

2
k > 1/2, we can apply Theorem 3.1.1 for a rank one projection. It

yields

(3.2.5) L(〈X, x〉 , θ) 6 CKθ.

Substituting this into (3.2.4) completes the proof of Lemma 3.2.2. �

Now we can complete the proof of Lemma 3.2.1 We can represent ‖Gx‖2
2 as

a sum of independent non-negative random variables
∑l
j=1 |

〈
Gj, x

〉
|2. Each of

the terms
〈
Gj, x

〉
satisfies (3.2.3). Then the conclusion follows from the following

Tensorization Lemma applied to Vj = |
〈
Gj, x

〉
|.

Lemma 3.2.6. Let V1, . . . ,Vl be independent non-negative random variables satisfying

P
{
Vj < t

}
6 Ct

for any t > 0. Then

P


l∑
j=1

V2
j < t

2l

 6 (ct)l.

Proof. Since the random variables V2
1 , . . . ,V2

l are independent as well, the Laplace
transform becomes a method of choice in handling this probability. By Markov’s
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inequality, we have

P


l∑
j=1

V2
j < t

2l

 = P

l− 1
t2

l∑
j=1

V2
j > 0

 6 E exp

l− 1
t2

l∑
j=1

V2
j


= el

l∏
j=1

E exp(−V2
j /t

2).

To bound the expectations in the right hand side, we use the Fubini theorem:

E exp(−V2
j /t

2) =

∫∞
0

2xe−x
2
P
{
Vj < tx

}
dx 6 Ct,

where the last inequality follows from the assumption on the small ball probabil-
ity of Vj. Combining the previous two inequalities completes the proof. �

4. No-gaps delocalization for matrices with absolutely continuous
entries.

In this section, we prove Theorem 1.0.4. To this end, we combine all the tools
we discussed above: the bound on the density of a projection of a random vector
obtained in Theorem 3.1.1, the ε-net argument, and the small ball probability
bound of Lemma 3.2.1.

4.1. Decomposition of the matrix Let us recall that in Proposition 2.1.2 we have
reduced the claim of delocalization Theorem 1.0.4 to the following quantitative
invertibility problem:

• Let A be an n × n matrix satisfying Assumptions 1.0.1 and 1.0.3. Let
ε > 0, t > 0, M > 1, and let λ ∈ C, |λ| 6M

√
n. Let I ⊂ [n] be a fixed set

of cardinality |I| = εn. Estimate

p0 := P (smin((A− λ)Ic) < t
√
n and ‖A‖ 6M

√
n).

Since the set I is fixed, we can assume without loss of generality that I consists of
the last εn coordinates.

Let us decompose (A− λ)Ic as follows:

(4.1.1) (A− λ)Ic =

[
B

G

]
,

where B and G are rectangular matrices of respective sizes (1 − ε/2)n× (1 − ε)n

and (ε/2)n× (1 − ε)n. By Assumption 1.0.1, the random matrices B and G are
independent, and moreover all entries of G are independent. At the same time,
the matrix B is still rectangular, and the ratio of its number of rows and columns
is similar to that of the matrix (A− λ)Ic . This would allow us to prove a weaker
statement for the matrix B. Namely, instead of bounding the smallest singular
value, which is the minimum of ‖Bx‖2 over all unit vectors x, we will obtain
the desired lower bound for all vectors which are far away from a certain low-
dimensional subspace depending on B. The independence of B and G would
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make it possible to condition on B fixing this subspace and apply Lemma 2.2.1 to
the matrix G restricted to this subspace to ensure that the matrix (A− λ)Ic is well
invertible on this space as well.

Following this road map, we are going to show that either ‖Bx‖2 or ‖Gx‖2 is
nicely bounded below for every vector x ∈ Sn−1

C
. To control B, we use the second

negative moment identity to bound the Hilbert-Schmidt norm of the pseudo-
inverse of B. We deduce from it that most singular values of B are not too small –
namely, all but 0.01εn singular values are bounded below by Ω(

√
εn). It follows

that ‖Bx‖2 is nicely bounded below when x restricted to a subspace of codimen-
sion 0.01εn. (This subspace is formed by the corresponding singular vectors.)
Next, we condition on B and we use G to control the remaining 0.01εn dimen-
sions. Therefore, either ‖Bx‖2 or ‖Gx‖2 is nicely bounded below on the entire
space, and thus ‖(A − λ)Icx‖2 is nicely bounded below on the entire space as
well.

We will now pass to the implementation of this plan. To simplify the notation,
assume that the maximal density of the entries is bounded by 1.
The general case can be reduced to this by scaling the entries.

4.2. The negative second moment identity Let k > m. The Hilbert-Schmidt
norm of a k ×m matrix V is just the Euclidean norm of the km-dimensional
vector consisting of its entries. Like the operator norm, the Hilbert-Schmidt norm
is invariant under unitary or orthogonal transformations of the matrix V . This
allows to rewrite it in two ways:

‖V‖2
HS =

m∑
j=1

∥∥Vj∥∥2
2 =

m∑
j=1

sj(Vj)
2,

where V1, . . . ,Vm are the columns of V , and s1(V) > s2(V) > . . . > sm(V) > 0 are
its singular values. Applying this observation to the inverse of the linear operator
defined by V considered as an operator from VCm to Cm, we obtain the negative
second moment identity, see [26]:

m∑
j=1

sj(B)
−2 =

m∑
i=1

dist(Bj,Hj)−2.

