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ABSTRACT
In this paper, we formally define the problem of topic mod-
eling with network structure (TMN). We propose a novel
solution to this problem, which regularizes a statistical topic
model with a harmonic regularizer based on a graph struc-
ture in the data. The proposed method combines topic mod-
eling and social network analysis, and leverages the power
of both statistical topic models and discrete regularization.
The output of this model can summarize well topics in text,
map a topic onto the network, and discover topical commu-
nities. With appropriate instantiations of the topic model
and the graph-based regularizer, our model can be applied
to a wide range of text mining problems such as author-
topic analysis, community discovery, and spatial text min-
ing. Empirical experiments on two data sets with different
genres show that our approach is effective and outperforms
both text-oriented methods and network-oriented methods
alone. The proposed model is general; it can be applied to
any text collections with a mixture of topics and an associ-
ated network structure.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Text Mining

General Terms: Algorithms

Keywords: statistical topic models, social networks, graph-
based regularization

1. INTRODUCTION
With the prevailing of Web 2.0 applications, more and

more web users are actively publishing text information on-
line. These users also often form social networks in vari-
ous ways, leading to simultaneous growth of both text in-
formation and network structures such as social networks.
Taking weblogs (i.e., blogs) as an example, one can find a
wide coverage of topics and diversified discussions in the blog
posts, as well as a fast evolving friendship network among
the bloggers. In another scenario, as researchers are regu-
larly publishing papers, we not only obtain text information,
but also naturally have available co-authorship networks of
authors. In yet another scenario, as email users produce
many text messages, they also form networks through the
relation of sending or replying to messages. One can easily
imagine many other examples of text accompanied by net-
work structures such as webpages accompanied by links and
literature accompanied by citations. Figure 1 presents an
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example coauthor network from SIGIR proceedings, where
each author is associated with the papers he/she published.
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Figure 1: A sample network structure with text

These examples show that in many web mining tasks, we
are often dealing with collections of text with a network
structure attached, making it interesting to study how we
can leverage the associated network structure to discover
interesting topic and/or network patterns.

Statistical topic models have recently been successfully ap-
plied to multiple text mining tasks [10, 4, 28, 26, 20, 15, 27]
to discover a number of topics from text. Some recent work
has incorporated into topic modeling context information
[20], such as time [27], geographic location [19], and author-
ship [26, 23, 19], to facilitate contextual text mining. Topics
discovered in this way can be used to infer research com-
munities [26, 23] or information diffusion over geographic
locations [19]. However, they do not consider the natural
network structure among authors, or geographic locations.
Intuitively, these network structures are quite useful for re-
fining and structuring topics, and are sometimes essential
for discovering network-associated topics. For example, two
researchers who often coauthor with each other are likely
to be working on the same topics, thus are likely to be in
the same research community. For geographically sensitive
events (e.g., hurricane Katrina), bloggers living at adjacent
locations tend to write about similar topics. The lack of con-
sideration of network structures is also a deficiency in some
other text mining techniques such as document clustering.

On the other hand, social network analysis (SNA) focuses
on the topology structure of a network [11, 13, 1, 12], ad-
dressing questions such as “what the diameter of a network
is [13]”, “how a network evolves [13, 1]”, “how information
diffuses on the network [9, 14]”, and “what are the com-
munities on a network [11, 1].” However, these techniques
usually do not leverage the rich text information. In many



scenarios, text information is very helpful for SNA tasks. For
example, Newton and Einstein had never collaborated on a
paper (i.e., social network), but we still consider them in
the same research (physics) community because they made
research contributions on related research topics (i.e., text).
Similarly, to attract Bruce Willis to take a role in a movie,
“the script is interesting (i.e., text)” is as important as “the
director is a trustable friend (i.e., social network).”

Is there a way to leverage the power of both the tex-
tual topics and the network structure in text mining? Can
the two successful complementary mining techniques (i.e.,
probabilistic topic modeling and social network analysis) be
combined to help each other? To the best of our knowledge,
these questions have never been seriously studied before. As
a result, there is no principled way to combine the mining
process of topics in text and social networks (e.g., combining
topic modeling with network analysis). Although methods
have been proposed to combine page contents and links in
web search [22], none of them is tuned for text mining.

In this paper, we formally define the major tasks of Topic
Modeling with Network Structure (TMN), and pro-
pose a unified framework to combine statistical topic mod-
eling with network analysis by regularizing the topic model
with a discrete regularizer defined based on the network
structure. The framework makes it possible to cast our min-
ing problem as an optimization problem with an explicit ob-
jective function. Experiment results on different genres of
real world data show that our model can effectively extract
topics, generat topic maps on a network, and discover topical
communities. The results also show that our model improves
over both pure text mining methods and pure network anal-
ysis methods, suggesting the necessity of combining them.

The proposed framework of regularized topic modeling is
general; one can choose any topic model and a corresponding
regularizer on the network. Variations of the general model
are effective for solving real world text mining problems,
such as author-topic analysis and spatial topic analysis.

The rest of this paper is organized as follows. In Section 2,
we formally define the problem of topic modeling with net-
work structure. In Section 3, we propose the unified regular-
ization framework as well as two general methods to solve
the optimization problem. We discuss the variations and
applications of our model in Section 4 and present empiri-
cal experiments in Section 5. Finally, we discuss the related
work in Section 6 and conclude in Section 7.

2. PROBLEM FORMULATION
We assume that the data to be analyzed consists of both

a collection of text documents and an associated network
structure. This setup is quite general: The text documents
can be a set of web pages, blog articles, scientific litera-
ture, emails, or profiles of web users. The network structure
can be any social networks on the web, co-author/citation
graphs, geographic networks, or even latent networks that
can be inferred from the text (e.g., entity-relation graph,
document nearest-neighbor graph, etc). We now formally
define the related concepts and the general tasks of topic
modeling with network structure.

Definition 1 (Document): A text document d in a
text collection C is a sequence of words w1w2...w|d|, where
wi is a word from a fixed vocabulary. Following a common
simplification in most work in information retrieval and topic
modeling [10, 4], we represent a document with a bag of

words, i.e., d = {w1, w2, ..., w|d|}. We use c(w, d) to denote
the occurrences of word w in d.

