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Abstract—The prevalence of Web 2.0 techniques has led to
the boom of various online communities, where topics spread
ubiquitously among user-generated documents. Working to-
gether with this diffusion process is the evolution of topic con-
tent, where novel contents are introduced by documents which
adopt the topic. Unlike explicit user behavior (e.g., buying a
DVD), both the diffusion paths and the evolutionary process
of a topic are implicit, making their discovery challenging.

In this paper, we track the evolution of an arbitrary topic
and reveal the latent diffusion paths of that topic in a social
community. A novel and principled probabilistic model is
proposed which casts our task as an joint inference problem,
which considers textual documents, social influences, and topic
evolution in a unified way. Specifically, a mixture model is
introduced to model the generation of text according to the
diffusion and the evolution of the topic, while the whole
diffusion process is regularized with user-level social influences
through a Gaussian Markov Random Field. Experiments on
both synthetic data and real world data show that the dis-
covery of topic diffusion and evolution benefits from this joint
inference; and the probabilistic model we propose performs
significantly better than existing methods.

I. INTRODUCTION

The prevalence of Web 2.0 techniques has led to the boom
of various online communities. One of the core problems
with analyzing such online communities is concerned with
understanding the cascading behaviors and the diffusion of
information. Epidemic diseases, adoption of innovation, in-
formation memes, and many types of user actions all spread
widely in these communities, following the social network of
users. The modeling of information diffusion plays a crucial
role in many domains. The contagion of disease forms the
foundation of epidemics; the social influence in cascading
behaviors has been a basic mechanism of viral marketing;
and the diffusion of topics is essential to the understanding of
scientific innovation. Recently, a large body of research work
has been done in the field of social network analysis, aiming
to describe the macro-level dynamics and characteristics of
information diffusion [17], [11], revealing key factors that
affect the adoption of behaviors [1], [18], and describing
the design of contagion models that simulate the diffusion
process [25], [35].

Many conclusions in this line of work are motivated and
validated in scenarios where the actual contagion/diffusion
paths are observed. However, such an assumption, which
is considered to be common practice in user surveys and

controlled user studies, does not apply to large scale online
communities. While the adoptions of behaviors are rela-
tively easy to observe (based on which most macro-level
descriptive statistics are computed), the evidence of actual
contagion and influence tend to be vague. Who infected
whom? Who got the gossip from whom? Who influenced
whose research? There are still substantial challenges in this
micro-level analysis of information diffusion in large scale
social networks. Indeed, users who joined a community or
purchased an iPad usually won’t explain which particular
friends have influenced them; rumor spreaders tend to cover
the source of the information; and a researcher cites many
references in her paper, without, for instance, labeling the
top three who have had the most salient influence on her
work. The identification of contagion is difficult even if
the general social network structure is observed. It is a
non-trivial task to detect the actual diffusion paths of user
behaviors merely based on the time of adoption and the
social network structure, known as the problem of diffusion
inference (or influence) [8].

Inference of diffusion [1], [11], [14], [33], [18] becomes
even more challenging when the behaviors themselves are
subtle. The adoption of explicit behaviors can be easily
identified - for instance buying a DVD, joining a community,
or using a hashtag in a tweet. Some behaviors are implicit,
however, such as writing about of a topic, holding an opin-
ion, or having a particular mood. In this paper, we focus on
the diffusion of topics in social communities. Inferring topic
diffusion introduces several additional challenges on top of
the diffusion inference of explicit behaviors. First, topics are
implicit and abstract concepts used in natural language. The
adoption of topics cannot be directly identified, and instead
has to be inferred from user-generated content. Second, the
meaning of a topic evolves over time. A smart system should
understand that ‘MSN search’, ‘Live search’, and ‘Bing’ all
refer to the same topic ‘the Microsoft search engine’, with
unique aspects at different time; and it should be able to
track and adapt to this content change in the the inference of
topic diffusion. Third, information transmission is a complex
social-psychological behavior [20], so the diffusion process
of contents is inevitably influenced by the social relation-
ships of the users. Moreover, the evolution and the diffusion
of topics are compound processes: indeed, when a topic
spreads from one user to another, new perspectives or new



focus is introduced to the topic; and an outbreak of a topic is
usually accompanied by a shift of the meaning of the topic.
Although there has been a line of work on the diffusion
inference of explicit behaviors [6], [13], [9], [10], [16], [33],
[25], [12], [1], [18], and a line of studies that incorporate
network regularization into topic modeling [22], [4], [30],
[5], none of this work addresses these challenges, making
the existing methods incapable of accurately inferring the
diffusion paths of topics.
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Figure 1. Example of Topic Diffusion and Evolution

In this paper, we address these challenges by studying
the joint inference of topic diffusion and evolution in social
communities. Content and linkage in user-generated text
information, together with network structures, are used to
facilitate the identification of topic adoption, the tracking of
topic evolution, and the estimation of actual diffusion paths
of any arbitrary topic (intuition illustrated in Figure 1).

When a topic is introduced into the community by a
user, other users read the document(s) she wrote (e.g.,
tweets, blogs, scientific papers, etc) and adopt the topic by
writing about it themselves. They may or may not cite the
original document, or they may cite it together with other
documents. Although topics are spread among documents
rather than directly through social connections, we consider
it much more likely for users to adopt ideas from their social
connections (e.g., friends, people they follow, or people they
have cited before) than from a stranger. Each document can
not only adopt content from documents that influenced it,
but may also include novel perspectives about the topic, and
pass on the ‘innovation’ to other documents. The meaning
of the topic thus evolves over time. The goal of the joint
inference of topic diffusion and topic evolution is to identify
the ‘real’ paths through which the topic propagates (red
edges among documents in Figure 1), and also identify the
specific temporal versions of the topic.

