
Multiple Queries as Bandit Arms

Cheng Li
School of Information
University of Michigan
Ann Arbor, MI, USA

lichengz@umich.edu

Paul Resnick
School of Information
University of Michigan
Ann Arbor, MI, USA

presnick@umich.edu

Qiaozhu Mei
School of Information
University of Michigan
Ann Arbor, MI, USA
qmei@umich.edu

ABSTRACT
Existing retrieval systems rely on a single active query to pull doc-
uments from the index. Relevance feedback may be used to itera-
tively refine the query, but only one query is active at a time. If the
user’s information need has multiple aspects, the query must rep-
resent the union of these aspects. We consider a new paradigm of
retrieval where multiple queries are kept “active” simultaneously.
In the presence of rate limits, the active queries take turns accessing
the index to retrieve another “page” of results. Turns are assigned
by a multi-armed bandit based on user feedback. This allows the
system to explore which queries return more relevant results and
to exploit the best ones. In empirical tests, query pools outper-
form solo, combined queries. Significant improvement is observed
both when the subtopic queries are known in advance and when the
queries are generated in a user-interactive process.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Relevance Feedback

Keywords
Query pooling; multi-armed bandits

1. INTRODUCTION
In the age of big data, most users of an information retrieval sys-

tems do not own the document indices or have infinite resources
to examine all possible results. Instead, they rely on rate limited
search services to pull relevant documents from the index. These
search services, such as commercial search engines, normally take
as input a single, length-limited query and output a certain number
of documents at a time. This approach is sufficient when the infor-
mation need of the user can be clearly described in a single query
and when the information need can be satisfied by a few relevant
documents ranked near the top.

This common practice becomes less efficient when the user has
a more complex information need, which may contain multiple as-
pects (or subtopics) or may evolve during the search process. For
example, to market a new product an analyst needs to gather diverse
aspects about the product and its competitors; to write a literature

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983816

review a researcher often surveys several lines of related work and
may discover new relevant topics on the fly; to investigate a ru-
mor a social scientist may explore everything including its origin,
its variations, and people’s attitudes towards it. In all these scenar-
ios, there exist multiple, diverse aspects of the user’s information
need. Some of these aspects are known upfront, and others may
emerge during the search process. It is difficult to precisely de-
scribe all these aspects within a single query - even with the help of
an intelligent search engine. Indeed, attempting to combine multi-
ple subtopics into a single query may either make it overly lengthy
(thus exceeding the maximum size of a query that a search engine
can efficiently handle) or introduce unnecessary ambiguity. For ex-
ample, combining two subtopics “language, modeling” and “learn-
ing, parameters” into one query may confuse the search system and
retrieve irrelevant results about “language learning.”

Existing work approaches this challenge in multiple ways. Some
engage the user into an interactive process and refine the query
based on her feedback about the results; some rely on smart post-
processing of the retrieved documents, for example through clus-
tering or active learning; and others apply both. In all these ap-
proaches, there is only one “active” query at any time - the search
engine either requests a “deeper” set of results of the current query
or replaces previous queries with a new one. How to construct such
an effective single query is still a fundamental challenge.

In this paper, we explore a different solution, a solution which
releases the search engine from the burden of constructing such a
query. Instead of composing a single, complex query, the main
idea is to keep multiple, simpler queries “active” at the same time.
Without being replaced by one another, these queries take turns to
pull documents from the document index. Based on the user’s feed-
back, queries that appear to be more effective get more turns than
others. When every query covers a different aspect of the informa-
tion need, a “pool” of simple queries can be more effective than a
single complex query.

We cast exploration and exploitation of a query pool as a multi-
armed bandit problem and propose algorithms to assign turns to
queries. In scenarios where new queries are generated during the
search process, new arms are introduced to the bandit. Empirical
experiments show that when equipped with bandits, a query pool is
superior to a single combined query subject to the same rate lim-
its. Significant improvement is observed both when the subtopic
queries are known in advance and when the queries are generated
in a user-interactive process. Retrieval performance can be fur-
ther improved when query pooling is blended with effective post-
processing techniques such as results diversification.

It is important to note that pooling queries as bandit arms is dif-
ferent from two existing settings: session search and search result
diversification. In session search [5], although the search engine

http://dx.doi.org/10.1145/2983323.2983816

learns from a set of queries and user feedback in the same session,
only the newest query is “active” and the goal is to maximize the
relevance of the results retrieved by the single final query. Search
result diversification [24] on the other hand is a post-processing ap-
proach, where the goal is to rerank the list of retrieved document
(by a query) based on the possible subtopics. Alternatively, query
pooling keeps multiple queries active simultaneously, which ad-
dresses the limitation of single queries. It does not require knowl-
edge of the actual retrieval algorithm and thus can be launched as a
general interface between the user and a black-box search engine.

2. RELATED WORK
The key idea of our study is to pool multiple queries (keep them

active at the same time) and assign turns using multi-armed ban-
dits, which is a classical method of reinforcement learning. To the
best of our knowledge, this is a new approach to interfacing a user
with a search engine. Below we discuss the existing literature re-
lated to query pooling and applications of reinforcement learning
to information retrieval.

2.1 Query Pooling
Despite the rapid developments of retrieval algorithms, result

post-processing techniques, and search interfaces, existing infor-
mation retrieval systems rely on a single active query to find rel-
evant documents. To deal with a complex information need, rele-
vance feedback techniques have been developed to update and re-
place the initial query [23]. A relevant scenario is session search,
where a user keeps modifying queries to find documents that fulfill
her information need [5]. Methods have been proposed to refor-
mulate a user’s next query in a session through techniques such as
structured queries [7], combined query language models [11], and
machine learning from clickthrough and preceding queries [26].