Here Bj denote the columns of B, and Hj = span(Bl)l 6=j.
Returning to the matrix B, denote for shortness m = (1 − ε)n and ε ′ = ε

2(1−ε) .
In this notation, B is a (1 + ε ′)m ×m matrix. To bound the sum above, we
have to establish a lower bound on the distance between the random vector
Bj ∈ C(1+ε ′)m and random subspace Hj ⊆ C(1+ε ′)m of complex dimension
m− 1.

Enforcing independence of vectors and subspaces Let us fix j. If all entries of
B are independent, then Bj and Hj are independent. However, Assumption 1.0.1
leaves a possibility for Bj to be correlated with j-th row of B. This means that Bj
and Hj may be dependent, which would complicate the distance computation.
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There is a simple way to remove the dependence by projecting out the j-th co-
ordinate. Namely, let B ′j ∈ C(1+ε ′)m−1 denote the vector Bj with j-th coordinate
removed, and let H ′j = span(B ′k)k6=j. We note the two key facts. First, B ′j and H ′j
are independent by Assumption 1.0.1. Second,

(4.2.1) dist(Bj,Hj) > dist(B ′j,H
′
j),

since the distance between two vectors can only decrease after removing a coor-
dinate.

Summarizing, we have

(4.2.2)
m∑
j=1

sj(B)
−2 6

m∑
j=1

dist(B ′j,H
′
j)

−2.

We are looking for a lower bound for the distances dist(B ′j,H
′
j). It is convenient

to represent them via the orthogonal projection of B ′j onto (H ′j)
⊥:

(4.2.3) dist(B ′j,H
′
j) = ‖PEjB

′
j‖2, where Ej = (H ′j)

⊥.

Recall that B ′j ∈ C(1+ε ′)m−1 is a random vector with independent entries whose
real parts have densities bounded by 1 (by Assumptions 1.0.1 and 1.0.3); and H ′j is
an independent subspace of C(1+ε ′)m−1 of complex dimension m− 1. This puts
us on a familiar ground as we have already proved Theorem 3.1.1. Now, the main
strength of this result becomes clear. The bound of Theorem 3.1.1 is uniform over
the possible subspaces Ej meaning that we do not need any information about
the specific position of this subspace in C(1+ε ′)m−1. This is a major source of
simplifications in the proof of Theorem 1.0.4 compare to Theorem 1.0.7. Under
Assumption 1.0.5, a bound on the small ball probability for ‖PEjB

′
j‖2 depends on

the arithmetic structure of the vectors contained in the space Ej. Identifying sub-
spaces of C(1+ε ′)m−1 containing vectors having exceptional arithmetic structure
and showing that, with high probability, the space Ej avoids such positions, takes
a lot of effort. Fortunately, under Assumption 1.0.3, this problem does not arise
thanks to the uniformity mentioned above.

Transferring the problem from C to R If the real and the imaginary part of each
entry of A are random variables of bounded density, one can apply Theorem 3.1.1
directly. However, this case does not cover many matrices satisfying Assumption
1.0.1, most importantly, the matrices with real entries and complex spectrum.

The general case, when only the real parts of the vector B ′j ∈ C(1+ε ′)m−1 are
random, requires an additional symmetrization step. Indeed, if we transfer the
problem from the complex vector space to a real one of the double dimension,
only a half of the coordinates will be random. Such vector would not be ab-
solutely continuous, so we cannot operate in terms of the densities. As in the
previous section, the Lévy concentration function of a random vector would replace
the density in our argument.

Let us formally transfer the problem from the complex to the real field. To this
end, we define the operation z 7→ Real(z) that makes complex vectors real in the
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obvious way: for z = x+ iy ∈ CN, set Real(z) :=
[
x
y

]
∈ R2N. Similarly, to make a

complex subspace E ⊂ CN real, we set Real(E) := {Real(z) : z ∈ E} ⊂ R2N. Note
that this operation doubles the dimension of E.

We begin by recording two properties of this operation that follow straight
from this definition.

Lemma 4.2.4. (Elementary properties of operation x 7→ Real(x))

(1) For a complex subspace E and a vector z, one has

Real(PEz) = PReal(E) Real(z).

(2) For a complex-valued random vector X and r > 0, one has

L(Real(X), r) = L(X, r).

The next symmetrization lemma allows randomizing all coordinates.

Lemma 4.2.5 (Randomizing all coordinates). Let Z = X+ iY ∈ CN be a random
vector whose imaginary part Y ∈ RN is fixed and then set Ẑ =

[
X1
X2

]
∈ R2N with X1

and X2 independent copies of X. Let E be a subspace of CN. Then

L(PEZ, r) 6
(
L(PReal(E)Ẑ, 2r)

)1/2
, r > 0.

Proof. Recalling the definition of the concentration function, in order to bound
L(PEZ, r) we need to choose arbitrary a ∈ CN and find a uniform bound on the
probability

p := P
{
‖PEZ− a‖2 6 r

}
.

By assumption, the random vector Z = X+ iY has fixed imaginary part Y. So it is
convenient to express the probability as

p = P
{
‖PEX− b‖2 6 r

}
where b = a − PE(iY) is fixed. Let us rewrite this identity using independent
copies X1 and X2 of X as follows:

p = P
{
‖PEX1 − b‖2 6 r

}
= P
{
‖PE(iX2) − ib‖2 6 r

}
.