In this paper, we propose a novel statistical model for
topic-based information diffusion and evolution (TIDE).
Specifically, a mixture model is introduced to model the
generation of text according to the diffusion and evolution
of the topic, while the whole diffusion process is regularized
with user-level social influences through a Gaussian Markov
Random Field. The discovery of novel aspects and the

diffusion paths of the topic can be done by the joint inference
of topic diffusion and evolution in TIDE.

II. PROBLEM FORMULATION

In this section, we formally define the task of inferring
the diffusion process and tracking topic evolutions in social
communities. We begin with a few key concepts as follows.

Definition II.1. Social Network. A network is a graph G
= (V, E), where V is a set of vertices and E is a set of edges
between vertices in V . Particularly in a social network, a
vertex corresponds to a user, and an edge e = (i, j) stands
for a connection (or a tie) between two users i and j. The
strength of the tie (i, j) is defined as a non-negative value
g(i, j). An edge can be either directed or undirected.

Definition II.2. Document Collection. A textual docu-
ment di in a document collection D = {di}Mi=1 is defined as
a bag of words from a fixed vocabulary W = {wk}Lk=1. That
is, di = {c(di, wk)}Lk=1, where c(d,w) denotes the number
of occurrences of word w in d.

Definition II.3. Social Community. A social community
is defined as the union of a social network G and a user-
generated document collection D, saying {G,D}. Each
document di ∈ D is associated with an author ai in G and
a time-stamps ti ∈ 1..T .

Definition II.4. Topic. A semantic topic θ observed
in a particular time period is defined as a multinomial
distribution of words {p(w|θ)}w∈W with the constraint∑

w∈W p(w|θ) = 1.

Definition II.5. Theme. We define a general and coherent
theme discussed in a social community as a stream of time-
stamped topics Θ = {θt}Tt=0. We call θ0 the primitive
topic, representing the original content of the theme prior
to the discussions of the social community. θt>0 are time
variant versions of θ0, which are gradually developed in the
discussions of the social community, i.e., θt is the snapshot
of Θ at time t, which represents the novel aspect of the
theme appearing at time t. Altogether Θ represents the origin
and evolution of the contents of the theme over time.

While the text content of individual documents can be
explicitly observed, the general semantics of the time-variant
topics and the adoption of the topic(s) in a document is
implicit. Likewise, the source adopted in a document re-
mains implicit. Naturally, there could be multiple sources: a
document can be influenced by a few other documents, thus
inheriting the topic from those documents. Some sources
may be more influential than others. A document could also
introduce original perspectives of the topic without being
influenced by any existing document. The existence and
strengths of document influences create the topic’s diffusion
process, formally defined as a diffusion graph.



Definition II.6. Diffusion Graph. Given a theme Θ, we
define a diffusion flow from one document dj to another di
(tj < ti) as the likelihood that di adopted the topic of Θ
due to the influence of dj . The strength of such a diffusion
flow is denoted as a positive value πi,j . Note that di also
introduces its novel perspective to Θ. In this case, we assume
there is a diffusion flow into di from the time-stamped topic
θti , with a strength πi,θ. Therefore, we define the diffusion
vector πi as the vector representing the strength of all the
diffusion flows into di, i.e., π(i) = {πi,j}dj∈D∪{πi,θ}, with
the constraint

∑
dj∈D πi,j+πi,θ = 1. The union of diffusion

flows into all documents in D is the diffusion graph, i.e.,
Π = {π(i)}di∈D. Clearly, Π is both weighted and directed.

Although the actual diffusion graph is unobserved, there
are proxy networks that convey weaker signals in social
communities. In many cases, a reference network (denoted
as R) of the documents can be observed: a citation network
of scientific publications, a hyperlink network of blog arti-
cles, or a tweet network of posters and followers. Intuitively,
the diffusion network should be highly correlated with such a
reference network R. However, the actual diffusion network
could still be substantially different from R, because some
influential references may be hidden, and some explicitly
cited references are not actually influential.

Another signal of influence to consider is the social
network structure. An author is likely to follow the work
of his social connections, and thus is likely to adopt topics
and ideas from the documents they generate [22], [30]. We
refer to the set of documents pointing to di in the reference
network as di’s reference set, denoted as r(i) ⊂ D. When
no signal of citation or social communication is available, ri
can be simply defined as all documents with a time stamp
prior to ti. When such a reference network is available, we
assume πi,j = 0 if j /∈ r(i). Clearly, we also have πi,i = 0.

Based on the above concept definitions, we can formalize
the two major tasks of tracking the diffusion and evolution
of topics in social communities. Given the input of a social
community G, a user-generated document collection D, and
the primitive topic θ0 defining a theme, we aim to:

Task 1: Infer the Diffusion Graph. The goal is to
discover the latent diffusion flow graph documents (and
topics) (i.e. Π). The result of this task can be used to discover
(i) the source(s) of topic in a document: to what extent is
the document influenced by other documents, and (ii) the
degree of originality in a document: how much of a novel
perspective does the document introduce to the topic.