Definition 2 (Network): A network associated with a
text collection C is a graph G = 〈V, E〉, where V is a set of
vertices and E is a set of edges. Without losing generality,
we define a vertex u ∈ V as a subset of documents Dv ⊂ C.
For example, a vertex in a coauthor graph can be a single
author associated with all papers he/she published. An edge

〈u, v〉 is a binary relation between vertices u and v, where
we use w(u, v) to denote the weight of 〈u, v〉. An edge can
be either undirected or directed. In this work, we only
consider the undirected case, i.e., 〈u, v〉 = 〈v, u〉.

Definition 3 (Topic): A semantically coherent topic

in a text collection C is represented by a topic model θ ,
which is a probabilistic distribution of words {p(w|θ)}w∈V .
Clearly, we have

∑
w∈V

p(w|θ) = 1. We assume that there
are all together k topics in C.

By combining text topics and a network structure, we can
discover new types of interesting patterns. For example, we
can explore who first brought the topic “language modeling”
into the IR community, and who have been diffusing this
topic on the research network. A topic could also define a
latent community on the network (e.g., the machine learning
community, the SNA community, etc). The following pat-
terns are unique to topic modeling with network structure,
and cannot be discovered solely from text or social networks.

Definition 4 (Topic Map): A topic map of a topic
θ on network G, Mθ, is represented by a vector of weights
〈f(θ, v1), f(θ, v2), ..., f(θ, vm)〉, where vi ∈ V , and f(θ, v) is
a weighting function of a topic on a vertex. For example,
we may define f as f(θ, vi) = p(θ|vi), where

∑
θ
p(θ|vi) = 1

for all vi. From a topic map, we can learn how a topic is
distributed on the network. Intuitively, we expect that the
adjacent vertices be associated with similar topics and the
weights of topics on adjacent vertices are similar.

Definition 5 (Topical Community): A topical com-

munity on network G is represented by a subset of vertices
Vθ ⊂ V . We can assign a vertex v to Vθ with any reason-
able criterion, e.g. f(θ, v) > ε, or ∀θ′, f(θ, v) > f(θ′, v).
The topic model θ is then a natural summary of the seman-
tics of the topical community Vθ. Intuitively we expect that
the vertices within the same topical community are tightly
connected and all have a large f(θ, v); vertices from different
topical communities are loosely connected and have different
f(θ, v). A topical community is different from a community

in the SNA literature in that it must have coherent seman-
tics, and can be summarized with a coherent topic in text.

Based on the definitions of these concepts, we can for-
malize the major tasks of topic modeling with network
structure (TMN) as follows:

Task 1: (Topic Extraction) Given a collection C and
a network structure G, the task of Topic Extraction is to
model and extract k major topic models, {θ1, ..., θk}, where
k is a user specified parameter.

Task 2: (Topic Map Extraction) Given a collection C
and a network structure G, the task of Topic Map Extraction

is to model and extract the k weight vectors {Mθ1 , ..., Mθk
},

where each vector Mθ is a map of topic θ on network G.
Task 3: (Topical Community Discovery) Given a

collection C and a network structure G, the task of Topical

Community Discovery is to extract k topical communities
{V1, ...,Vk}, where each Vi has a coherent semantic summary
θi, which is one of the k major topics in C.



These tasks are challenging in many ways. First, there is
no existing unified model that can embed a network struc-
ture in a topic model. Indeed, whether a social network
structure can help extracting topics is an open question.
Second, in existing community discovery methods, there is
no guarantee that the semantics of a community is coher-
ent. It is rather unclear how to satisfy the topical coherency
and the connectivity coherency at the same time. Moreover,
since it is usually hard to create training examples to this
problem, the solution has to be unsupervised.

The three major tasks above are by no means the only
tasks of topic modeling with network structure. With the
output of such basic tasks, more in-depth analysis can be
done. For example, one can compare topic maps over time
and analyze how topics are propagating over the network.
One can also track the evolution of topical communities.

3. REGULARIZING TOPIC MODELS WITH
NETWORK STRUCTURE

In this section, we propose a novel and general frame-
work of regularizing statistical topic models with the net-
work structure.

3.1 Statistical Topic Models
We first discuss the basic statistical topic models, which

have been applied to many text mining tasks [10, 4, 26, 19,
15, 27, 20]. The basic idea of these models is to model doc-
uments with a finite mixture model of k topics and estimate
the model parameters by fitting the data with the model.
Two basic statistical topic models are the Probabilistic La-
tent Semantic Analysis (PLSA) [10] and the Latent Dirichlet
Allocation (LDA) [4]. For example, the log likelihood of a
collection C to be generated with PLSA is given as follows:

L(C) =
∑

d

∑

w

c(w, d) log
k∑

j=1

p(θj |d)p(w|θj) (1)

The parameters in PLSA are Ψ = {p(θj |d), p(w|θj)}d,w,j .
Naturally, we can use {p(θj |v)}j as the weights of topics on
vertex v, and compute p(θj |v) by

p(θj |v) =
∑

d∈Dv

p(θj |d)p(d|v) (2)

PLSA thus provides an over-simplified solution to the prob-
lem of TMN by ignoring the network structure. There is no
guarantee that vertices in the same topical community are
well connected, or adjacent vertices are associated with sim-
ilar topics. Indeed, a limitation of PLSA is that there is
no constraint on the parameters {p(θj |d)} for different d,
the number of which grows linearly with the data. There-
fore, the parameters {p(θj |d)}d,j would overfit the data. To
alleviate this overfitting problem, LDA assumes that the
document-topic distributions {p(θj |d)}j of each document
d are all generated from the same Dirichlet distribution.

3.2 The Regularization Framework
We propose a new framework to model topics with a net-

work structure, by regularizing a statistical topic model with
a regularizer on the network. The criterion of this regular-
ization is succinct and natural: vertices which are connected
to each other should have similar weights of topics (f(θj , v)).

Formally, we define a regularized data likelihood as

O(C, G) = −(1 − λ)L(C) + λR(C, G) (3)

where L(C) is the log likelihood of the collection C to be
generated by the statistical topic model, and R(C, G) is a
harmonic regularizer defined on the network structure G.