(The last equality follows trivially by multiplying by i inside the norm.) Using
the independence of X1 and X2 and the triangle inequality, we obtain

p2 = P
{
‖PEX1 − b‖2 6 r and ‖PE(iX2) − ib‖2 6 r

}
6 P

{
‖PE(X1 + iX2) − b− ib‖2 6 2r

}
6 L(PE(X1 + iX2), 2r).

Further, using part 2 and then part 1 of Lemma 4.2.4, we see that

L(PE(X1 + iX2), 2r) = L(PReal(E)(Real(X1 + iX2)), 2r)

= L(PReal(E)Ẑ, 2r).

Thus we showed that p2 6 L(PReal(E)Ẑ, 2r) uniformly in a. By definition of the
Lévy concentration function, this completes the proof. �
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Bounding the distances below We are ready to control the distances appearing
in (4.2.3).

Lemma 4.2.6 (Distance between random vectors and subspaces). For every j ∈ [n]

and τ > 0, we have

(4.2.7) P
{

dist(B ′j,H
′
j) < τ

√
ε ′m
}
6 (Cτ)ε

′m.

Proof. Representing these distances via the projections of B ′j onto the subspaces
Ej = (H ′j)

⊥ as in (4.2.3), and using the definition of the Lévy concentration func-
tion, we have

pj := P
{

dist(B ′j,H
′
j) < τ

√
ε ′m
}
6 L(PEjB

′
j, τ
√
ε ′m).

Recall that B ′j and Ej are independent, and let us condition on Ej. Lemma 4.2.5
implies that

pj 6
(
L(PReal(Ej)Ẑ, 2τ

√
ε ′m)

)1/2

where Ẑ is a random vector with independent coordinates that have densities
bounded by 1.

The space H ′j has codimension ε ′m; thus Ej has dimension ε ′m and Real(Ej)
has dimension 2ε ′m. By Theorem 3.1.1, the density of PReal(Ej)Ẑ is bounded
by C2ε ′m. Integrating the density over a ball of radius 2τ

√
ε ′m in the subspace

Real(Ej) which has volume (Cτ)2ε ′m, we conclude that

L(PReal(Ej)Ẑ, 2τ
√
εn) 6 (Cτ)2ε ′m.

It follows that

pj 6 (Cτ)ε
′m,

as claimed. The proof of Lemma 4.2.6 is complete. �

4.3. B is bounded below on a large subspace E+

Using the second moment inequality Denote p = ε ′m/4, and let

Yj = ε
′m · dist−2(B ′j,H

′
j) for j ∈ [m].

By Lemma 4.2.6, for any s > 0,

P
{
Yj > s

}
6

(
C

s

)2p
.

Using Fubini’s theorem, we conclude that

EY
p
j 6 1 + p

∫∞
1
sp−1 ·P (Yj > s)ds 6 1 + C̄p,

so
∥∥Yj∥∥p =

(
EY
p
j

)1/p
6 C. Here, once again the assumption of the bounded

density of the entries simplifies the proof. For a general distribution of entries, the
event dist(B ′j,H

′
j) = 0 may have a positive probability, so

∥∥Yj∥∥p may be infinite.
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The bound on
∥∥Yj∥∥p yields

∥∥∥∑mj=1 Yj

∥∥∥
p
6 Cm. By Markov’s inequality, we get

P

 m∑
j=1

dist−2(B ′j,H
′
j) >

1
ε ′t

 = P

 m∑
j=1

Yj >
m

t


6

E(
∑m
j=1 Yj)

p

(m/t)p
6 (Ct)p

for any t > 0.
This estimate for t = τ2 combined with inequality (4.2.2) shows that the event

(4.3.1) E1 :=

{
m∑
i=1

si(B)
−2 6

1
τ2ε ′

}

is likely: P ((E1)
c) 6 (C ′τ)ε

′m/2.

A large subspace E+ on which B is bounded below Fix a parameter τ > 0 for
now, and assume that the event (4.3.1) occurs. By Markov’s inequality, for any
δ > 0 we have∣∣∣{i : si(B) 6 δ√m}∣∣∣ = ∣∣∣{i : si(B)−2 >

1
δ2m

}∣∣∣ 6 δ2m

τ2ε ′
.

Setting δ = τε ′/10, we have

(4.3.2)
∣∣∣{i : si(B) 6 τε ′10

√
m
}∣∣∣ 6 ε ′m

100
.

Let vi(B) be the right singular vectors of B, and consider the (random) orthogonal
decomposition Cn = E− ⊕ E+, where

E− = span{vi(B) : si(B) 6
τε ′

10
√
m},

E+ = span{vi(B) : si(B) >
τε ′

10
√
m}.

Inequality (4.3.2) means that dimC(E
−) 6 ε ′m

100 .
Let us summarize. Recall that ε ′m = εn/2 and set τ = (εs)2 for some s ∈ (0, 1).