Complex information needs are also addressed through subtopic
retrieval, which reranks documents retrieved by the initial query.
The Maximal Marginal Relevance (MMR) method [4] selects one
candidate document at a time by balancing its similarity to the
query and its dissimilarity to already selected documents. Zhai
et al. [34] selected documents with high divergence from one lan-
guage model to another based on risk minimization. Other methods
explicitly identify aspects of a query using taxonomies [1], query
reformulations [22], and multiple external resources [9].

Both relevance feedback (including session search) and subtopic
retrieval (including result diversification) techniques deal with re-
sults returned by one single query. In session search, the newest
query replaces all preceding queries; in result diversification, the
original query is not updated.

An interactive retrieval system proposed in [16] does pool the
results retrieved by multiple queries, but again only one query is
active at any given time. A related idea can also be found in docu-
ment pooling, a technique used to build test collections to evaluate
retrieval methods [13]. In pooling, documents to be judged are
collected by taking the union of the top ranked documents given
by a variety of retrieval systems. Bandits have been used to se-
lect which retrieval method to collect documents from [18]. Doc-
ument pooling considers query results, rather than queries, making
the task much easier – there is no need to handle query updates or
new queries. This work explores a new idea to keep multiple active
queries which take turns to retrieve the next page of results.

2.2 Reinforcement Learning in Retrieval
The application of reinforcement learning techniques (includ-

ing multi-armed bandits) to information retrieval problems has re-
ceived considerable attention recently. These techniques provide

a principled trade-off between exploration and exploitation, and
therefore are suitable for problems such as recommendation. For
example, contextual bandits have been applied to news recommen-
dation [17], where news articles are viewed as arms or actions and
user reactions as rewards. Hsieh et al. [10] proposed an algorithm
based on Thompson sampling for the problem of query suggestion,
helping shoppers refine their queries on e-commerce sites. In this
setting, candidate queries are modeled as arms while user clicks are
modeled as rewards. Although they also treat queries as arms, the
task is quite different from ours: their bandit only decides the dis-
play order of queries, and which query to launch next is completely
decided by the user. In addition, their bandit can only deal with a
fixed set of queries and cannot handle new ones.

When implicit or explicit user feedback is available, document
ranking can be also formulated as a bandit problem. Researchers
have studied the use of either documents or document-selection
strategies as arms to maximize the overall positive feedback [3, 28].

In session search, users issue multiple queries in a sequence to
fulfill a single information need. Since there is a sequence of ac-
tions from a user, stochastic models with states (such as Partially
Observable Markov Decision Processes (POMDP) [30]) can be em-
ployed to solve this problem. Luo et al. [20] proposed to model ses-
sion search as a dual-agent game between the user and the search
engine. Users can take actions to add and remove query terms,
while a search engine can change term weights and adjust search
algorithms. An investigation of how to design states, actions, and
rewards within a POMDP framework is conducted in [19]. A sce-
nario similar to session search is multi-page search, where users
request one page after another for the same query. How to present
documents on the next page depending on the current user feedback
is studied both with Bayesian models [12] and with POMDP [29].

The problem we study differs from session search and multi-
page search as we do not require control of the search engine. All
we need is a search API with rate limits on queries, which can be
called as a black box. With these constraints, our objective is to re-
trieve as many relevant documents as possible with a limited num-
ber of calls to the black box, rather than presenting relevant doc-
uments in some order on one page. Correspondingly, our actions
would be going one page deeper for one of the existing queries, or
trying a new query. As we will show in the experiments, document
re-ranking can be used to post-process the documents retrieved by
the query pool and further improve retrieval performance.

3. METHODS
Users often do not own the document collection and can only

access it through centralized search services, subject to rate limits.
Even with an in-house search engine, it still makes sense to limit
the number of results retrieved for a query and decide based on
this limited set of results whether to continue retrieving more or to
request results for a different query. We will refer to each request
for another page of results for some query as a search API call.

In the following subsections, we first offer intuitions as to why
a query pool is better than a single query in handling complex in-
formation needs using a rate-limited search service. Then, we in-
troduce bandits to manage the use of queries in the pool. Last, we
present an algorithm to tackle the situation where the information
need evolves and new queries are generated during the retrieval
process.

3.1 Query Pools
A complex information need usually contains multiple aspects

or subtopics. There are scenarios where subtopics of an informa-
tion need are known in advance. For example, an experienced re-

searcher doing literature review knows the general subtopics related
to her target. Another example comes from query recommendation.
When a user issues a query, the search engine, based on search logs,
can return a set of suggested queries, from which the user could
pick one or more relevant ones. If these queries are refined and
diverse, they can be viewed as subtopics.

Even if there is no a priori way to obtain the subtopics, results of
the first few retrievals could help us discover them. More specifi-
cally, one can first use active feedback [27], a relevance feedback
method that chooses diverse results for user judgments, to collect
labeled documents. When the number of positively labeled docu-
ments reaches a threshold, these positive documents will be clus-
tered, with one cluster representing one subtopic. Given these clus-
ters, any relevance feedback techniques could be used to generate
a query out of each cluster of documents.

3.1.1 Query Pools vs. Single Queries
Broadly speaking, there are two general strategies to request re-

sults from a search engine when one has an information need with
multiple subtopics. The first strategy is to use a single complex
query to cover all subtopics. The second strategy is to construct
a pool of simple queries, one for each subtopic. A query pool has
considerable advantage over a single query, which we intuitively il-
lustrate in Figure 1. In the figure, each subtopic delineates a (latent)
region of relevant documents in an information space. These re-
gions, from different subtopics of the same information need, could
either overlap or lie far apart. A query retrieves documents close
to it in the information space, thus covering a (grey) area surround-
ing it. As we request the search engine to return more results for a
query, the radius of its covered area increases. Given a certain rate
limit (e.g., the total pages of results returned), a single circle (or
more generally hyper-sphere) can cover a set of oddly shaped, sep-
arated positive areas only by also covering parts of the space that
contain non-relevant documents. A set of smaller circles can more
efficiently cover the relevant documents (positive regions) while
avoiding the irrelevant ones. One tradeoff is that if the circles over-
lap each other, the same document may be retrieved multiple times.
There is also a major challenge in pooling: deciding which queries
should take more turns (to grow their covered areas).