This regularization framework is quite general. We can
use any statistical topic model to refine L(C), and use any
graph based regularizer R(C, G) as long as it can smooth the
topics among adjacent vertices. We abbreviate the network
regularized statistical topic model as NetSTM.

To illustrate this framework, in this paper we use PLSA
as the statistical topic model and a regularizer similar to the
graph harmonic function in [33], i.e.,

R(C, G) =
1

2

∑

〈u,v〉∈E

w(u, v)
k∑

j=1

(f(θj , u) − f(θj , v))2 (4)

Correspondingly, we call this model NetPLSA.
Note that the regularizer in Equation 4 is an extension

of the graph harmonic function in [33] to multiple classes
(topics). It can be rewritten as

R(C, G) =
1

2

k∑

j=1

f
T
j ∆fj (5)

where fj is a |V | dimensional vector of the weights of the
j-th topic on each vertex (e.g., {p(θj |v)}v). ∆ is the graph
Laplacian matrix [33, 32]. We have ∆ = D − W , where W

is the matrix of edge weights, and D is a diagonal matrix
where d(u, u) =

∑
v

w(u, v).
This framework is a general one that can leverage the

power of both the topic model and the graph Laplacian regu-
larization. Intuitively, the L(C) in Equation 6 measures how
likely the data is generated from this topic model. By min-
imizing −L(C), we will find {p(θj |d)} and {p(w|θj)} which
fits the text data as much as possible. By minimizing R(C),
we smooth the topic distributions on the network structure,
where adjacent vertices have similar topic distributions.

Although theoretically f(θ, u) can be defined as any weight-
ing function of a topic θ on u, in practice it must be a
function of the parameters in PLSA (i.e., {p(θj |d)} and
{p(w|θj)}). When a vertex have multiple documents, an
example choice is f(θ, u) = p(θ|u) ∝

∑
d∈Du

p(θ|d)p(d|u).
The parameter λ can then be set between 0 to 1 to control

the balance between the data likelihood and the smoothness
of topic distributions over the network. It is easy to show
that if λ = 0, the objective function boils down to the log
likelihood of PLSA. Minimizing O(C, G) will give us the top-
ics which best fit the content of the collection. When λ = 1,
this objective function boils down to 1

2

∑k

j=1 fT
j ∆fj . Em-

bedded with additional constraints, this is related to the
objective of spectral clustering (i.e., ratio cut [6]). By min-
imizing O(C, G), we will extract document clusters solely
based on the network structure.

An interesting simplified case is when every vertex only
contains one document (thus substitute u, v with du, dv)
and f(θ, u) = p(θ|du). Then we have

O(C, G) = −(1 − λ) ∗
∑

d

∑

w

c(w, d) log

k∑

j=1

p(θj |d)p(w|θj)

+
λ

2

∑

〈u,v〉∈E

w(u, v)
k∑

j=1

(p(θj |du) − p(θj |dv))2. (6)

In the following section, we discuss parameter estimation of



the NetPLSA model in such a simplified case. The estima-
tion for more complex cases can be done similarly.

3.3 Parameter Estimation
Let us first consider the special case when λ = 0. In such a

case, the objective function degenerates to the log-likelihood
function of PLSA with no regularization.

The standard way of parameter estimation for PLSA is
to apply the Expectation Maximization (EM) algorithm [8]
which iteratively computes a local maximum of L(C). Specif-
ically, in the E-step, it computes the expectation of the com-
plete likelihood Q(Ψ; Ψn), where Ψ denotes all the parame-
ters, and Ψn denotes the value of Ψ estimated in the last (n-
th) EM iteration. In the M-step, the algorithm finds a better
estimate of parameters, Ψn+1, by maximizing Q(Ψ; Ψn):

Ψn+1 = arg max
Ψ

Q(Ψ; Ψn) (7)

Computationally, the E-step boils down to computing the
conditional distribution of the hidden variables given the
data and Ψn. The hidden variables in PLSA correspond to
the events that a term w in document d is generated from
the j-th topic. Formally, we have the E-Step:

z(w, d, j) = p(θj |w, d, Ψn)

=
pn(θj |d)pn(w|θj)∑k

j′=1 pn(θj′ |d)pn(w|θj′)
(8)

Q(Ψ;Ψn) =
∑

d

∑

w

c(w, d)
∑

j

z(w, d, j) log p(θj |d)p(w|θj) (9)

The maximization problem in the M-Step (i.e., Equa-
tion 7) has a closed form solution:

pn+1(θj |d) =

∑
w

c(w, d)z(w, d, j)∑
w

∑
j′

c(w, d)z(w, d, j′)
(10)

pn+1(w|θj) =

∑
d
c(w, d)z(w, d, j)∑

d

∑
w

c(w, d)z(w, d, j)
. (11)

We now discuss how we can extend this standard EM al-
gorithm to handle the case λ 6= 0. Using a similar derivation
to that of the EM algorithm, we have the following expected
complete likelihood function for NetPLSA, where for conve-
nience of discussion, we also added the Lagrange multipliers
corresponding to the constraints on our parameters:

Q(Ψ; Ψn) = (1 − λ)
∑

d

∑

w

c(w, d)
∑

j

z(w, d, j) log p(θj |d)p(w|θj)

+
∑

d

αd(
∑

j

p(θj |d) − 1) +
∑

j

αj(
∑

w

p(w|θj) − 1)

−
λ

2

∑

〈u,v〉∈E

w(u, v)

k∑

j=1

(p(θj |du) − p(θj |dv))
2

(12)

where αd(
∑

j
p(θj |d)−1) and αj(

∑
w

p(w|θj)−1) are La-
grange multipliers corresponding to the constraints that∑

j
p(θj |d) = 1 and

∑
w

p(w|θj) = 1.
Thus in general, we can still use the EM algorithm to

estimate the parameters when λ > 0 in Equation 6 by max-
imizing −O(C, G). It is easy to see that NetPLSA shares
the same hidden variables with PLSA, and the conditional
distribution of the hidden variables can still be computed
using Equation 8. Thus the E-step remains the same.