We proved that the event

DE− :=
{

dim(E−) 6
ε ′m

100

}
satisfies

(4.3.3) P ((DE−)c) 6 (C2τ)
ε ′m = (C3εs)

εn,

so E− is likely to be a small subspace and E+ a large subspace. The choice of τ
was made to create the factor εεn in the probability bound above ensuring that
we can suppress the factor

(
n
εn

)
arising from the union bound. Moreover, by

definition, B is nicely bounded below on SE+ = Sn−1 ∩ E+:

(4.3.4) inf
x∈SE+

‖Bx‖2 >
τε ′

10
√
m >

s2ε3

80
√
n.
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4.4. G is bounded below on the small complementary subspace E− The pre-
vious argument allowed us to handle the subspace E+ whose dimension is only
slightly lower than m. Yet, it provided no information about the behavior of the
infimum of ‖Bx‖2 over the unit vectors from the complementary subspace E−. To
get such a lower bound, we will use the submatrix G we have put aside. Recall
that although the space E− is random, it depends only on B, and thus is indepen-
dent of G. Conditioning on the matrix B, we can regard this space as fixed. Our
task therefore, is to establish a lower bound on ‖Gx‖2 over the unit vectors from
E−. To this end, we can use the Lemma 2.2.1. However, this lemma establishes
the desired bound with probability at least 1 − exp(−c ′ε ′m). This probability is
insufficient for our purposes (remember, the probability for a fixed set I ⊂ [n]

is multiplied by
(
n
εn

)
∼ (e/ε)εn), but is easy to improve in case of the bounded

densities. Replacing the small ball probability estimate for a fixed vector used in
the proof of Lemma 2.2.1 with Lemma 3.2.1, we derive the following lemma.

Lemma 4.4.1 (Lower bound on a subspace). Let M > 1 and µ ∈ (0, 1). Let E be a
fixed subspace of Cm of dimension at most ε ′m/100. Then, for every ρ > 0, we have

(4.4.2) P

{
inf
x∈SE

‖Gx‖2 < ρ
√
ε ′m and BG,M

}
6

(
CMρ0.98

ε ′0.01

)ε ′m
.

The proof of this lemma follows the same lines as that of Lemma 2.2.1 and is
left to a reader.

Lemma 4.4.1 provides the desired bound for the space E−. Recall that m =

(1 − ε)n and ε ′ = ε/2(1 − ε). Namely, if the events BG,M and DE− occur, then
the event

LE− :=

{
inf

x∈Sm−1∩E−

‖Gx‖2 > ρ
√
ε ′m

}
holds with probability at least

1 −

(
CMρ0.98

ε ′0.01

)ε ′m
.

This is already sufficient since choosing a sufficiently small ρ, say ρ = (sε ′)3 with
any s ∈ (0, 1), we see that

P (LcE−
) 6 (CMs3ε2.9)εn/2,

so again we can suppress the factor
(
n
εn

)
arising from the union bound.

4.5. Extending invertibility from subspaces to the whole space. Assume that
the events DE− and LE− occur. We know that if BA,M occurs, then this is likely:

P (BA,M ∩DE− ∩LE−) > P (BA,M) − (Cs)εn.

Under this assumption, we have uniform lower bounds on ‖Ax‖2 on the unit
spheres of both E+ and E−. The extension of these bounds to the whole unit
sphere of Cm is now deterministic. It relies on the following lemma from linear
algebra.
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Lemma 4.5.1 (Decomposition). Let A be an m×n matrix. Let us decompose A as

A =

[
B

G

]
, B ∈ Cm1×n, G ∈ Cm2×n, m = m1 +m2.

Consider an orthogonal decomposition Cn = E−⊕E+ where E− and E+ are eigenspaces1

of B∗B. Denote

sA = smin(A),

sB = smin(B|E+) = min
x∈Sn−1∩E+

‖Bx‖2 ,

sG = smin(G|E−) = min
x∈Sn−1∩E−

‖Gx‖2 .

Then

(4.5.2) sA >
sBsG
4‖A‖

.

Proof. Let x ∈ Sn−1. We consider the orthogonal decomposition

x = x− + x+, x− ∈ E−, x+ ∈ E+.

We can also decompose Ax as

‖Ax‖2
2 = ‖Bx‖2

2 + ‖Gx‖
2
2.

Let us fix a parameter θ ∈ (0, 1/2) and consider two cases.

Case 1: ‖x+‖2 > θ. Since Bx+ and Bx− are orthogonal,

‖Ax‖2 > ‖Bx‖2 > ‖Bx+‖2 > sB · θ.

Case 2: ‖x+‖2 < θ. In this case, ‖x−‖2 =
√

1 − ‖x+‖2
2 > 1/2. Thus

‖Ax‖2 > ‖Gx‖2 > ‖Gx−‖2 − ‖Gx+‖2

> ‖Gx−‖2 − ‖G‖ · ‖x+‖2 > sG ·
1
2
− ‖G‖ · θ.

Using that ‖G‖ 6 ‖A‖, we conclude that

sA = inf
x∈Sn−1

‖Ax‖2 > min
(
sB · θ, sG ·

1
2
− ‖A‖ · θ

)
.

Optimizing the parameter θ, we conclude that

sA >
sBsG

2(sB + ‖A‖)
.

Using that sB is bounded by ‖A‖, we complete the proof. �

Combining Lemma 4.5.1 with the bounds (4.3.4) and (4.4.2), we complete the
proof of Proposition 2.1.2, and thus, the no-gaps delocalization Theorem 1.0.4.

5. Applications of the no-gaps delocalization

5.1. Erdős-Rényi graphs and their adjacency matrices In this section we con-
sider two applications of the no-gaps delocalization to the spectral properties of

1In other words, E− and E+ are the spans of two disjoint subsets of right singular vectors of B.
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the Erdős-Rényi random graphs. Let p ∈ (0, 1). Consider a graph G = (V ,E) with
n vertices such that any pair of vertices is connected by an edge with probability
p, and these events are independent for different edges. This model of a random
graph is called an Erdős-Rènyi or G(n,p) graph. Let AG be the adjacency matrix
of a graph G, i.e., the matrix of zeros and ones with 1 appearing on the spot (i, j)
whenever the vertices i and j are connected. We will need several standard facts
about the Erdős-Rényi graphs listed in the following proposition [10].