3.2 Bandits for Choosing Queries from a Pool
Even when subtopics are known, it is hard for users to estimate

which subtopics will lead to more relevant results. Looking at Fig-
ure 1, queries q0 and q1 should be explored more often than q2.
Putting too much effort on q2 would bring in many irrelevant docu-
ments. Therefore it is important to optimize the sequence of queries
that get to retrieve their next pages of results. Intuitively, the num-
ber of relevant documents obtained from past result pages of each
query provides a hint on which query to explore next. If we treat
relevant documents as rewards, multi-armed bandit algorithms [15]
can be a natural fit for this problem, as they try to maximize the
expected sum of rewards earned through a sequence of arm pulls.
Below we first introduce the classical setting of the bandit problem
and then discuss how to formulate our task as a bandit.

3.2.1 The multi-armed bandit problem
The bandit problem assumes that at each time t, the player chooses

an arm at ∈ {1, ...,M} to play according to a policy π based on
past plays and rewards, which obtains a reward Xt(at). The se-
quence of rewards for a particular arm are drawn from a sequence
of probability distributions that are unknown to the player. For sim-
plicity of notation, assume that the reward distribution for each arm
is stationary, independent of the number of times it has been pulled

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

A	
 region	
 of	
 a	
 subtopic	

A	
 positive	
 document	

A	
 negative	
 document	

A	
 query	
 with	
 its	
 covered	
 area	
 q	

q1

q0

q2
q

Figure 1: An example of the information space. It is hard to for-
mulate a single query q that perfectly covers the three regions
of relevant documents. In contrast, the query set {q0, q1, q2}
can cover these regions more easily. The sum of areas covered
by {q0, q1, q2} equals the area of the single query q, as the set
of queries have to share the search API calls.

(we will relax this assumption later). Let µ(i) be the expectation
of reward for arm i. The optimal policy π∗ always plays the arm i∗

with largest expected reward

µ∗ = max
i

µ(i), i∗ = argmax
i

µ(i) (1)

A policy π is evaluated by regret in T plays, which is defined
with respect to the optimal policy π∗. Denote Nt(i) =

∑t
s=1 1as=i

the number of times arm i has been played in the first t rounds. The
expected regret after T plays is:

Eπ

[
T∑

t=1

(µ∗ − µ(at))

]
= Tµ∗ −Eπ

M∑
i=1

NT (i)µ(i) (2)

One popular policy for picking the next bandit arm is UCB-1 [2],
which has a provable bound on the expected regret. At time t, it
chooses the arm:

at = argmax
i

{
X̄t(i) + ct(i)

}
, (3)

where X̄t(i) =
∑t

s=1 Xs(i)1as=i

Nt(i)
, ct(i) = c

√
log(t)
Nt(i)

, and c is a
constant.

The above policy works for the condition that rewards {Xt(i)}
for arm i come from the same stationary distribution. For the
non-stationary case, sliding-window UCB (SW-UCB) [6] consid-
ers only the last τ plays:

at = argmax
i

{
X̄t(τ, i) + ct(τ, i)

}
, (4)

where X̄t(τ, i) is

X̄t(τ, i) =

∑t
s=t−τ+1 Xs(i)1as=i

Nt(τ, i)
, Nt(τ, i) =

t∑
s=t−τ+1

1as=i

(5)
and ct(τ, i) is given by

ct(τ, i) = c

√
log(min(t, τ))

Nt(τ, i)
(6)

3.2.2 Formulating the bandit
To formulate the search task as a bandit problem, we need to de-

fine arms and rewards. Each query in the pool is an arm, and pulling
an arm corresponds to retrieving the next page of this query. The
definition of reward is somewhat tricky when the same document
can be retrieved by multiple queries. If we define the reward as
the percentage of documents that are new and relevant in a page,
a problem of reward dependence occurs, where arms played ear-
lier will be strongly favored. This is because early arms in gen-
eral have a better chance to fetch new documents. If we define
the reward as the percentage of relevant documents, regardless of
whether they have been retrieved or not, another problem of arm
dependence emerges. In the extreme case, suppose we have two
identical queries; each of them will be pulled half of the time, while
the best choice would be to discard one of them. We choose the
latter reward function, which risks wasting some time on multiple
retrievals but prevents missed opportunities where a highly precise
query is overlooked because its first page of results have previously
been retrieved. We strive to limit overlap between queries.

Note that with this formulation, the reward of a specific arm is
not sampled from a stationary distribution. The number of relevant
documents usually goes down when we go to the next page of a
query. Since it is more important to trust recent rewards, we use
the sliding-window UCB (Equation 4) to select the next query.

3.3 Bandits with New Queries
When a set of queries are known in advance, the exploration

and exploitation of them can be handled by a classical bandit al-
gorithm. However, in many cases the subtopics of the information
need are not defined upfront but are gradually revealed during the
search process. In this subsection, we consider the scenario where
new queries are generated through an interactive retrieval process,
through techniques such as relevance feedback [23]. Instead of re-
placing the old queries, a new arm of query is added to the bandit.