The M-step is more complicated due to the introduction
of the regularizer. The estimation of P (w|θj) does not rely

on the regularizer, thus can still be computed using Equa-
tion 10. Unfortunately, we do not have a closed form so-
lution to re-estimate the parameters {P (θj |d)}j,d through
maximizing Q(Ψ; Ψn).

To solve this problem, we can apply a Newton-Raphson
method to update Ψn+1 by finding a local maximum of
Q(Ψ; Ψn) in the M step. Specifically, let X be the vector of
variables to be updated with the Newton-Raphson method
(i.e., {P (θj |d)}j,d and {αd}d). The updating formula of the
Newton-Raphson’s method is as follows:

X
(t+1) = X

(t) − γ[HQ(X(t); Ψn)]−1 5 Q(X(t); Ψn) (13)

where X(t) is the new estimation of parameters at the t-th
inner iteration of the M step. 5Q(X; Ψn) is the gradient of
Q(X; Ψn). HQ(X; Ψn) is the Hessian matrix of Q(X; Ψn).
γ is a small step size to ensure the satisfaction of the Wolfe
conditions 1. A good selection of γ guarantees that p(θ|d) ≥

0. It is easy to evaluate all the elements in HQ(X(t); Ψn)

and 5Q(X(t); Ψn). We omit the details due to the limit of

space. Instead of computing [HQ(X(t); Ψn)]−1, it is more

efficient to find X(t+1) directly by solving the linear system

HQ(X(t); Ψn)(X(t) − X
(t+1)) = γ 5 Q(X(t); Ψn) (14)

We want to set the start point of X(0) corresponding to
Ψn. This is because, to guarantee that the generalized EM
algorithm will converge, we need to assure Q(Ψn+1; Ψn) ≥
Q(Ψn; Ψn). By setting the start point of Newton-Raphson
method at Ψn, we ensure that Q would not drop.

3.4 An Efficient Algorithm
In the previous section, we give a way to gradually ap-

proach the local maximum of Q(Ψ; Ψn) at M step. However,
this involves multiple iterations of Newton-Raphson updat-
ing, in each of which we need to solve a linear system of
|d| ∗ (k + 1) variables. This significantly increases the cost
of parameter estimation of NetPLSA.

In this section, we propose a simpler algorithm for pa-
rameter estimation based on the generalized EM algorithm
(GEM) [21]. According to GEM, we do not have to find the
local maximum of Q(Ψn+1; Ψn) at every M step; instead, we
only need to find a better value of Ψ in the M-step, i.e., to
ensure Q(Ψn+1; Ψn) ≥ Q(Ψn; Ψn).

Thus our idea is to optimize the likelihood part and the
regularizer part of the objective function separately in hope
of finding an improvement of the current Ψ. Specifically,
let us write Q(Ψ; Ψn) = (1 − λ)L′(C) − λR(C, G), where
L′(C) denotes the expectation of the complete likelihood of
the topic model. Clearly, Q(Ψ; Ψn) ≥ Q(Ψn; Ψn) holds if

Ψ = Ψn. We introduce Ψ
(0)
n+1 = Ψn, which is the first eligible

set of parameter values that assure Q(Ψ; Ψn) ≥ Q(Ψn; Ψn).

At every M-step, we would first attempt to find Ψ
(1)
n+1 to

maximize L′(C) instead of the whole Q(Ψ; Ψn). This can
be done by simply applying Equation 11 and 10. Clearly,

Q(Ψ
(1)
n+1; Ψn) ≥ Q(Ψn; Ψn) does not necessarily hold as the

regularizer part may have been decreased. Thus we further

start from Ψ
(1)
n+1 and attempt to increase −R(C, G).

The Hessian matrix of 2R(C, G) is the graph Laplacian
matrix (i.e., ∆ = D−W ). By applying one Newton-Raphson

step on R(C, G), we propose a closed form solution for Ψ
(2)
n+1;

1http://en.wikipedia.org/wiki/Newton%27s method in optimization



we then repeatedly obtain Ψ
(3)
n+1, ..., Ψ

(m)
n+1 using the Equa-

tion 15 until the value of the Q-function starts to drop:

p
(t+1)
n+1 (θj |du) = (1−γ)p

(t)
n+1(θj |du)+γ

∑
〈u,v〉∈E

w(u, v)p
(t)
n+1(θj |dv)

∑
〈u,v〉∈E

w(u, v)

(15)

Clearly,
∑

j
p
(t+1)
n+1 (θj |d) = 1 and p

(t+1)
n+1 (θj |d) ≥ 0 always

hold in Equation 15. When the step parameter γ is set to
1, it means that the new topic distribution of a document
is the average of the old distributions from its neighbors.
This is related to the random-walk interpretation in [33].
Every iteration of Equation 15 makes the topic distributions
smoother on the network. Note that an inner iteration does
not affect the estimation of {p(w|θ)}w,θ in Ψ

(1)
n+1.

The stepping parameter γ can be interpreted as a control-
ling factor of smoothing the topic distribution among the

neighbors. Once we have found Q(Ψ
(t)
n+1; Ψn) ≥ Q(Ψn; Ψn),

we can limit the further iterations of processing of Equa-

tion 15, so that Ψn+1 would not be too far away from Ψ
(0)
n+1.

4. APPLICATIONS OF NETSTM
The framework defined in Equation 3 is quite general.

Actually, one can use any topic models for L(C) and a related
regularizer for R(C, G). The choice of the topic model and
the regularizer should be task dependent. In this section, we
show that with difference choices of L and R, this framework
can be applied to different mining tasks.

4.1 Author-Topic Analysis and Community Dis-
covery

Author-topic analysis has been proposed in text mining
literature [26, 23, 20]. One major task of author-topic anal-
ysis is to extract research topics from scientific literature
and to measure the associations between topics and authors.
This can be regarded as modeling topic maps and discover-
ing research communities solely based on textual contents,
where the authors in the same community works on the same
topic. With a topic model, one can find a summary for a
topical community, e.g., using the distribution p(w|θ).

On the other hand, many methods have been proposed
to discover communities from social networks [11, 1], which
solely explore the network structure. One concrete example
is to discover research communities based on the coauthor
relationship between researchers, where authors with collab-
orations are likely to lie in the same community.