Proposition 5.1.1. Let p > C0
logn
n for some C0 > 1. Let G(V ,E) be a G(n,p) graph.

Then G has the following properties with probability 1 − o(1).

(1) Let R ⊂ V be an independent set, i.e., no two vertices from R are connected by an
edge. Then

|R| 6 C
logn
p

.

(2) Let P,Q ⊂ V be disjoint sets of vertices with

|P|, |Q| > C
logn
p

.

Then there is an edge connecting a vertex from P and a vertex from Q.
(3) The degree of any vertex v ∈ V is close to its expectation:

np− logn ·
√
np 6 dv 6 np+ logn ·

√
np

(4) Define the normalized adjacency matrix of G to be Â := D
−1/2
G AGD

−1/2
G where

DG is the diagonal matrix DG = diag(dv, v ∈ V) and et λ̂1 >, . . . ,> λ̂n be
eigenvalues of Â. Then

λ̂1 = 1, and |λ̂j| 6
C
√
np

for j > 1.

(5) For every subset of vertices J ⊂ V , let Non-edges(J) be the set of all pairs of
vertices v,w ∈ J which are not connected by an edge. Then

(1 − p)

(
|J|

2

)
−n3/2 6 |Non-edges(J)| 6 (1 − p)

(
|J|

2

)
+n3/2.

We leave the proof of these properties to a reader.
Considering the vector of all ones, we realize that ‖AG‖ = Ω(np) with high

probability. Hence, when p is fixed, and n → ∞, this makes the event BAG,M

unlikely. However, Remark 1.0.9 shows that we can replace this event by the event
BAG−p1n,M which holds with probability close to 1. Indeed,

AG − p1n = B−∆,

where B is a symmetric random matrix with centered Bernoulli(p) entries which
are independent on and above the diagonal, and ∆ is the diagonal matrix with
i.i.d. Bernoulli(p) entries. Here, ‖∆‖ 6 1 and ‖B‖ 6 C√np with probability close
to 1, by a simple ε-net argument.

This decomposition is reflected in the structure of the spectrum of AG. Let
us arrange the eigenvalues of AG in the decreasing order: λ1(G) > . . . > λn(G).
Then with high probability, λ1(G) = Ω(np) and |λj(G)| = O(

√
np), where the last
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equality follows from ‖AG − p1n‖ = O(
√
np) and the interlacing property of the

eigenvalues.
Remark 1.0.9 shows that no-gaps delocalization can be extended to the matrix

AG as well. We will use this result in combination with the `∞ delocalization
which was established for the G(n,p) graphs by Erdős et. al. [11]. They proved
that with probability at least 1 − exp(−c log2 n), any unit eigenvector x of AG
satisfies

(5.1.2) ‖x‖∞ 6 logC n√
n

.

5.2. Nodal domains of the eigenvectors of the adjacency matrix Let f be an
eigenfunction of a self-adjoint linear operator. Define the (strong) nodal domains
of f as connected components of the sets where f is positive or negative. Nodal
domains of the Laplacian on a compact smooth manifold is a classical object in
analysis. If the eigenvalues are arranged in the increasing order, the number of
nodal domains of the eigenfunction corresponding to the k-th eigenvalue does
not exceed k and tends to infinity as k→∞.

If we consider a finite-dimensional setup, the eigenfunctions of self-adjoint
linear operators are replaced by the eigenvectors of symmetric matrices. In 2008,
Dekel, Lee, and Linial [9] discovered that the nodal domains of the adjacency
matrices of G(n,p) graphs behave strikingly different from the eigenfunctions of
the Laplacian on a manifold. Namely, they proved that with high probability,
the number of nodal domains of any non-first eigenvector of a G(n,p) graph is
bounded by a constant depending only on p. Later, their result was improved
by Arora and Bhaskara [1], who showed that with high probability, the number
of nodal domains is 2 for all non-first eigenvectors. Also, Nguyen, Tao, and Vu
[19] showed that the eigenvector of a G(n,p) graph cannot have zero coordinates
with probability close to 1. These two results in combination mean that for each
non-first eigenvector, the set of vertices of a G(n,p) graph splits into the set of
positive and negative coordinates both of which are connected.

Let us derive Dekel-Lee-Linial-Arora-Bhaskara theorem from the delocaliza-
tion properties of an eigenvector. Assume that p is fixed to make the presentation
easier. Let x ∈ Sn−1 be a non-first eigenvector of AG, and denote its coordinates
by xv, v ∈ V . Let P and N be the largest nodal domains of positive and nega-
tive coordinates. Since x is orthogonal to the first eigenvector having all positive
coordinates, both P and N are non-empty. Denote W = V \ (P ∪N). Our aim
is to prove that with high probability, W = ∅. We start with proving a weaker
statement that the cardinality of W is small.

Proposition 5.2.1.

|W| 6 C
log2 n

p2

with probability 1 − o(1).
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Proof. Pick a vertex from each positive nodal domain. These vertices cannot be
connected by edges as they belong to different connected components, so they
form an independent set. Using Proposition 5.1.1 (1), we derive that, with high
probability, the number of such domains does not exceed C logn

p . The same bound
holds for the number of negative nodal domains.