Task 2: Track Topic Evolution. The goal is to infer the
time-variant versions of topics (i.e., {θt}Tt=1) of a theme. By
inferring Θ given θ0, we expect to track new developments
of the theme, understand its evolution over time, and better
understand how it influences documents, etc.

III. PROPOSED MODELS

In this section, we propose a novel and integrative prob-
abilistic model of Text-based Information Diffusion and
Evolution (TIDE) in social communities. Based on TIDE,
we present the joint inference of the diffusion graph and the
evolution of arbitrary topics.

A. Intuitions and the General Model

The general model of TIDE is designed based on a few
key observations in social communities.

Observation 1. Diffusion and Content. When there is a
significant diffusive flow between two documents, or one
document significantly influences another, the contents of
these two documents tend to be highly related. On the other
hand, if two documents talk about different subjects, there is
unlikely to be a salient influence flow or significant diffusion
flow between them, even if one cites the other [27]. W.l.o.g.,
we can assume that the content of a document depends on
the documents that have influenced it.

Observation 2. Diffusion and Social Connections. In-
formation transmission is a complex social-psychological
behavior [20] (e.g., users tend to exhibit persistent interests
[23]). The diffusion process among documents is likely to
be regularized by the social connections of their authors.
Indeed, an author is more likely to follow the works of her
friends and would sooner adopt ideas from a friend than
from a random author. The diffusion flows among documents
are thus dependent to the social network of authors.

Observation 3. Diffusion and Evolution. Both the seman-
tics of the topic and the regularization effect of the social
network of users evolve over time. If an aspect in a document
never appears in any of its potential references (in the form
of either papers it cites or all existing papers available
to its author(s)), it is likely that the aspect is an original
idea, introduced by the document, which contributes to the
evolution of the general theme. Meanwhile, the strength of
influence through old social connections would decay after
a reasonably long time.

Given a collection of authored and time-stamped docu-
ments D, a social community G of users who published
these documents, and a primitive topic θ0 representing the
original semantics of a theme, we aim to inferring the latent
stream of topics Θ and the diffusion graph Π. Based on
our observations above, the task of TIDE is then cast as the
joint inference of the posterior of Θ and Π. Formally, our
objective is to infer:

P (Π,Θ|G,D, θ0) ∝ P (Θ|Π,D, θ0) · P (Π|G) (1)

Based on our observations, we assume that the gener-
ation of the diffusion graph (only) depends on the social
network structure, while the evolution of topics depends
on the documents, the diffusion process, and of course the
original version of the topic. We denote the first component
of Equation 1 as the topic model and the second as the



diffusion model. Please note that although TIDE can be
easily extended to model the mixture of multiple topics
(similar to LDA [3]), we only present the primitive case to
model one given topic. Our focus is to model the diffusion
and evolution of any given topic rather than the discovery
of multiple topics, which we leave to our future work.

In the topic model, a mixture model is designed to extract
the topic snapshots (time-variant versions) of the theme
(Section III-B). In the diffusion model, we introduce a
Gaussian markov random field based on graph projection to
model the dependency of diffusion flows on social connec-
tions (Section III-C). Finally, the inference of the combined
model is discussed in Section III-D.

B. The Topic Model

It is difficult to directly compute the posterior of topics
Θ. We make the following transformation:

P (Θ|Π,D, θ0) ∝ P (D|Θ,Π, θ0) · P (Θ|θ0), (2)

where the introduction of new aspects to the topic (i.e.,
the time-variant topic snapshots) does not depend on the
diffusion flows.

We consider a typical generative process of D: each
document di is generated from a mixture model. When
writing each word in di, one first chooses a component
model from the mixture with a certain probability; once the
component model θ is selected, a word is sampled according
to the word distribution of θ.

We first introduce a background component model θB
estimated from the entire collection that explains the gen-
eration of common English words in the document di.
The rest of the component models are designed based on
the diffusion flows. Specifically, we introduce a component
model for each document dj that could have potentially
influenced di. There is a non-trivial diffusion flow from
dj to di, and di could inherit the topic of dj according
to the strength of this diffusion. These component models
can be estimated by simply using a maximum likelihood
estimator on the corresponding dj . Finally, we introduce a
component model to explain the novel aspects introduced
by the document di, i.e., the aspects that are not influenced
by any existing documents. We assume that such aspects
are generated directly from the latent topic at the time that
di is written ( θti ). In other words, the original content is
diffused from the topic directly to the document instead of
from other documents. We assume that the probability of
choosing each component is proportional to the strength of
the diffusion vector, i.e., π(i).

Formally, the probability of generating a word w in di is
p(w|di) = (1− λB)(

∑
j∈r(i) πi,jp(w|θdj ) + πi,θp(w|θti))

+λBp(w|θB), where λB is a predefined parameter that fixes
the sampling probability of the background model. Note that
for documents dj ̸∈ r(i), we have πi,j = 0. The likelihood

of the collection D is given as:

P (D|Π,Θ, θ0) =
∏
di∈D

∏
w∈W

p(w|di)c(w,di)

We then consider the generation of the time-variant ver-
sions of the topic, Θ. In TIDE, the primitive topic θ0 is
realized as a conjugate Dirichlet prior of the time-variant
topic model θt: Dir({1 + µEp(w|θ0)}w∈W). By doing so,
we regularize these time-variant topic snapshots so that they
can reflect the novel aspects of the theme, but do not shift
away from it. µE indicates how much we rely on the prior.
Formally,

P (Θ|Π) =
∏

t∈1..T

p(θt|θ0) =
∏

t∈1..T

∏
w∈W

p(w|θt)µEp(w|θ0)

C. The Diffusion Model

Compared to the modeling of topic evolution, the model-
ing of diffusion graph (P (Π|G)) is less straightforward. In-
tuitively, the diffusion graph Π should be regularized by the
social network G, as social influence plays an important role
in topic diffusion. However, Π is a network of documents
while G is a network of users. This makes it hard to model
the regulation effect of G on Π. We need a bridge between
the two heterogenous networks, for which we introduce the
operation of graph projection.