However, both directions have their own limitations. In
author-topic analysis, the associations between authors are
indirectly modeled through the content. A professor and his
fellow student may be assigned to two different communities,
if they have different flavor of topics. On the other hand,
solely relying on the network structure is at risk of assigning
a biologist and a computer scientist into the same commu-
nity, even if they just coauthored one paper of bioinformat-
ics. Moreover, it is difficult to summarize the semantics of
a community (i.e., to explain why they form a community).

To leverage the information in the text and the network,
we can apply the NetPLSA model to extract topical commu-
nities. Specifically, for each author a, we may concatenate all
his/her publications to form a virtual document of a. Then
a coauthor social network G is constructed where there is
an edge between author a and a′ if they coauthored at least
one paper.

We can define w(a, a′) as the number of papers that a and
a′ coauthored. Equation 6 can be rewritten as

O(C, G) = −(1 − λ) ∗
∑

a

∑

w

c(w, a) log

k∑

j=1

p(θj |a)p(w|θj)

+
λ

2

∑

〈a,a′〉∈E

w(a, a′)
k∑

j=1

(p(θj |a) − p(θj |a
′))2 (16)

By minimizing O(C, G), we can estimate p(θj |a), which
denotes the probability that the author a belongs to the j-
th topical community. The estimated distribution p(w|θj)
can be used as a semantic summary of the j-th community.

4.2 Spatial Topic Analysis
A general task in spatial text mining [20] is to extract

topics from text with location labels and model their dis-
tribution over different geographic locations. Some natural
topics, like public reaction to an event (e.g., hurricane Ka-
trina), are geographic correlated. Intuitively we can expect
that people live at nearby locations express similar topics.

Let L be a set of geographic locations and l, l′ ∈ L. We
denote d ∈ Dl if document d has a location label of l. By
introducing a vertex for every location and an edge between
two adjacent locations, we construct a geographic location
network G = 〈L, E〉. We can then model the geographic
topic distribution with a variation of the NetPLSA, where

O(C, G) = −(1 − λ) ∗
∑

d

∑

w

c(w, d) log
k∑

j=1

p(θj |d)p(w|θj) (17)

+
λ

2

∑

〈l,l′〉∈E

w(l, l′)
k∑

j=1

(
∑

d∈Dl

p(θj |d)

|l|
−

∑

d′∈Dl′

p(θj |d
′)

|l′|
)2

where |l| is the number of documents in l. Specifically, we

modify the regularizer by replacing p(θj |d) with
∑

d∈Dl

p(θj |d)

|l|
,

which is the topic distribution over a location, instead of a
single document (we assume a uniform p(d|l)).

We then use the following formula instead of Equation 15:

p
(t+1)
n+1 (θj |d) = (1 − γ)p

(t)
n+1(θj |d) (18)

+ γ

∑
〈ld,l′〉∈E

w(ld, l′)
∑

d′∈Dl′

p
(t)
n+1(θj |d

′)

|l′|∑
〈d,d′〉∈E

w(ld, l′)
.

where ld denotes the location which d belongs to.

5. EXPERIMENTS
In the previous sections, we introduced the novel frame-

work of topic modeling with network regularization, and
discussed how it could be applied to solve real world text
mining problems. In this section, we show the effectiveness
of our model with experiments on two genres of data. We
show how NetPLSA works for the author-topic analysis in
Section 5.1 and for spatial topic analysis in Section 5.2.

5.1 DBLP Author-Topic Analysis

Data Collection
The Digital Bibliography and Library Project (DBLP) is a
database which contains the basic bibliographic information
of computer science publications 2. In this experiment, we

2http://www.informatik.uni-trier.de/∼ley/db/



create our testing data set (4-CONF) from a subset of the
DBLP records. We first extract all the papers published at
four different conferences, WWW, SIGIR, KDD, and NIPS.
For each paper, we extract the title in text and all its au-
thors. We then construct the coauthor network, by making a
vertex for every unique author a and an edge 〈a, a′〉 between
two authors if they have coauthored at least one paper. We
weight each edge in this network, by the number of papers
that the two researchers have coauthored, w(a, a′). Finally,
we concatenate the titles of all papers of an author to create
a document da associated with this author. Our dataset has
9041 authors, and 16902 unique edges (without self links);
the average weight for an edge is 1.2.

(a) View I (b) View II

* In this figure, we only show the authors who have more than 7
publications in the four conference(s). We do not show singletons.

Figure 2: Coauthor network in DBLP dataset

In Figure 2, we visualize the coauthor network structure of
the 4-CONF dataset using the NetDraw software3. We only
show the authors with more than five publications. The two
views are “Spring Embedder” and “Gower Metric Scaling”
provided by NetDarw. Basically, Spring Embedder is a stan-
dard graph layout algorithm which tries to put two vertices
which are connected by an edge closer, and Gower Metric

Scaling will locate two vertices closer if they are intensely
connected directly or through other vertices [5]. Therefore,
in both layout views (Figure 2 (a) and (b)), authors closer
to each other are more likely to be in the same community.
Clearly, from Figure 2 (b), we can guess that there are 3 to 4
major communities in the 4-CONF dataset, and such major
communities are connected.

Topic Extraction
Once we created the testing datasets, we extract topics from
the data using both PLSA and NetPLSA. Since the testing
data is a mixture of four conferences, it is interesting to see
whether the extracted topics could automatically reveal this
mixture. Therefore, in both PLSA and NetPLSA, we set the
number of topics to be 4. Following [28, 19], we introduce an
extra background topic model to absorb the common words
in English. We run the EM algorithm multiple times with
random starting points to improve the local maximum of
the EM estimates. To make the comparison fair, we use the
same starting points for PLSA and NetPLSA. We summarize
each topic θ with terms having the highest p(w|θ).

From Table 1, we see that PLSA extracts reasonable top-
ics. However, in terms of representing research communities,
all four topics have their limitations. The first topic is some-
what related to information retrieval, but it is mixed with
some heterogenous topic like “protein”. Although the third
column is a very coherent NIPS topic (i.e., analog VLSI of

3http://www.analytictech.com/Netdraw/netdraw.htm

neural networks), it is not broad enough to represent the
general community of NIPS.