3.3.1 Reward Estimation for New Queries
As a requirement to apply the UCB policy, classical bandit al-

gorithms assume that there is a fixed number of arms and each
arm has to be pulled once for an initial estimate of reward. When
new queries are generated frequently (e.g., in an iterative relevance
feedback process), if we always pull the new arm to get its initial
estimate, we will have fewer turns to play existing arms. In an ex-
treme case where a new query is always generated after receiving
the user’s feedback, previous queries will never be revisited.

We propose a new algorithm to solve this problem that is inspired
by Monte Carlo tree search [31], where the UCB score of a state is
estimated by similar states. In our case, the UCB score of a new
query is estimated by its similarity to existing queries in the pool
Q. Formally, let Rt(i) =

∑t
t−τ+1 Xs(i)1as=i be the return, or

the sum of rewards to the i-th arm in the last τ rounds. For a new
query qn, we introduce a new arm n and estimate its return, number
of plays, and UCB score by:

R̂t(n) =
∑
i

(Ki,n ∗Rt(i))

N̂t(n) =

∑
i(Ki,n ∗Nt(τ, i))√∑

i(Ki,n)

ˆUCBt(n) =
R̂t(n)

N̂t(n)
+ ĉ

√
log(min(t, τ) + N̂t(n))

N̂t(n)
,

(7)

where ĉ is a constant controlling the tendency to explore the new
arm and Ki,n is a nonnegative valued kernel function that mea-

sures the similarity between arm i and n. Treating a query as a bag
of words, we choose the Gaussian kernel Ki,n = exp(− ∥i,n∥2

σ
),

where σ is the Gaussian width parameter.
With this new algorithm, the initial reward of a new query can

be estimated without actually submitting it to the search engine.
Below we introduce a concrete case, an interactive search process
in which new queries are continuously added to the pool and new
arms are added to the bandit.

3.3.2 A Case Study: ReQ-ReC with Bandits
We consider the ReQ-ReC framework proposed in Li et al [16].

ReQ-ReC is an interactive retrieval process that tries to achieve
high-recall for a complex information need. It employs a double-
loop design that distributes the burden of maximizing recall and
precision to a query generator and a classifier. In an outer-loop,
the query generator generates a new query (ReQuery) according to
the user’s feedback obtained so far, adds it into a query set Q, and
merges newly retrieved documents into a pool of documents. In an
inner-loop, the classifier selects documents from the pool to obtain
the user’s judgments via active learning [25], accumulates labeled
documents, and iteratively improves its classification performance
on retrieved documents (ReClassify). The overall process goes on
by alternating between the query enhancement loop (to increase re-
call) and the classifier refinement loop (to increase precision), until
stop criteria are met.

The original ReQ-ReC framework does not consider rate limits
of queries. All results retrieved by a query are added into the pool at
once and therefore there is no need to revisit previous queries. We
incorporate bandits into the ReQ-ReC framework to accommodate
rate limits of queries, a practical setting when interacting with a
real search API. All previous queries are kept alive in the pool and
every query only submits one API call (i.e., retrieves one page of
results) at a time. The arms and rewards are defined similarly as in
Section 3.2, except that now the reward is estimated by the results
of a classifier instead of human judgments. That is, the reward is
defined as the percentage of documents either labeled as relevant,
or unlabeled but predicted as relevant in the newly retrieved page.

In order to reduce the dependence among arms, it is desirable
that the queries are as diverse as possible. We resort to the diverse-
Rocchio strategy proposed in [16] to generate new queries. Unlike
the original Rocchio method [23] that utilizes all relevant docu-
ments to reformulate a query, diverse-Rocchio uses only relevant
documents that are ranked lower by previous queries. That is, it
tries to formulate a new query that would rank highly those docu-
ments that are relevant but not highly ranked by existing queries.

The Algorithm.
We now propose an algorithm that selects among a pool of queries

in a ReQ-ReC process by treating them as bandit arms. For clarity,
we list notations in Table 1.

As Algorithm 1 shows, the unlabeled document set Dq is ini-
tialized by retrieving the first page of results using the initial query
q0. Given Dq , the process directly goes into the first inner loop,
where a set of documents are selected by active learning strategies
for user judgments. Having updated the labeled setDl, we train the
classifier which predicts the relevance of unjudged documents Dq .
As in [16], the inner loop stops when either: (1) the performance
of the classifier stabilizes, measured by changes in predictions; or
(2) the limit of user judgments (L) is hit.

The outer loop then chooses a query to retrieve another page of
results. First, a new query is proposed using the diverse-Rocchio
approach described above. Its estimated UCB score is compared
with the scores of existing queries. The query with largest score

Table 1: Notations. K, T , L are rate limits of either the search
service or human effort.

D index of the document collection
Q query pool {qi}
qi the i-th query generated
K maximum number of terms in a query
T maximum number of API calls (pages of results per task)
L maximum number of user judgments
Dl set of labeled documents
Dq set of unlabeled documents retrieved by query set Q
f classifier that predicts the relevance label of a document

Algorithm 1 ReQ-ReC by bandits
Input: Initial query q0, index of document collection D, number

of terms K in a query, number of API calls T , number of judg-
ments L.

Output: A set of labeled documentsDl and a set of unjudged doc-
uments in Dq with system predicted labels.

1: q ← q0
2: Q ← {q}
3: Dl ← ∅
4: Dq ← retrieve_next_page(D, q)
5: t← 1 // record API calls
6: repeat // outer loop
7: repeat // inner loop
8: if |Dl| < L then // have budget for labeling
9: Ds ← select_and_label(Dq) // active learning

10: Dl ← Dl ∪ Ds

11: Dq ← Dq −Ds

12: end if
13: train(f,Dl)
14: predict(f,Dq)
15: until meet stopping criteria for inner loop
16: if t < T then // have budget for API calls
17: qn ← new_query(Q,K,Dq,Dl)
18: q ← max_ucb(Q, qn)
19: Q ← {q} ∪ Q
20: Dq ← retrieve_next(D, q) ∪ Dq

21: t← t+ 1
22: end if
23: until stopping criteria for outer loop are met

is chosen. If the chosen query happens to be the newly generated
one, it will be added into the query pool Q, which otherwise re-
mains unchanged. Given the chosen query, its next page of results
is retrieved and merged into Dq .