Definition III.1. Graph Projection. Let G1 and G2 be two
graphs. A projection f : G1|G2 → G′

1 is called a graph
projection if (i) V(G′

1) = V(G2); (ii) ∀v ∈ V(G′
1),∃u ∈

V(G1) s.t. v ∈ f(u); and (iii) ∀e = (u, v) ∈ E(G′
1),∀u′ ∈

f(u) and v′ ∈ f(v), e′ = (u′, v′) ∈ E(G′
1).

Through graph projection, the same vertex set is mapped
into two networks, so that comparing the networks becomes
more efficient and intuitive. Note that there are two asym-
metric projection directions: 1) projecting G into a document
network and using it as an a priori of Π, or 2) projecting
Π into a social network and considering the generation of
such a social network based on G. Since the document
collection D is usually much larger than the set of user
V(G), projecting the document network into a social network
has an unavoidable risk of losing information. Although this
loss does not completely negate the value of the second
direction of graph projection, in this work we consider the
first direction: the projection of G into a document network.

Denote Π′ as the document network projected from G, s.t.

P (Π|G) = P (Π|Π′) = P ({π(i)}di∈D|Π′).

The remaining issue is how to fold G into Π′ and how to
model the generation of Π based on Π′. Note that like Π, we
can also denote Π′ = π′(i)di∈D. We start with the generative
model P (Π|Π′).

Gaussian Graphical Models (GGM) [34] are classical
models used to explain the generation of networks, which
could be an ideal solution to our problem. In a typical
GGM, each nodes in the graph is modeled as a random



variable, for example a vector of k features. In our scenario,
such a vector can be implemented as the diffusion vector
π(i). The joint distribution of all these variables (in our
case, P (π(i))) is assumed to be a multivariate Gaussian.
Each edge in Π′ represents the conditional dependency
between two Gaussian variables, so the graph structure Π′

corresponds to the inverse covariance matrix.
However, the computational complexity of such a graph-

ical model usually scales cubically with the number of
variables, and therefore becomes intolerable for even a
moderately sized dataset. To make our model practical, we
introduce an independency assumption: the diffusion vector
of one document is independent of the others. By doing so,
we can simplify the generative model of Π to be P (Π|Π′) =∏

di∈D P (π(i)|π′(i)), where π′(i) = {π′
i,j}j∈r(i) ∪ {π′

i,θ}
is a conjugate prior vector, indicating the expected value
of π(i). Since Π′ is projected from G, π′

i,j represents the
social influence between aj to ai, which decays over time.
By doing this, the document-level influence is regulated by
the social tie at the user level.

Formally, we define π′
i,j = 1

Z(π′(i))g(ai, aj) · e
−

ti−tj
α

by consolidating an exponential time model with G . In-
tuitively, documents with higher authority are more likely
to introduce more original content. We thus define π′

i,θ =
1

Z(π′(i))Aut(ai), where Aut(ai) is an estimation of the
authority of di. Z(π′(i)) is a normalization factor such that∑

dj∈D π′
i,j + π′

i,θ = 1.
Given the design of π′(i), the computation of

P (π(i)|π′(i)) is still non-trivial because of the dependency
between the dimensions of π(i). We introduce a Gaussian
Markov Random Field [24] to model the conditional proba-
bility P (π(i)|π′(i)) for each di.

Definition III.2. Gaussian Markov Random Field
(GMRF) . A random vector § = (x1, x2, · · · , xn)

T is called
a GMRF w.r.t. the graph G = (V = {1, 2, · · · , n}, E),
the mean µ and the precision matrix Q§, iff the density
of § s.t., P (§) = (2π)−n/2|Q§|1/2e−

1
2 (§−µ)TQ§(§−µ) and

Q§(i, j) ̸= 0 ⇔ (i, j) ∈ E for all i ̸= j.

In our case, the random vector is the diffusion vector
π(i), with the mean as the prior vector π′(i). The precision
matrix Qπ(i) corresponds to the similarities between the
dimensions of π(i) (documents and topic snapshots), which
can be expressed as the content similarities of corresponding
θdj ’s and θt’s. Computationally, P (π(i)|π′(i)) is defined as

P (π(i)|π′(i)) ∝ e
− 1

2

∑
i′,j′∈{r(i)}∪{θ}

(πi,i′−µi,i′ )Qπ(i)(i
′,j′)(πi,j′−µi,j′ )

D. Parameter Estimation

Given our model defined above, we can fit the model
to the data and estimate the parameters using a Maximum
A Posterior estimator [29]. The Expectation Maximization
(EM) algorithm [21] is applied, which iteratively computes
a local maximum of the posterior. Computationally, the log

likelihood we want to maximize is:

EΛ(n−1){log p(C|Λ)p(Λ)} ∝ (3)∑
di,w,dj∈r(i)

c(di, w)(1− z
(n)
di,w

(θB))z
(n)
di,w

(θdj ) log((1− λB)πi,jp(w|θdj ))