Consider a nodal domain W0 ⊂ W and assume that |W0| > C
logn
p . If this

domain is positive, |P| > C logn
p as well, since P is the largest nodal domain. This

contradicts Proposition 5.1.1 (2) as two nodal domains of the same sign cannot be
connected. Combining this with the previous argument, we complete the proof
of the proposition. �

Now, we are ready to prove that W = ∅ with probability 1 − o(1). Assume to
the contrary that there is a vertex v ∈W, and assume that xv < 0. Let Γ(v) be the
set of its neighbors in G. Then Γ(v)∩N = ∅ as otherwise v would be an element
of N. Since x is an eigenvector,

λxv =
∑

u∈Γ(v)
xu =

∑
u∈Γ(v)∩P

xu +
∑

u∈Γ(v)∩W
xu.

Here |λ| 6
√
np because λ is a non-first eigenvalue. Then∥∥∥x|Γ(v)∥∥∥1
6

∑
u∈Γ(v)∩P

xu +
∑

u∈Γ(v)∩W
|xu| 6 2

∑
u∈Γ(v)∩W

|xu|+ |λ| · |xv|

6 (2|Γ(v)∩W|+ |λ|) · ‖x‖∞ .

By Proposition 5.2.1 and (5.1.2), this quantity does not exceed logC n (recall that
we assumed that p ∈ (0, 1) is fixed). Applying (5.1.2) another time, we conclude
that ∥∥∥x|Γ(v)∥∥∥2

6

√∥∥∥x|Γ(v)∥∥∥1
· ‖x‖∞ 6 n−1/4 logC n.

In combination with Proposition 5.1.1 (3), this shows that a large set Γ(v) carries
a small mass, which contradicts the no-gaps delocalization. This completes the
proof of Dekel-Lee-Linial-Arora-Bhaskara theorem.

The same argument shows that, with high probability, any vertex of the pos-
itive nodal domain is connected to the negative domain and vice versa, answer-
ing positively an old question of Linial. More precisely, we have the following
stronger statement.

Lemma 5.2.2. Let p ∈ (0, 1). Let x ∈ Sn−1 be a non-first eigenvector of AG. Let
V = P ∪N be the decomposition of V into the positive and negative nodal domains
corresponding to x. Then with probability greater than 1 − exp(−c ′ log2 n), any vertex
in P has at least n

logCn
neighbors in N, and any vertex in N has at least n

logCn
neighbors

in P.

Proof. Since λ is a non-first eigenvalue, |λ| 6 c
√
n with high probability. Assume

that the vector x is delocalized in both `∞ and no-gaps sense. Let w ∈ P, and
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assume that

|Γ(w)∩N| 6
n

log4C n
,

where Γ(w) denotes the set of neighbors of w. We have

λxw =
∑

v∈Γ(w)∩P
xv +

∑
v∈Γ(w)∩N

xv,

and as before,∥∥∥x|Γ(w)

∥∥∥
1
=

∑
v∈Γ(w)∩P

xv +
∑

v∈Γ∩N
|xv| 6 2

∑
v∈Γ(w)∩N

|xv|+ |λ| · |xw|

6 2
n

log4C n
· logC n√

n
+ c
√
n · log4C n√

n
.

Hence, ∥∥∥x|Γ(w)

∥∥∥
2
6

√
‖x‖∞ ·

∥∥∥x|Γ(w)

∥∥∥
1
6

√
2

logC n
,

which contradicts the no-gaps delocalization, as |Γ(w)| > cnp with high probabil-
ity. The proof finishes by application of the union bound over w. �

5.3. Spectral gap of the normalized Laplacian and Braess’s paradox In some
cases, the addition of a new highway to an existing highway system may increase
the traffic congestion. This phenomenon discovered in 1968 by Braess became
known as Braess’s paradox. Since its discovery, a number of mathematical models
have been suggested to explain this paradox. We will consider one such model
suggested by Chung et. al. [8].

We will model the highway system by an Erdős-Rènyi graph G(n,p). The
congestion of the graph will be measured in terms of its normalized Laplacian
which we will define in a moment. Let AG be the adjacency matrix of the graph
G, and let DG = (dv, v ∈ V) be n×n the diagonal matrix whose diagonal entries
are the degrees of the vertices. The normalized Laplacian of G is defined as

LG := In −D
−1/2
G AGD

−1/2
G .

The normalized Laplacian is a positive semidefinite matrix, so it has a real non-
negative spectrum that we write in increasing order: 0 = λ1(LG) 6 . . . 6 λn(LG).
The eigenvalue λ1(LG) = 0 corresponds to the eigenvector Y, whose coordinates
are Yv = d

1/2
v , v ∈ V . The quantity λ2(LG) is called the spectral gap of G. The

spectral gap appears in the Poincare inequality, so it is instrumental in establish-
ing measure concentration properties of various functionals, see, e.g. [16]. Also,
the reciprocal of the spectral gap defines the relaxation time for a random walk
on a graph, [17]. In this quality, it can be used to measure the congestion of the
graph considered as a traffic network: the smaller spectral gap corresponds to a
bigger congestion.

For a graph G, and let a−(G) be the fraction of non-edges (u, v) /∈ E such that
the addition of (u, v) to the set of edges decreases the spectral gap. Intuitively,
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the addition of an edge should increase the spectral gap as it brings the graph
closer to the complete one, for which the spectral gap is maximal. However, the
numerical experiments showed that the addition of an edge to a random graph
frequently yields an opposite effect. This numerical data led to the following
conjecture, which is a variant of the original conjecture of Chung.