Compared with the original ReQ-ReC process proposed in [16],
there is a major difference in the termination criteria of the outer
loop – it stops only when both of the conditions are satisfied: (1)
it has already made T API calls; (2) it has already obtained L rel-
evance judgments. Even if the user does not provide more labels,
the outer loop can go on to update Dq , thus enhancing recall. Even
if no more results can be retrieved, the inner loop can continue to
obtain more labels and improve the classifier, thus improving preci-
sion. This practice guarantees that we can fully utilize various types
of limited resources. Below we conduct empirical experiments to
demonstrate the effectiveness of query pools with bandits.

4. EXPERIMENTS
We design three simulation-based experiments to compare query

pools and single combined queries. The first two use pre-calculated

Table 2: Basic information of data sets
#documents avg dl #topics (IDs) #qrels

MB12 15,012,766 19 59 (51-110) 69,045
MB13 243,000,000 14 60 (111-170) 71,279
20NG 18,828 225 20 categories 18,828
HARD 1,033,461 353 50 (303-689) 37,798

ClueWeb09 503,903,810 1570 50 (101-150) 64,868
* Topic 76 of MB12 has no judgment. HARD has non-consecutive topic
IDs. Queries of the TREC diversity task are used for ClueWeb09.

fixed pools of queries. One establishes a lower bound on the perfor-
mance of query pools. The second improves on that using bandits
to assign turns. A third experiment continuously generates new
queries during the retrieval process and adds new arms.

4.1 Data sets
We select five publicly available data sets, small and large, which

are commonly used in literature for a diverse set of tasks. Their ba-
sic statistics are reported in Table 2. Among them, the 20-newsgroup
data set (20NG) is the smallest but fully labeled with topic cate-
gories. We include it for the purpose of understanding the behav-
iors of proposed methods. In particular, we intend to control the po-
tential effect of incomplete judgments, which might be a sensitive
issue for estimating the reward for bandits. The remaining four are
large TREC data sets, which were used by the TREC-2005 HARD
Track (HARD)1, the TREC-2012 microblog track (MB12)2, the
TREC-2013 microblog track (MB13)3, and the diversity task of
TREC-2011 Web Track (ClueWeb094, category A)5. All these data
sets are indexed and can be accessed by standard search APIs.

Following the literature [8, 27, 32, 16], we use existing TREC
judgments for each query to “automate” the actual user feedback in
the searches to facilitate comprehensive and fair comparisons. To
deal with documents not judged by TREC, we follow the norm in
the literature [27]: (1) when an algorithm (e.g., an active learner)
requests the label of an unjudged document, we ignore that doc-
ument and fetch the next document available, as labeling an un-
judged but relevant document as irrelevant may seriously confuse a
classifier; (2) when measuring the performance of a retrieved list,
we treat all unjudged documents as negative.

As in Li et al. [16], documents are tokenized with Lucene’s Stan-
dardAnalyzer tool and stemmed by the Krovetz stemmer [14]. Stop
words are not removed. Both MB13 and ClueWeb09 provide offi-
cial search APIs, implemented using the Dirichlet prior retrieval
function [33]. For other data sets, we use Lucene6 to implement
the Dirichlet prior API.

Table 3: Parameters of Rocchio (α fixed as 1) for the first ex-
periment: query pools vs. single query. Subscript s and p stand
for single queries and query pools respectively.

βs γs βp γp
20NG 1.2 0.5 1.9 0.3
HARD 1.5 0.6 1.9 0.5

ClueWeb09 0.75 0.15 0.75 0.15

1http://ciir.cs.umass.edu/research/hard/
2http://trec.nist.gov/data/microblog2012.html
3https://github.com/lintool/twitter-tools/wiki/
TREC-2013-Track-Guidelines
4http://lemurproject.org/clueweb09/
5http://trec.nist.gov/data/web2011.html
6http://lucene.apache.org/

http://ciir.cs.umass.edu/research/hard/
http://trec.nist.gov/data/microblog2012.html
https://github.com/lintool/twitter-tools/wiki/TREC-2013-Track-Guidelines
https://github.com/lintool/twitter-tools/wiki/TREC-2013-Track-Guidelines
http://lemurproject.org/clueweb09/
http://trec.nist.gov/data/web2011.html
http://lucene.apache.org/

4.2 Query Pools vs. Single Queries
The first experiment aims to validate the potential of query pools

compared with single queries. In particular, the purpose is to esti-
mate a lower-bound and a near upper-bound of the performance of
query pools. For fair comparisons, a query pool and a single query
are generated from the same set of subtopics of every retrieval task.

4.2.1 Procedure
The diversity task of the TREC-2011 Web Track annotates every

search topic with subtopics, which can be directly used to construct
the pool of queries. A single query is obtained by concatenating all
these subtopic queries. Other data sets only provide single search
topics. For every topic, we cluster all the relevant documents in the
judgments using the K-means algorithm (k = 5) and treat them
as the subtopics of the corresponding information need. To decor-
relate the data before clustering, we apply the Principal Compo-
nent Analysis (PCA) and use the top 50 principle components to
transform the term-document TF-IDF matrix. From each cluster
obtained by K-means, we generate a subtopic query that blends
the relevant documents belonging to this cluster together with all
non-relevant documents using Rocchio’s method [23] (as if they
are positive and negative feedback). Similarly, by feeding all la-
beled documents of a search topic to Rocchio, we obtain a single
query for that topic. We limit the number of terms in the formulated
query to 10.