+
∑
di,w

c(di, w)(1− z
(n)
di,w

(θB))z
(n)
di,w

(θti) log((1− λB)πi,Ep(w|θti))

+
∑
di,w

c(di, w)z
(n)
di,w

(θB) log(λBp(w|θB)) + µE

∑
θt,w

p(w|θ0) log p(w|θt)

−µG

2

∑
di

∑
i′,j′∈N (i)

(πi,i′ − µi,i′)Qpi(i)(i
′, j′)(πi,j′ − µi,j′)

Here µG is a weight combining two components, and we use
terms zdi,w(·) instead of p(zdi,w = ·) to simplify notation

In the E-Step, we compute the expectation of the hidden
variables:

z
(n)
di,w

(θdj ) =
π
(n−1)
i,j p(w|θdj )∑

j′∈r(i)

π
(n−1)

i,j′ p(w|θdj′ ) + π
(n−1)
i,θ p(w|θti)

z
(n)
di,w

(θti) =
π
(n−1)
i,θ p(n−1)(w|θti)∑

j′∈r(i)

π
(n−1)

i,j′ p(w|θdj′ ) + π
(n−1)
i,θ p(w|θti)

z
(n)
di,w

(θB) =

λBp(w|θB)
(1− λB)(

∑
j′∈r(i)

π
(n−1)

i,j′ p(w|θdj′ ) + π
(n−1)
i,θ p(w|θti)) + λBp(w|θB)

In the M-step, given the expectation of the hidden vari-
ables, we get the best parameters p(w|θt) as:

p(w|θt) =

∑
di,ti=t

c(di, w))(1− z
(n)
di,w

(θB))z
(n)
di,w

(θt) + µEp(w|θ0)∑
w′

∑
di,ti=t

c(di, w′))(1− z
(n)
di,w

(θB))z
(n)

di,w′(θt) + µEp(w′|θ0)

By integrating Lagrange multipliers [21] fi for each
di ∈ D, the inference of π(i) boils down to
solving a group of cubic equations: π2

i,∗ + βi,∗πi,∗
+ γi,∗ = 0 (∗ ∈ r(i) ∪ {θ}), where βi,∗ =∑
∗′ ̸=∗

(Qπ(i)(∗,∗′)+Qπ(i)(∗′,∗))(π(n−1)

i,∗′ −µi,∗′ )

2Qπ(i)(∗,∗)
− µi,∗ + fi

µGQ(i)∗,∗

and γi,∗ = −
∑
w
c(di,w)(1−z

(n)
di,w

(θB))z
(n)
di,w

(θdj )

µGQ(i)∗,∗
.

It is easy to prove that there exist valid solutions
for the group of equations that satisfy the constraint∑

∗∈r(i)∪{θ} πi,∗ = 1 for each di in D.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our TIDE
model on synthetic datasets, and data collected from two
real-world social communities, DBLP [32] and Twitter [19].

A. Experimental Setup

1) Data Collection: The DBLP Dataset ([32]). The
Digital Bibliography and Library Project (DBLP) is a
web accessible database of the bibliographic information
of computer science publications. In this experiment, we



use a collection of DBLP articles augmented with cita-
tion information, released by the ArnetMiner group, which
contains 1, 632, 442 publications by 1, 741, 170 researchers
with 2, 327, 450 citations. After filtering out papers without
text or citation information, 243, 425 papers and 246, 839
authors remain. This dataset represents a typical academic
community, with a social network of authors (with coauthor
and citation relations) and a collection of scientific papers.
The Twitter Dataset ([19]). Twitter is a well known social
networking and microblogging community. In this experi-
ment, the dataset was crawled by the DAIS group at the
University of Illinois, which contains 5, 000 socially con-
nected users and their most recent 200 tweets posted before
Nov. 23, 2010. In total, there are 103, 968 one-way following
relations, and 51, 032 pairs of Twitter friends (defined as a
mutual following relation). This dataset represents a typical
social community with a directed social network (defined by
following relations) and a collection of tweets.
Synthetic Dataset. The lack of ground truth on a real world
dataset makes it hard to evaluate the model performance
quantitatively. For quantitative evaluation, we construct a
synthetic dataset which simulates the diffusion of 1, 000
themes. For each theme, we extract a subgraph of 1, 000
authors from the DBLP dataset using breadth first search
from a random seed author. This subgraph is used to
simulate the social network in which the theme diffuses.
We then randomly attach 1, 859 empty and time-stamped
documents to the authors in this network 1. We then simulate
a diffusion graph of the 1, 859 documents that is regularized
by the simulated social network structure. Specifically, we
first randomly generate a network of the 1, 859 documents
using an Erdos/Renyi model, with an average degree of 5
(consistent with actual statistics in the DBLP dataset). The
direction of each edge is determined by the time stamps of
the documents (always pointing from an ‘older’ document
to a ‘newer’ document). We then assign a weight to each
edge based on the social connections of the authors of the
two document, plus a random effect. This directed and re-
weighted random network simulates a real diffusion network
among documents. For each theme, we also simulate a
sequence of 10 evolving topic snapshots based on the
dynamic topic models [2]. Finally, the text content of each
document is generated by a simple mixture model with all
documents that have ‘influenced’ this document as well as
the corresponding topic snapshot.