Table 1: Topics extracted from 4-CONF with PLSA
Topic 1 Topic 2 Topic 3 Topic 4

term 0.02 peer 0.02 visual 0.02 interface 0.02
question 0.02 patterns 0.01 analog 0.02 towards 0.02
protein 0.01 mining 0.01 neurons 0.02 browsing 0.02
training 0.01 clusters 0.01 vlsi 0.01 xml 0.01
weighting 0.01 streams 0.01 motion 0.01 generation 0.01
multiple 0.01 frequent 0.01 chip 0.01 design 0.01
recognition 0.01 e 0.01 natural 0.01 engine 0.01
relations 0.01 page 0.01 cortex 0.01 service 0.01
library 0.01 gene 0.01 spike 0.01 social 0.01

Table 2: NetPLSA extracts cleaner topics
Topic 1 Topic 2 Topic 3 Topic 4

retrieval 0.13 mining 0.11 neural 0.06 web 0.05
information 0.05 data 0.06 learning 0.02 services 0.03
document 0.03 discovery 0.03 networks 0.02 semantic 0.03
query 0.03 databases 0.02 recognit. 0.02 service 0.03
text 0.03 rules 0.02 analog 0.01 peer 0.02
search 0.03 association 0.02 vlsi 0.01 ontologi. 0.02
evaluation 0.02 patterns 0.02 neurons 0.01 rdf 0.02
user 0.02 frequent 0.01 gaussian 0.01 manage. 0.01
relevance 0.02 streams 0.01 network 0.01 ontology 0.01

As a comparison with PLSA, we present the topics ex-
tracted with NetPLSA in Table 2. It is easy to see that
the four topics regularized with the coauthor network are
much cleaner. They are coherent enough to convey certain
semantics, and general enough to cover the natural “topical
communities”. Specifically, Topic 1 well corresponds to the
information retrieval (SIGIR) community, Topic 2 is closely
related to the data mining (KDD) community, Topic 3 covers
the machine learning (NIPS) community, and Topic 4 well
covers the topic that is unique to the conference of WWW.

Topical Communities
We see that the quality of the topic models extracted with
network regularization are better than those extracted with-
out considering the network structure. However, could the
regularized topic model really extract better topical com-
munities? Are the topics in Table 2 really corresponding to
coherent communities? We compare the topical communi-
ties identified by PLSA and NetPLSA.

Specifically, we assign each author to one of the topics,
by ca = arg maxj p(θj |a). We then visualize the authors
assigned to different topics with different shapes and col-
ors. The authors with the same shape thus form a topical
community summarized by the corresponding topic model.
As discussed in Section 2, the authors in the same topical
community are expected to be well connected.

Figure 3 (a) and (b) present the topical communities ex-
tracted with the basic PLSA model, and Figure 3 (c) and (d)
present the topical communities extracted with NetPLSA.
With PLSA, although we can still see that lots of vertices in
the same community are located closely, there aren’t clear
boundaries between communities. A considerable number
of community members are scattered freely on the network
(geometrically far from each other). On the other hand,
when we regularize PLSA with the coauthor network, we
see that the different communities can be identified clearly.
Most authors assigned to the same topical community are
well connected and closely located, which presents a much
“smoother” pattern than Figure 3 (a) and (b).

Can we quantitatively prove that NetPLSA extracts bet-
ter communities than PLSA? We have shown that network



(a) PLSA (b) PLSA: View II (c) NetPLSA (d) NetPLSA: View II

* Red: information retrieval; Black: data mining; Blue: machine learning; Grey: Web; λ = 0.7, γ = 0.3

Figure 3: Topical Communities in 4-CONF dataset

structure can help extracting topics. What about the re-
verse? Can a topic model of text help the network analysis?

Table 3: Quantitative Comparison of PLSA, Net-
PLSA, and Normalized Cut in Community Finding
Methods Cut Edge R. Cut/ Community Size (|V |)

weights N. Cut C1* C2 C3 C4
PLSA 4831 2.14/1.25 2280 2178 2326 2257
NetPLSA 662 0.29/0.13 2636 1989 3069 1347
NCut 855 0.23/0.12 2699 6323 8 11

*Ck means the k-th topical community, as in Table 1 and 2.
*Avg author weight: C1: 2.5; C2: 2.4; C3: 2.3; C4: 1.8; All: 2.2

In Table 3, we quantitatively compare the performance of
PLSA, NetPLSA, and a pure graph-based community ex-
traction algorithm. We present the total weight of edges
across different communities in column 2, and number of
authors in each community in the rightmost 4 columns. In-
tuitively, if the communities are coherent, there should be
many inner edges within each community and few cut edges
across different communities. Clearly, there is significantly
fewer cross community edges, and more inner community
conductorships in the communities extracted by NetPLSA
than PLSA. This means that NetPLSA indeed extracts more
coherence topical communities than PLSA. Interestingly, we
see that although Topic 4 (Web) in Table 2 is a coherent
topic (more than 1300 authors are assigned to that topic),
we cannot see a comparable number of members of this top-
ical community from Figure 3, where we removed low degree
authors and singletons (especially from Figure 3 (c) and (d)).
This is because unlike IR, data mining and machine learn-
ing, “Web” is more an application field to the researchers
than a focused research community, where many authors are
from external communities and applying their techniques to
the Web domain, and publishing papers to WWW. People
purely assigned to the “WWW” topic either didn’t publish
many papers, or are not well connected.

One may argue that in terms of inner/inter-community
links alone, a community discovery algorithm which purely
relies on the network structure may achieve a better perfor-
mance. Indeed, what if we use the graph-based regularizer
alone (by setting the λ = 1 in Equation 3 and including some
constraints)? A quick answer maybe“you can get intensively

connected communities but you may not get semantically co-

herent ones”. To verify this, we compare our results with a
pure graph-based clustering method. Specifically, we com-
pare with the Normalized Cut (NC) clustering algorithm
[24], which is one of the standard spectral clustering algo-
rithms. By feeding the algorithm4 with the coauthor matrix,
we also extract four clusters (communities).