Conjecture 5.3.1. For p ∈ (0, 1) fixed, there exists a constant c(p) such that

lim
n→∞P

{
a−(G) > c(p)

}
= 1.

This conjecture has been proved by Eldan, Ràsz, and Shramm [10]. Their proof
is based on the following deterministic condition on the eigenvectors which en-
sures that the spectral gap decreases after adding an edge.

Proposition 5.3.2. Let G be a graph such that (1/2)np 6 dv 6 (3/2)np for all vertices
v ∈ V . Let x ∈ Sn−1 be the eigenvector of LG corresponding to λ2(G). If (u,w) /∈ E is
a non-edge, and

1
√
np

(
x2
u + x2

w

)
+ c1(np)

−2 < c2xuxv,

then the addition of the edge (u,w) to G decreases the spectral gap.

The proof of proposition 5.3.2 requires a tedious, although a rather straightfor-
ward calculation. Denote by y ∈ Sn−1 the first eigenvector of the Laplacian of
graph G+ obtained from G by adding the edge (u,w), and let Q : Rn → Rn be
the orthogonal projection on the space y⊥. By the variational definition of the
second eigenvalue,

λ2(G+) = inf
z∈y⊥\{0}

〈
z,LG+z

〉
‖z‖2

2
6

〈
Qx,LG+Qx

〉
‖Qx‖2

2
=

〈
x,LG+x

〉
1 − 〈x,y〉2

,

where the last equality follows since LG+y = 0. In the last formula, y = ∆/ ‖∆‖2,
where ∆ is the vector with coordinates ∆v =

√
dv for v /∈ {u,w} and ∆v =

√
dv + 1

for v ∈ {u,w}. The matrix LG+ can be represented in a similar way:

LG+ = In −D
−1/2
G+

AG+D
−1/2
G+

,

where AG + (eue
T
w + ewe

T
u) and DG+ is defined as DG above. The proposition

follows by substituting these formulas in the previous estimate of λ2(G+) and
simplifying the resulting expression. A reader can find the detailed calculation in
[10].

Proposition 5.3.2 allows us to lower bound a−(G). The main technical tool
in obtaining such a bound is delocalization. We will need both the `∞ and no-
gaps delocalization of the second eigenvector of LG. Both properties hold for the
eigenvectors of AG, so our task is to extend them to the normalized Laplacian.

To derive the `∞ delocalization, we need some information on the distribution
of the eigenvalues of AG. The classical Wigner semi-circular law states that as
n → ∞, the percentage of eigenvalues of n−1/2AG lying in any fixed interval
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(b,b+ θ) ⊂ R approaches∫b+θ
b

φsc(x)dx, where φsc(x) =
1

2π

√
(4 − x2)+.

Moreover, the local semi-circular law asserts that the same phenomenon holds on
a short scale, namely when θ = θ(n) = Ω

(
logCn
n

)
with some absolute constant

C > 0. Since φsc is a bounded function, this implies that as n → ∞, an interval
(b,b+ρ) with ρ = Ω(1) should contain O(ρ

√
n) eigenvalues. Since we work with

a fixed n instead of n → ∞, we need a non-asymptotic version of the local semi-
circular law proved by Erdős et. al. ([11], Theorem 2.10). Their result implies the
following upper estimate for the number of eigenvalues in a fixed interval.

Theorem 5.3.3. Let b ∈ R and ρ > 1. With probability greater than 1− exp(−c log2 n),
the interval [b,b+ ρ] contains at most

N(ρ) := c ′ρ
√
n

eigenvalues of AG. The constants c, c ′ > 0 are absolute.

Theorem 5.3.3 together with the `∞ delocalization for the eigenvectors of the
adjacency matrix allows to prove a similar delocalization for the normalized
Laplacian.

Lemma 5.3.4. Let p ∈ (0, 1). Let f ∈ Sn−1 be the second eigenvector of LG. Then with
probability at least 1 − exp(−c log2 n),

‖f‖∞ 6 n−1/4 logC n

and ∣∣∣{v ∈ V : |fv| 6 n
−5/8
}∣∣∣ 6 c ′n1−1/48.

Here, C, c, c ′ are positive constants whose value may depend on p.

Proof. Let us start with the `∞ delocalization. Let d = np be the expected degree
of a vertex, and set

x = d1/2D
−1/2
G f.

By Proposition 5.1.1 (3), d1/2D
−1/2
G = diag(sv, v ∈ V), where sv = 1 + o(1) for

all v ∈ V , and ‖x‖2 = 1 + o(1) with probability close to 1. Hence, it is enough
to bound ‖x‖∞. Let us check that x is an approximate eigenvector of AG corre-
sponding to the approximate eigenvalue λ̂2d, where λ̂2 is the second eigenvalue
of the normalized adjacency matrix D−1/2

G AGD
−1/2
G . By Proposition 5.1.1 (4),

λ̂2 6 c/
√
np with high probability, hence∥∥∥AGD−1/2

G f− λ̂2dD
−1/2
G f

∥∥∥
2
= |λ̂2| ·

∥∥∥D1/2
G f− dD

−1/2
G f

∥∥∥
2

6
c
√
np
·max
v∈V

d
−1/2
v ·max

v∈V
|dv − d|

6
c

np
·max
v∈V

|dv − d| 6
C logn
√
np

,
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and so

(5.3.5)
∥∥AGx− λ̂2dx

∥∥
2 6 C logn.