2) Baselines: The NetInf Model [9]. NetInf is a typical
model that infers the diffusion network of explicit user
behaviors. Given the time stamps at which individuals adopt
a behavior, NetInf identifies the optimal general network of
users that best explains the observed adoptions. Compared
to TIDE, NetInf infers the general social network structure
by observing the propagations of a group of events, while

1According to the statistics on our DBLP datsset, each researcher has
1.859 first-authored publications in average.

TIDE infers the theme-specific diffusion graph with the help
of a general social network. Note NetInf does not consider
text information, and thus cannot track topic evolution.

If we treat each term with a positive probability in
the primitive topic as an explicit event/behavior, then a
document adopts that behavior explicitly if the term appears
in the document. We are then able to infer the optimal
document network using NetInf. This optimal network is
easily converted into a diffusion graph by endowing each
edge with equal flow volume.

The IndCas Model [25]. The second baseline is a deviation
of the independent cascade model stated in [25], where
the probability for an active document to infect another
is proportional to the strength of the social connection
between their authors with an exponential decay effect [7]
(see Section III-C). We convert these probabilities into a
diffusion graph where the diffusion flow from dj to di is
proportional to the probability that dj infects di.

The TIDE− Model. To evaluate the effectiveness of social
connections in our models, we implement a special version
of TIDE by removing the regularization term with the
network structure, i.e., by setting µG = 0.

We believe NetInf and IndCas are good representatives of
diffusion inference models of explicit behaviors, which do
not consider textual information or topic evolutions. TIDE−
on the other hand ignores the effects of social connections.

B. Experiments on Synthetic Data

The goal of the experiments on synthetic data is to
quantitatively evaluate how well each method can (i) infer
diffusion graphs, (ii) estimate the novelty of the contribution,
and (iii) discover snapshots in topic evolution (if possible).
Given the simulated social community (the social network,
the document collection, and the primitive topic), our goal
is to recover the diffusion graph and the topic snapshots.
The parameters in the TIDE model are set empirically as
µE = 10, α = 30, and µG = 10.

1) Analysis on Information Diffusion: Let us first intro-
duce the evaluation metrics.

Definition IV.1. Graph KL-Divergence. The sym-
metrized Kullback-Leibler divergence [15] is a classic mea-
sure of the difference between two probability distributions.
We extend the SKLD and define an evaluation metric to mea-
sure the discrepancy between two diffusion graphs ΠP and
ΠQ on the same document collection D as GDKL(ΠP ,ΠQ)

=

∑
di∈D

(DKL(πP(i)||πQ(i))+DKL(πQ(i)||πP(i)))

2|D| .

Definition IV.2. Graph Cosine Similarity. We define a
metric of similarity between two diffusion graphs ΠP and
ΠQ, as the average cosine similarity [31] between their dif-
fusion vectors as Cos(ΠP ,ΠQ) =

1
|D|

∑
di∈D

πP(i)·πQ(i)
||πP(i)||·||πQ(i)|| .

A better model should infer a diffusion graph that is closer
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Figure 2. Diffusion Evaluation on the Synthetic Dataset

to the ‘ground truth’, that is, having a lower KL-divergence
and a higher Cosine similarity.

Object TDG H G

Metric GKLD GCS GKLD GCS GKLD GCS

NetInf 0.094 0.936 1.291 0.869 0.949 0.802

IndCas 0.160 0.931 1.297 0.855 0.721 0.898

TIDE− 0.063* 0.969* 0.991 0.949 0.876 0.841

TIDE 0.052* 0.972* 1.011 0.938 0.846 0.855

Table I
DIFFUSION EVALUATION ON THE SYNTHETIC DATASET (TDG = TRUE

DIFFUSION GRAPH, GKLD = GRAPH KULLBACK-LEIBLER
DIVERGENCE, GCS = GRAPH COSINE SIMILARITY)

We measure the statistical significance of the improvement using
the dependent t-test. * means that the improvement (over the row

above) hypothesis is accepted at significance level 0.001.

In practice, we calculate the two metrics for the result
of each method and each theme, and connect the KL-
divergence scores in decreasing order (Figure 2(a)) and
Cosine-similarity scores in increasing order (Figure 2(b)).
The aggreated performance of the 1, 000 themes is reported
in the 1st and 2nd columns of Table I. We conclude that
TIDE achieves the best performance, followed by TIDE−,
NetInf, and IndCas.

2) Proof of Combined Power: With this experiment, we
can also prove that both social networks and text information
play an important role the inference of topic diffusion.
First, we create a document network (denoted as H), where
the edge weight is proportional to the content similarities
between documents. We compare each inferred diffusion
graph with H, and report the aggregated value of the two
metrics in the 3rd and 4th columns of Table I. Second, we
project each diffusion graph Π into a user network (denoted
as f(Π)), compare f(Π) with the general social network
G, and report the aggregated value of the two metrics in
the last two columns of Table I. We can observe some
phenomena that accord with our hypothesis in designing
our model: TIDE− infers diffusion graphs only considering
textual information without considering the social network
structure, while IndCas infers the diffusion network purely

based on the social influences. Indeed, the diffusion net-
works inferred by TIDE− are significantly biased towards
the document similarity networks H, and the diffusion
networks inferred by IndCas are biased towards the social
networks G. Neither of them infers diffusion networks that
are closer to the ground truth than TIDE, which employs
both text information and the social network.