The parameters of Rocchio are tuned to optimize the first page
of retrieved results (the first search API call). For the query pool,
this is the best first page returned by any of the queries in the pool.
As ClueWeb09 has a restricted API limit which prevents us from
exhaustive parameter searching, we set the Rocchio parameters to
the recommended values in [21]). As we do not own the MB13 data
set, we are unable to obtain all the labeled documents. Meanwhile,
clusters obtained for MB12 queries are nearly identical. Therefore
we do not use those two data sets in these experiments. The specific
values of parameters are reported in Table 3.

Having obtained the queries, the retrieval process is executed as
follows. The strategy for launching single queries is straightfor-
ward – we simply request the next page of results (10 per page)
until we hit the limit of API calls (e.g., T = 100). To launch a pool
of subtopic queries, we examine two strategies. The first one is re-
ferred to as the GREEDY strategy, which chooses the query whose
next 10 pages (100 results) returns most relevant results. Note that
by assuming omniscience, this strategy is close to an upper-bound
of the performance of query pools. (The true upper-bound is higher
and can be found by examining all possible orders to schedule the
queries in the pool, which is computationally expensive.) If even
this strategy is unable to outperform a single complex query, then a
bandit algorithm will not help. The second strategy is the ROUND-
ROBIN, which simply launches queries in circular order without
looking at the returned results or the judgments. This strategy es-
timates a lower-bound of the performance of query pools. If even
this lower-bound outperforms single queries, we should believe that
query pools have a large potential.

Recall is a suitable evaluation metric for this experiment. All
methods return nearly the same number of documents: each makes
the same number of API calls; only retrieving the same document
by multiple queries reduces the total number of distinct documents.
Thus, precision is nearly perfectly correlated with recall.

4.2.2 Results
Behavior when the number of API calls is limited. Table 4

presents the recall of single queries and query pools after 100 search
API calls are made, a rather limited number. The results show that

query pools using the GREEDY strategy outperform single queries
by a large margin, while those using the ROUND-ROBIN strategy
outperform single queries on one of three data sets. This suggests
that query pools have a high potential to outperform single, com-
plex queries, but a smart way (smarter than round-robin) to choose
queries in the pool is critical.

Table 4: Recall (%) at API call = 100 for the first experiment:
query pools vs. single query.

20NG HARD ClueWeb09
SINGLE-QUERY 38.16 61.47 50.13
ROUND-ROBIN 29.22*** 69.09*** 47.63*

GREEDY 47.88*** 76.68*** 56.27**
“**(***)" means the result is significantly higher/lower than SINGLE-
QUERY according to paired t-test at level 0.05(0.01).

Behavior as the number of API calls increases. We plot recall
as a function of API calls in Figure 2. At the early stage, GREEDY
consistently outperforms SINGLE-QUERY by a large margin. As
the number of API calls increases, the advantage of GREEDY over
SINGLE-QUERY is shrinking. This behavior verifies our explana-
tion from the perspective of the information space. GREEDY pri-
oritizes the expansion of areas covered by promising queries, thus
bringing in more relevant documents earlier. As the number of al-
lowed API calls increases, the expanded area of each query can
eventually cover all relevant documents.

0 500 1000 1500 2000
#API calls

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Single-query
Greedy
Round-Robin

(a) 20NG

0 500 1000 1500 2000
#API calls

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Single-query
Greedy
Round-Robin

(b) HARD

Figure 2: Recall as a function of API calls: query pools vs. sin-
gle query. Results on ClueWeb09 present the same pattern.

Performance with respect to task complexity. If the informa-
tion need of a retrieval task is inherently simple, a single query
should be good enough. In contrast, when the information need has
multiple aspects, query pools are better choice. This is already im-
plied in Table 4, where even ROUND-ROBIN outperformed SINGLE-
QUERY on the HARD data set. Here we empirically study the re-
lationship between task complexity and retrieval performance.

To quantify task complexity, we measure the dissimilarity be-
tween generated subtopics. Intuitively, if all the subtopics of a
task (topic) are similar to each other, it is likely that this topic does
not have multiple aspects, and therefore is a simple task. In order
to compute subtopic dissimilarity, we treat the retrieved results of
each subtopic as a set. In this case, dissimilarity can be measured
using the Jaccard index: d(A,B) = 1 − J(A,B) = 1 − |A∩B|

|A∪B| ,
where A, B are sets. Then the task complexity is computed as the
maximum of dissimilarity over every pair of subtopics belonging
to one task. To make the performance across tasks comparable, we
use the relative recall, which is the ratio of recall score obtained by
GREEDY to that of SINGLE-QUERY.

Figure 3 presents the results, where all the three data sets are
plotted in one figure. The line fitting the scattered circles suggests
that the advantage of query pools is indeed more evident when the
search task is more complicated.

0.0 0.2 0.4 0.6 0.8 1.0
Task Complexity

0
1
2
3
4
5
6

R
e
la

ti
v
e
 R

e
ca

ll
Fitted line

Figure 3: Task complexity vs. performance. Each circle corre-
sponds to a retrieval task.

4.3 Bandits for Choosing Queries from a Pool
The first experiment validates the potential benefit of query pools

compared with single queries. The second experiment tests whether
bandits, which should do better than round-robin, perform signif-
icantly better than single queries. Since we care about the practi-
cal performance in this experiment, we no longer assume that the
subtopics are given. Instead, we start from a single query and gen-
erate a set of subtopic queries based on the results obtained from
the first few API calls. Note that once the subtopic queries are gen-
erated, they are fixed and no new queries will be included. We will
study bandits with new queries later.