4http://www.cis.upenn.edu/∼jshi/software/

We present two other objectives of graph segmentation in
the third column of Table 3, namely the “normalized cut
[24]” and “ratio cut [6]”. They respectively normalize the
cross edges between two communities with the number of
inner edges and the size of vertices in each community. If
we solely consider the cut edges, it is hard to tell whether
Normalized Cut or NetPLSA segments the network better,
since one has a smaller “minimum cut” and the other has
a smaller “normalized cut”. However, in terms of topical
communities, we see that our results are more reasonable.
Community 3 and 4 of NC are extremely small. There is no
way that they could represent a real research community,
or any of the 4 conferences. Indeed, graph-based clustering
algorithms are often trapped with small communities when
the graph structure is highly skewed (or disconnected). In
the network, we find that both cluster 3 and 4 are isolated
components in the network (no out edges). They are both
very coherent “topological communities”, but not good topi-

cal communities, since the semantic information they repre-
sent is too narrow to cover a general topic. The involving of
a topic model alleviates this sensitivity by bridging discon-
nected components with implicit topical correlations. This
also guarantees semantical coherency within communities.

Even when a pure graph-based method extracts a perfect
community, without the help of the topic model, it’s hard
to get a good topical summary of such a community. Com-
munity 1 of Normalized Cut well overlaps with the “infor-
mation retrieval” community we got by NetPLSA. However,
if we estimate a language model from the authors assigned
to this community, we ends up with top probability words
like “web”, “information”, “retrieval”, “neural”, “learning”,
“search”, “document”, etc (with MLE, and removing stop
words). The semantics looks like a mixture and not as co-
herent as the NetPLSA results in Table 2. This is because
in reality, an author usually works on more than one top-
ics. Even when she is assigned to one community (even if
assigned softly), we still need to exclude her work on other
areas from the summary of this community, which cannot
be achieved with just the network structure. This problem
is naturally solved with the involvement of a topic model,
which assumes that a document covers multiple topics, and
treats different words in a document differently.

Topic Mapping
Another basic task of TMN is to generate a map on the
network for every topic. We use the probability p(θ|a) as the
weighting function f(v, θ). We use the shades of a vertex to
visualize the probability p(θ|a), where a darker vertex has
a larger p(θ|a). As in Section 2, in a good topic map, the
shades of adjacent vertices should be smooth.



(a) Topic Map with PLSA (b) With NetPLSA: Smoothed

Figure 4: Topic Map of “information retrieval” in 4-CONF dataset

In Figure 4, we visualize the topic map of “information
retrieval” with the spring embedded view of the 4-CONF
network. The darker a vertex is, the more likely the author
belongs to the information retrieval community. From Fig-
ure 4 (a), we see that although a topic map could also be
constructed with PLSA alone, the distribution of the topic
on the network is desultory. It is hard to see where the topic
origins, and how it is propagated on the network. We also
see that PLSA likes to make extreme decisions, where an
author is likely to be assigned an extremely large or small
p(θ|a). In Figure 4 (b), however, we see that through the
regularization with the coauthor network, the topic map is
much smoother. We can easily identify the densest region of
the topic “IR”, and see it gradually propagates to the farther
areas. Transitions between IR and non-IR communities are
smooth, where the color of nodes changes from the darkest
to the lightest in a gradational manner.

5.2 Geographic Topic Analysis
The other application we discussed in Section 4 is spatial

topic analysis, more specifically, to model the geographic
topic distributions. With this, we can analyze how a topic
is propagating over the geographic locations. We create a
collection of documents where each document is associated
with a geographic location. All the geographic locations will
then form a network structure based on their adjacency.

As discussed in [19, 20, 9], the weblog/blog data is a new
genre of text data which is associated with rich demographic
information. It is thus a suitable test bed for text mining
problems with spatial analysis. Following [19], we collect
weblog articles about a focused topic, by submitting a fo-
cused query to Google Blog Search5, and crawling the con-
tent and geographic information of returned blog posts from
their original websites. In this experiment, we use one of
the data sets in [19], the Hurricane Katrina dataset. We
also create a new dataset, with blog articles which contains
the word “weather” in their titles. The basic statistics of the
datasets are shown in Table 4.

Table 4: The basic statistics of blog datasets
Dataset # docs Time Span Query
Katrina 4341* 8/16/05 - 10/04/05 “hurricane katrina”
Weather 493 10/01/06 - 9/30/07 “weather” in Title

* Unlike [19], we only use the documents containing state labels.
We restrict the domain in Live Spaces (http://spaces.live.com).

For both datasets, we create a vertex for every state in
the U.S. and an edge between two adjacent states.

We use the model in Section 4.2 to extract topics with
the context of geographic network structure. We then use

5http://blogsearch.google.com

the Many Eye visualization service6 to visualize the spatial
topic distribution of the one subtopic in hurricane Katrina.
The subtopic discusses about the storms in Katrina, and in
its successor hurricane Rita. Comparing Figure 5 (a) with
Figure 5 (b), we see that the geographic distribution of topic
is not dramatically different. This is reasonable, since the
topic plotted in both figures is the same topic. However, we
can still feel the difference between the figures: the topic dis-
tribution of Figure 5 (b) is much smoother than that in Fig-
ure 5 (a). Assume that a user does not know about hurricane
Katrina or hurricane Rita, it is hard for her to guess where
the events occurred from Figure 5 (a). People in Maine,
Michigan, and Rhode Island seem to particularly focus on
this topic, even more than people in Florida, Louisiana, and
Mississippi (because of the sparsity of data in those states).
From Figure 5 (b), however, we clearly see that the topic is
densest along the Golf of Mexico, and gradually dilutes when
it goes north and west. It is also clear that the discussion
on this topic is denser in the west US than in the east. This
is consistent with the reality, where the topic origins in the
southeast coast, and gradually propagates to other states. In
Figure 5 (b), we also see that the topic propagates smoothly
between adjacent states. This also shows that our model
could alleviate the overfitting problem of PLSA.