Metric KLD CS

FM 0.4281 0.7033

TIDE− 0.3301* 0.8622*

TIDE 0.2893* 0.8774*

Table IV
EVOLUTION EVALUATION ON THE SYNTHETIC DATASET (KLD =

KULLBACK-LEIBLER DIVERGENCE, CS = COSINE SIMILARITY, FM =
FEEDBACK MODEL [36])

* means the improvement (over the above row) hypothesis is
accepted at the significance level 0.001 based on dependent t-test.

3) Analysis on Content Evolution: In this experiment, we
study how successfully TIDE and the baseline models track
topic evolution. Since NetInf and IndCas are not able to
handle topics, we compare our models TIDE and TIDE−
with a simple mixture model stated in [36].

We replicate the experiments described in Section IV-B1.
We use two similar metrics (i.e., the symmetrized KL-
divergence and the Cosine similarity) to measure the close-
ness of the discovered word distributions of the topic snap-
shots to the “ground truth” (topic snapshots we construct in
the synthetic dataset). The results are reported in Table IV.

As shown in Table IV, TIDE outperforms the other two
methods by a significant margin, which proves our statement
in Section I: the evolution and the diffusion of topics are
compound processes, and the success of one aspect will help
the inference of the other.

C. Experiments on Real Social Networks

We present the experiments on real world social com-
munities in this section. Note that ‘ground truth’ diffusion
networks and topic snapshots are usually not available.



ID Publication ID Publication

A J. Han, SIGMOD’00. B A. Khan, KDD’10.

C X. Yan, SIGMOD’04. D M. Zaki, KDD’03.

E X. Yan, KDD’03. F Y. Chi, TKDE’05.

G M. Zaki, KDD’02. H A. Bifet, KDD’08.

I X. Yan, KDD’05. J U. Rükert, SAC’04.

K C. Chen, CIKM’08. L J. Wang, KDD’03.

M J. Wang, TKDE’05. N F. Pan, KDD’03

O A. Lee, Infomation System’10.

P U. Yun, Knowledge-Based System’08

Q J. Balcázar, Machine Learning’10.

Table II
PUBLICATIONS SHOWN IN FIGURE 4(A)

ID Tweet (incomplete)

A Inception had better special effects than Videodrome.

B Inception’s effects might take some Oscars.

C I predict Inception’s 12 Oscar nominations.

D It has to be like a 3rd level Inception dream.

E I wonder what level of recursive dreams.

F Inception. What a brilliant, mind-twisting movie.

G Watching inception. Long movie.

H You’d be odd on twitter if you haven’t seen Inception.

I First time I have seen a movie in a theater in the last 6 months.

J If you like intelligent movies and complex plots, see Inception.

Table III
TWEETS SHOWN IN FIGURE 4(B)

1) Verifying Motivating Observations: We start with the
verification of the authenticity of the three motivating obser-
vations stated in Section III-A. We expect social influence to
play a role, so that an author is more likely to adopt topics
from her social connections’ documents. If this is the case,
an author will consistently pay attention to papers published
by authors that she knows, or has cited before. One intuitive
way to verify this is through the behavior of ‘re-citation’,
i.e., once the author cited one paper, it is likely that she will
cite a paper by the same author again. We group authors by
the number of publications, and plot the average ratio of re-
citations in Figure 3(a). It shows that there are substantial re-
citation behaviors, and as an author publishes more papers,
the ratio of re-citation also grows. This verifies the existence
of social influence in document-level information diffusion.
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Figure 3. Verifying Observations by DBLP-Citation Dataset

Rather than inferring the diffusion, a rough proxy of the
influence of a cited paper dr on a citing paper dc can
be measured by the authors’ phrasing after the citation.

Generally, if the authors of dc publish many papers related
to dr after they publish dc, it is fair to believe dr is quite
influential on dc. We partition the citations (each of which
is defined by a cited paper dr and a citing paper dc) into
different groups according to the strength of the social
connection between their authors. For each citation, we then
compute the average document similarity between dr and all
papers published by dc’s authors after they had published
dc. The aggregated similarity is plotted in Figure 3(b). We
repeat the same experiment, but partition citations by degrees
of the content similarity of dr and dc (Figure 3(c)), as well
as the time gap (3(d)) between dr and dc. Figure 3(b)-3(d)
support our hypotheses that the (proxy) influence between
two documents increases with the strength of social ties
(Observation 2) and the content similarity, but decays over
time (Observation 3).

2) Case Study: We select two themes for case study: one
is about the research topic ‘frequent pattern mining’ in the
DBLP-Citation dataset (see the 1st column of Table V), and
the other is about the movie ‘Inception’ in the Twitter dataset
(see the 1st column of Table VII).

Analysis on Information Diffusion. For theme 1, we apply
the TIDE model to 344 papers published during the past ten
years (2000 to 2010), which contain at least three primitive
keywords in the title or abstract. A subgraph of the diffusion
graph estimated by TIDE is shown in Figure 4(a), on a subset
of 17 selected papers (listed in Table II). The volume of
each diffusion flow is marked on the edge. To quantitatively
access the result, we compare the graph with three alternative
“diffusion graphs.” In the first graph, the weight of an edge
dr � dc is set to be proportional to the total length of
citation sentences where dc mentions dr. We then employ
two experts to manually score the impact of each reference
paper in a scale from one to five. The Mean Absolute Error
[26], as the statistical metric of accuracy, based on each
criteria, and the Cohen’s Kappa Coefficiency [28], as the