Denote the eigenvalues of AG by µ1, . . . ,µn and the corresponding eigenvec-
tors by u1, . . . ,un ∈ Sn−1, and let αj =

〈
x,uj

〉
. Set µ = λ̂2d and let Pτ be the

orthogonal projection on the span of the eigenvectors corresponding to the eigen-
values of AG in the interval [µ− τ,µ+ τ]. Then

τ ‖(I− Pτ)x‖2 = τ

 ∑
|µj−µ|>τ

α2
j

1/2

6

 ∑
|µj−µ|>τ

(µj − µ)
2α2
j

1/2

6 ‖(AG − µ)x‖2 6 C logn.

and so,

(5.3.6) ‖(I− Pτ)x‖2 6

(
C

logn
τ

∧ 1
)

.

For any τ > 0 and any ρ > 1,

‖(Pτ+ρ − Pτ)x‖∞ =

∥∥∥∥∥∥
∑

|µj−µ|∈[τ,τ+ρ]

αjuj

∥∥∥∥∥∥∞ = max
v∈V

∣∣∣∣∣∣
∑

|µj−µ|∈[τ,τ+ρ]

αjuj,v

∣∣∣∣∣∣
6

 ∑
|µj−µ|∈[τ,τ+ρ]

α2
j

1/2

·max
v∈V

 ∑
|µj−µ|∈[τ,τ+ρ]

u2
j,v

1/2

6 ‖(Pτ+ρ − Pτ)x‖2 ·N
1/2(ρ) · max

j∈[n]

∥∥uj∥∥∞
6 ‖(I− Pτ)x‖2 ·

√
ρn1/2 · logC n√

n

with probability greater than 1− exp(−c log2 n), where we used (5.1.2) and Theo-
rem 5.3.3 in the last inequality. Combining this with (5.3.6), we get

‖(Pτ+ρ − Pτ)x‖∞ 6 C√ρ logC n
n1/4 ·

(
τ−1 ∧ 1

)
.

By the union bound, with probability greater than 1 − exp(−c log2 n), the same
inequality holds for all τ = ρ = 2k, such that 1 6 2k 6 2n. Also, with probability
at least 1− exp(−cn), I = P2n, i.e., there are no eigenvalues outside of the interval
[−2n, 2n]. Therefore,

‖x‖∞ 6 ‖P1x‖∞ +

log2 2n∑
k=0

‖(P2k+1 − P2k)x‖∞
6 C

logC n
n1/4 +

log2 2n∑
k=0

C2−k/2 logC n
n1/4 6 Cn−1/4 logC n

with the required probability. By the discussion above, ‖f‖∞ 6 2 ‖x‖∞ which
finishes the proof of the first part of the lemma.
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Now, let us prove the lower bound on the absolute values of most of the coor-
dinates of f. As before, it is enough to prove a similar bound on the coordinates
of x. Assume to the contrary that there is a set U ⊂ V with |U| > cn1−1/48 such
that for any v ∈ U, |xv| 6 n−5/8. Then

‖xU‖2 6
√
n ·n−5/8 = n−1/8.

Inequality (5.3.5) shows that x is an approximate eigenvector of AG. Since,
by Remarks 1.0.9 and 2.1.8, n−1/8 � Cn−1/2 logC n, we can apply Theorem
1.0.7 to x with s being an appropriately small constant and ε = (1/s)n−1/48,
so (εs)6 = n−1/8. This theorem shows that such set U exists with probability at
most exp(−εn)� exp(−c log2 n). The proof of the lemma is complete. �

Equipped with Proposition 5.3.2 and Lemma 5.3.4, we can prove a stronger
form of the conjecture showing that c > 1/2 − o(1). Let us formulate it as a
theorem.

Theorem 5.3.7. Let p ∈ (0, 1), and let G be a G(n,p) graph. Then with probability
1 − o(1),

a−(G) >
1
2
−O(n−c).

Proof. Let f ∈ Sn−1 be the eigenvector of LG corresponding to the second eigen-
value, and assume that the event described in Lemma 5.3.4 occurs. Let

W =
{
v ∈ V : |fv| > n

−5/8
}

,

and set

W+ = {v ∈W : fv > 0}, and W− = {v ∈W : fv < 0}.

For any v,w ∈W+,

f2v + f
2
w

fvfw
6 2 max

v,w∈W+

fv

fw
6 Cn3/8 logC n�

√
n.

Hence, if (v,w) is a non-edge, then Proposition 5.3.2 implies that adding it to
G decreases the spectral gap. Similarly, we can show that adding any non-edge
whose vertices belong to W−, decreases the spectral gap as well. Let us count the
number of the non-edges in W+ and W− and compare it to the total number of
the non-edges. Using Property (5), and the bound |Wc| 6 cn1−1/48, we obtain

a−(G) >
|Non-edges(W+)|+ |Non-edges(W−)|

|Non-edges(V)|

>
(1 − p)

[(|W+|
2

)
+
(|W−|

2

)]
− 2n−3/2

(1 − p)
(
n
2
)
+n3/2

>
(1 − p)

[(
|W+|+|W−|

2

)2
− |W+|− |W−|

]
− 2n3/2

(1 − p)
(
n
2
)
+n3/2 >

1
2
−O(n−c),

as claimed. �
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