4.3.1 Procedure
We generate subtopics by first applying active feedback [27] ex-

cept that we only use the results retrieved from the first few API
calls. As the first experiment shows, query pools are more pow-
erful for complex tasks. To filter out simple tasks, here we use a
heuristic – a task will be dropped if active feedback cannot obtain a
certain number of relevant documents θp = 10 within 20 API calls.
This suggests that there are not enough diverse cluster “centroids”
in these simple tasks. The number of “complex” tasks remaining
are shown in the first column of Table 5.

Table 5: Number of tasks and Rocchio parameters (α fixed as 1)
to evaluate bandits for choosing queries from a pool. Subscript
s and b stands for SINGLE-QUERY and BANDIT. Iterative RF
has the same first reformulated query as SINGLE-QUERY and
they share the same parameter values.

#tasks βs γs βb γb
20NG 19 0.9 0.3 1.5 0.5
HARD 33 1.0 0.3 1.5 0.6

ClueWeb09 31 0.75 0.15 0.75 0.15

The labeled documents acquired by active feedback are clustered
and one query per cluster is generated by Rocchio’s method [23].
Again, parameters are tuned to optimize the first page of results.
We set k to 2 in the K-means algorithm this time, as there are fewer
relevant documents obtained. The single query is also obtained by
feeding all retrieved, labeled documents to Rocchio.

Given the two generated queries, the bandit algorithm is applied
to choose which query to explore next. Parameters c and τ in Equa-
tion 6 are respectively set to 0.1 and 20 across all data sets.

Since the bandit further requests relevance feedback to estimate
the reward, to make the comparison fair we add another baseline –
iterative relevance feedback (ITERATIVE RF). It uses the same user
judgments as the bandit algorithm, but instead updates the query in
every iteration using Rocchio’s method. Throughout the process,
only the newest query is active.

4.3.2 Results
Table 6 summarizes the results. The results show that the bandit

algorithm can effectively explore the two subtopic queries and ex-
ploit the better one, retrieving more relevant results overall. Though
ITERATIVE RF demands the same number of labeled documents as
BANDIT per iteration, it utilizes them less effectively by updating
a single query. Note that the results might not be comparable to the
ones presented in Table 4, as there are positive documents already
retrieved by active feedback at API call = 0.

Table 6: Recall (%) at API call = 100 for the second experi-
ment: bandits order queries from a pool more effectively.

20NG HARD ClueWeb09
Iterative RF 19.44*** 39.33*** 39.27***

SINGLE-QUERY 40.41 64.70 46.26
BANDIT 43.42* 68.85** 48.61**

“**(***)" means the result is significant over SINGLE-QUERY according to
paired t-test at level 0.05(0.01).

We plot recall as a function of API calls in Figure 4. In ClueWeb09
and HARD, the BANDIT algorithm consistently outperforms SINGLE-
QUERY. As for 20NG, BANDIT shows only some slight advantage
in the beginning, and dominates by a large margin at later stages.
This might result from the unavailability of all labeled relevant doc-
uments, which is only accessible in the first set of experiments.
Without them, a single query generated from documents retrieved
by active feedback might under-represent some subtopics. There-
fore in terms of the information space, the query could be located
far away from those minor subtopics, and thus takes more API calls
to expand its area to cover these subtopics.

4.4 Bandits with New Queries
Having shown that the bandit algorithm can effectively assign

turns to a fixed pool of queries, we test whether it can handle new
queries generated on the fly, in an interactive retrieval process.

4.4.1 Metrics
We use two standard retrieval metrics that emphasize both re-

call and precision – mean average precision (MAP) [21] and R-
precision (R-Prec) [21]. R-precision measures the precision at the
R-th position for a query with R relevant judgments. The R-th po-
sition is where precision equals recall. This makes it a good metric
that takes into account both precision and recall. These metrics are
also used in [16]. For each query, only the top 1,000 documents are
considered when computing the metrics.

When measuring retrieval performance, the documents already
judged by the user in an interactive search process are included,
and those judged as relevant are put on the top of the ranked list. As
reasoned in [16], it is not fair to punish a process that does a good
job of sending more relevant documents to the user for judgments.

4.4.2 Methods
The baselines include ITERATIVE RF and the best-performing

configuration of the ReQ-ReC framework reported in [16], simply
referred to as REQ-REC here.

Since the new process considers rate limits, we accordingly make
adaption to baselines, ensuring that the comparisons are fair. First,
as baselines cannot revisit queries once they have been updated, we
retrieve P pages all at once for each query, where P is tuned to
the best value for each baseline. Second, the stop criteria for the
outer loop are changed to the ones described in 3.3.2. That is, the
entire process terminates only when we reach the limit on both the
number of labeled documents and the number of API calls.

0 500 1000 1500 2000
#API calls

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
ec

al
l

Iterative RF
Single-query
Bandit

(a) 20NG

0 500 1000 1500 2000
#API calls

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ec

al
l

Iterative RF
Single-query
Bandit

(b) HARD

0 20 40 60 80 100
#API calls

0.38

0.40

0.42

0.44

0.46

0.48

0.50

R
ec

al
l

Iterative RF
Single-query
Bandit

(c) ClueWeb09

Figure 4: Results for the second experiment: bandits for choosing queries from a pool

We do not remove simple tasks as we did in the second exper-
iment, as BANDIT automatically decides when to generate a new
arm. In nearly all cases, it indeed generated more than one arm.

4.4.3 Parameters
For each baseline on each data set, parameter P is tuned to max-

imize the mean average precision. MB13 and ClueWeb09 are ex-
ceptions where this tuning is not possible due to rate limits of the
official APIs. We set the P to be the mode of the best P on the
other three data sets. The values of P , as well as tuned parameters
for Rocchio, are shown in Table 7.