Primitive Topic Year 2003 Year 2005 Year 2009

frequent 0.20 itemset 0.05 itemset 0.04 itemset 0.03
pattern 0.40 GSM 0.03 tree 0.02 tree 0.02
mining 0.20 association 0.02 parallel 0.01 sequence 0.01
graph 0.05 apriori 0.02 graph 0.01 graph 0.01
tree 0.05 tree 0.01 sequence 0.01 slide 0.01
sequence 0.05 graph 0.01 traversal 0.01 gram 0.01
itemset 0.05 subgroup 0.01 optimize 0.01 window 0.01

sequential 0.01 suffix 0.01 apriori 0.01

Table V
TOPIC SNAPSHOTS BY TIDE ON THEME 1 (DBLP)

Year 2003 Year 2005 Year 2009

efficient 0.02 close 0.01 sequential 0.02
close 0.01 itemset 0.01 itemset 0.01
association 0.01 match 0.01 tree 0.01
support 0.01 tree 0.01 graph 0.01
query 0.01 graph 0.01 database 0.01
temporal 0.01 sequential 0.01 efficient 0.01
graph 0.01 efficient 0.01 rule 0.01
rule 0.01 application 0.01 match 0.01

Table VI
TOPIC SNAPSHOTS BY [36] ON THEME 1 (DBLP)

Primitive Topic Jul 16-19 Jul 20-23 Jul 24-27

inception 1.00 watch 0.05 dream 0.06 oscar 0.04
night 0.05 mind 0.05 effect 0.04
movie 0.05 level 0.03 dream 0.02
special 0.03 walk 0.01 clever 0.01
enjoy 0.01 recursive 0.01 briliant 0.01

Table VII
TOPIC SNAPSHOTS BY TIDE ON THEME 2 (TWITTER)

Jul 16-19 Jul 20-23 Jul 24-27

movie 0.06 type 0.05 oscar 0.03
night 0.06 eye 0.05 act 0.03
special 0.03 watch 0.05 dream 0.03
watch 0.03 night 0.05 strong 0.02
bad 0.03 dream 0.04 night 0.02

Table VIII
TOPIC SNAPSHOTS BY [36] ON THEME 2 (TWITTER)

Table IX
CASE STUDY ON REAL NETWORKS: TOPIC EVOLUTION

measure of inter-criteria agreement, are reported in Table X.
Theme 2 has been used as the running example in

Section I (see Figure 1), and allows us to reveal more details.
We apply the TIDE model on 361 tweets containing the
keyword ‘Inception’, and draw the diffusion graph on 10
selected tweets (listed in Table III) in Figure 4(b). We repeat
the same evaluation procedure as was done for theme 1 (see
Table XI), but the edge weight of the first criteria graph is
based on whether one tweet was replying to the other.
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Figure 4. Case Study on Real Networks: Diffusion Graphs

In both cases, the opinions of the first expert gains the
most agreement from others, and our result has the highest
accuracy against the ground truth given by the first expert.

Analysis on Content Evolution. We apply both TIDE and
the feedback model [36] to extract topic snapshots for two
themes. Top words (with probabilities) of several selected
topics are listed in Table V-VIII. To show more results, the
word ‘frequent’, ‘pattern’ and ‘mining’ are eliminated from
Table V and VI; and the word ‘Inception’ is eliminated from

MAE SL Exp1 Exp2

TIDE 0.122 0.108 0.120

CKC Exp1 Exp2

SL 0.502 0.210

Exp1 – 0.633

Table X
THEME 1 (DBLP)

MAE RR Exp1 Exp2

TIDE 0.363 0.130 0.135

CKC Exp1 Exp2

RR 0.358 0.373

Exp1 – 0.750

Table XI
THEME 2 (TWITTER)

Table XII
CASE STUDY ON REAL NETWORKS: ACCURACY EVALUATION (MAE =
MEAN ABSOLUTE ERROR, CKC = COHEN’S KAPPA COEFFICIENCY, SL

= SENTENCE LENGTH, RR = REPLYING RELATION)

Table VII and VIII.
As described in Section III-B, the topic component of

TIDE utilize (i) a background model to absorb common
words, and (ii) reference models to absorb old words, so
that topic snapshots would attract more discriminative and
meaningful words that describe the novel aspect of a theme.
For example, the topic at ‘Year 2009’ in Table VI reveals
a new trend of mining patterns up to a certain length
(i.e.‘gram’) in a ‘sliding’ ‘window’, and the topic at ‘Jul
20-23’ in Table VIII talks about the movie plots such as the
‘level’ of a ‘recursive’ ‘dream’. However, since [36] only
considers the idea of a background model, these interesting



new words are easily overlooked, because antiquated words,
such as ‘efficient’ in Table V and ‘watch’ in Table VII,
repeatedly appear in lots of topic snapshots.

V. CONCLUSION

In this paper, we propose TIDE, a novel probabilistic
model for the joint inference of diffusion and evolution of
topics in social communities. TIDE integrates the generation
of text, the evolution of topics, and the social network
structure in a unified model. Given the primitive form of any
arbitrary topic, TIDE effectively tracks the topic snapshots
that evolve over time and reveals the latent diffusion paths
of the topic. Comprehensive experimental studies on both
synthetic data and two real-world datasets show that TIDE
outperforms existing approaches.

One important finding is that the discovery of topic
diffusion and topic evolution benefits significantly from the
joint inference process. Text information, social influence,
and the general social network structure play very important
roles in the inference process. We plan to develop a future
extension of TIDE that models the evolution of the social
network structure in addition to the evolution of topics.
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