(a) With PLSA (b) With NetPLSA

Figure 5: Geographic Topic Distributions

Let us show the results with another dataset, the Weather
dataset in Table 4. Intuitively, when a user was discussing
about weather in her blogs, the topics she chose to write
about would be affected by where she lived. Since the topic
“weather” is very broad, we guide the mixture model with
some prior knowledge, so that it could extract several topics
which we expect to see. Following [18], this is done by chang-
ing the MLE estimation of p(w|θ) in M step (Equation 11)
into a maximum a posterior (MAP) estimation. We extract
7 topics from the Weather dataset. We use “wind”and“hur-
ricane” as the prior for two of the topics, so that one of the
output topic will be about the windy weather, and another
will be about hurricanes. Table 5 compares the prior-guided
topic models extracted from the Weather dataset. We see

6http://services.alphaworks.ibm.com/manyeyes/home



that with the network based regularizer, we indeed extract
more coherent topics.

Table 5: Topic models: the Weather dataset
PLSA NetPLSA

“wind” “hurricane” “wind” “hurricane”
windy dean windy hurricanes
severe storm f storms
pm mexico hi tropical
thunderstorm texas cloudy atlantic
hail category lo season
watch jamaica lows erin
blah oil highs houston
probability tourists mph louisiana

In Figure 6, we visualize the geographic distributions of
two weather topics over the US states. Comparing to the
distributions computed with PLSA, we see that with Net-
PLSA, we can get much smoother distributions. PLSA as-
signs extremely large (close to 1) p(θ|d) of the topic “windy”
to Delaware, and “hurricane” to Hawaii. On the other hand,
it assigns surprisingly low probability of“windy”to Texas. It
also assigns extremely low probability of “hurricane” to Mis-
sissippi, Alabama and Georgia, although they are among
the most vulnerable states to hurricanes. Through the reg-
ularization with states network, we see that this problem is
alleviated. Northern midwest states and Texas are identified
as windy states, especially Illinois (where the “windy city”
Chicago locates). The southeast coasts, especially the states
alone the Golf of Mexico (Florida as a representative), are
identified as “hurricane” states.

In this section, we showed that with network based regu-
larization, the NetPLSA model outperforms PLSA. It also
extracts more robust topical communities than solely graph-
based methods. NetPLSA generates coherent topics, topo-
logically and semantically coherent communities, smoothed
topic maps, and meaningful geographic topic distributions.

6. RELATED WORK
Statistical topic modeling and social network analysis have

little overlap in existing literature. Statistical topic model-
ing [10, 4, 28, 26, 19, 20, 15] uses a multinomial word distri-
bution to represent a topic, and explains the generation of
the text collection with a mixture of such topics. However,
none of these existing models considers the natural network
structure in the data. In the basic models such as PLSA [10]
and LDA [4], there is no constraint other than “sum-to-one”
on the topic-document distributions. [25] uses a regularizer
based on KL divergence, by discouraging the topic distribu-
tion of a document from deviating the average topic distri-
bution in the collection. We propose a different method, by
regularizing a statistical topic model (e.g., PLSA) with the
network structure associated with the data.

Contextual text mining [28, 26, 19, 20] is concerned with
modeling topics and discovering other textual patterns with
the consideration of contextual information, such as time,
geographic location, and authorship. Our work is the first
attempt where a network structure is considered as the con-
text in topic models.

Social network analysis has been a hot topic for quite a
few years. Many techniques have been proposed to discover
communities [11, 1], model the evolution of the graph [13],
and understand the diffusion of social networks [9, 14]. How-
ever, the rich textual information associated with the social
network is ignored in most cases.

Although there has been some existing explorations [7,
17, 16, 2], there has not been a unified way to combine tex-
tual contents with social networks. Indeed, [31] proposes a
probabilistic model to extract e-communities based on the
content of communication documents, but they leave aside
the network structure in their model. Cohn and Hofmann
proposed a model which combines PLSA and PHITS on the
web graph [7]. Both topic and link are modeled as generated
from a probabilistic mixture model. Their model, however,
assumes a directed graph and does not directly optimize the
smoothness of topics on the graph. To the best of our knowl-
edge, combining topic modeling with graph-based harmonic
regularization is a novel approach.

The graph-based regularizer is related to existing work
in machine learning, especially graph-based semi-supervised
learning [33, 29, 3, 32] and spectral clustering [6, 24]. The
optimization framework we propose is closely related to [34],
which is probably the first work combining a generative
model with graph-based regularizer. Our work is different
from theirs, as their task is semi-supervised classification,
while we focus on unsupervised text mining problems such
as topic modeling. NetSTM is a generalization of harmonic
mixture to multiple topics and unsupervised learning.

The concrete applications we introduced in Section 4 are
also related to existing work on author-topic analysis [26,
20], spatiotemporal text mining [19, 20], and blog mining [9,
19]. [30] explores co-author network to estimate the Markov
transition probabilities between topics, which uses the net-
work structure as a post processing step of topic modeling.
Our work leverages the generative topic modeling and dis-
criminative regularization in a unified framework.

7. CONCLUSIONS
In many knowledge discovery tasks, we encounter a data

collection with both abundant textual information and a
network structure. Statistical topic models extract coher-
ent topics from the text, while usually ignoring the network
structure. Social network analysis on the other hand, tends
to focus on the topological network structure, while leav-
ing aside the textual information. In this work, we formally
define the major tasks of topic modeling with network struc-
ture. We propose a general solution of text mining with net-
work structure, which optimizes the likelihood of topic gen-
eration and the topic smoothness on the graph in a unified
way. Specifically, we propose a regularization framework for
statistical topic models, with a harmonic regularizer based
on the network structure. The general framework allows
arbitrary choices of the topic model and the graph based
regularizer. We show that with concrete choices, the model
can be applied to tackle real world text mining problems
such as author-topic analysis, topical community discovery,
and spatial topic analysis.

Empirical experiments on two different genres of data
show that our proposed method is effective to extract topics,
discover topical communities, build topic maps, and model
geographic topic distributions. It improves both pure topic
modeling, and pure graph-based method.

There are many potential future directions of this work.
It is interesting to see how other topic models and regular-
izers can be adopted (e.g., LDA, normalized cut, etc). It
is also interesting to study how the special properties of so-
cial networks can be considered in this framework, such as
the small world property. Utilizing such a model to model



(a) “Windy” states with PLSA (b) “Windy” states with NetPLSA (c) “Hurricane” with PLSA (d) “Hurricane” with NetPLSA

Figure 6: Geographic distribution of topics in Weather

the evolution of topics and community is also a promising
direction, which requires the modeling of time dimension.
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