We do not further tune the parameters of BANDIT even though
they may not be the optimal values. For c, τ , ĉ in Equation 6 and 7,
they are respectively set to 0.1, 20, and 0.1 across all data sets.

In all the methods, we use the default parameter of SVM (c = 1).
With regard to the resource limit, we set the number of terms in a
query K = 5, number of API calls T = 100, and number of
labeled documents L = 20. A relaxation of these constraints will
be studied in Section 4.4.5.

4.4.4 Overall Performance
Table 8 summarizes the performance of all included methods.

Statistical significance of the results are provided by comparing to
the baseline, REQ-REC. In general, BANDIT is the best performing
method across all data sets.

Table 7: The number of pages to retrieve for each query (P) for
baselines and parameters of Rocchio (α fixed as 1). Subscript
i, r and b stands for method ITERATIVE RF, REQ-REC and
BANDIT respectively.

Pi Pr βi γi βr γr βb γb
MB12 30 40 1.5 0.3 1.7 1.0 1.8 0.1
MB13 30 40 0.75 0.15 0.75 0.15 0.75 0.15
20NG 30 20 0.9 0.5 0.9 0.4 1.0 0.4
HARD 30 40 1.8 0.2 0.9 0.4 1.9 0.2

ClueWeb09 30 40 0.75 0.15 0.75 0.15 0.75 0.15

When comparing REQ-REC with ITERATIVE RF, we obtain
mixed results. The problem with REQ-REC is caused by the lack
of enough training examples for the classifier, which fails to iden-
tify relevant documents and rank them on the top. This problem
has been mentioned in [16] too. Though BANDIT suffers from the
same problem, it retrieves more relevant documents by managing
queries smartly, alleviating the problem of relevance classification.
This will be clearer in the next subsection when we analyze the
results by increasing the number of labeled documents.

4.4.5 Relaxation of constraints
In order to study the effects of different types of constraints, we

relax one of the factors at a time, while keeping the other two fixed.
As the result of R-prec is strongly correlated with MAP, to conserve
space we only show the performance of each method by MAP.

Table 9: MAP (%) as the number of terms in a query increases.
Data set Method 5 10 20

Iterative RF 27.19* 30.25*** 31.87***
MB12 ReQ-ReC 25.08 25.12 25.31

Bandit 30.97*** 31.68*** 32.58***
Iterative RF 24.18 29.68*** 30.34***

MB13 ReQ-ReC 25.49 25.50 25.41
Bandit 30.19*** 32.43*** 33.28***

Iterative RF 10.02 10.49 11.10
20NG ReQ-ReC 11.81 11.78 11.88

Bandit 18.92*** 19.00*** 18.56***
Iterative RF 18.47*** 21.02** 23.05

HARD ReQ-ReC 24.35 24.29 24.37
Bandit 26.22* 26.38* 26.35*

Iterative RF 8.45*** 9.62*** 9.89***
ClueWeb09 ReQ-ReC 13.28 13.40 13.41

Bandit 14.86* 14.84* 14.81

Table 9 shows the performance when increasing the number of
terms in a query. As the number of allowed terms is increased,
the performance of ITERATIVE RF is enhanced significantly, while
BANDIT and REQ-REC have no evident change. This is attributed
to the classifier maintaining precision in the inner loop of the ReQ-
ReC framework. As a result, the query generator of BANDIT and
REQ-REC could focus on maximizing recall by exploring diverse
sets of term, which is feasible even with strict query length con-
straints. In contrast, without the help of a classifier, the queries
generated by ITERATIVE RF have to account for both precision and
recall, a difficult task when the number of query terms is limited.

Table 10 suggests that increasing the number of labeled docu-
ments in general benefits REQ-REC and BANDIT greatly. This
benefit can be explained from two perspectives. More labeled doc-
uments leads to: 1) a more robust classifier to judge document rel-
evance; and 2) generation of more diverse queries. When labeled
documents are few, even though BANDIT and REQ-REC can re-
trieve more relevant documents than ITERATIVE RF, they are not
recognized by the classifier. With more labeling efforts, the two
methods outperform ITERATIVE RF by a large margin. The differ-
ence between BANDIT and REQ-REC tend to shrink on MB12 and
MB13. This could be due to more labeled documents contributing
to increased quality of all queries in the pool. Choosing any of the
queries to submit can already result in good performance, even if
this is not managed by bandits.

Table 11 presents the results when increasing the number of API

Table 8: Retrieval performance (%) with query terms K = 5, API calls T = 100, labeled documents L = 20.
MB12 MB13 20NG HARD ClueWeb09

R-prec MAP R-prec MAP R-prec MAP R-prec MAP R-prec MAP
Iterative RF 31.29 27.19* 30.59 24.18 13.84** 10.02 24.12*** 18.47*** 13.28*** 8.45***
ReQ-ReC 29.37 25.08 30.94 25.49 17.67 11.81 27.93 24.35 17.97 13.28

Bandit 32.51** 30.97*** 34.89*** 30.19*** 28.84*** 18.92*** 29.83* 26.22* 19.5* 14.86*
“*(**, ***)" means the result is significant over ReQ-ReC according to paired t-test at level 0.1(0.05, 0.01).

Table 10: MAP (%) as labeled documents increase.
Data set Method 20 30 60 100

Iterative RF 27.19* 26.37** 30.92*** 32.12***
MB12 ReQ-ReC 25.08 29.30 39.45 46.53

Bandit 30.97*** 35.49*** 41.85** 49.68**
Iterative RF 24.18 24.50*** 27.42*** 28.39***

MB13 ReQ-ReC 25.49 28.79 35.98 39.98
Bandit 30.19*** 32.39*** 38.83*** 41.54*

Iterative RF 10.02 10.36* 11.57** 12.80***
20NG ReQ-ReC 11.81 12.66 16.69 18.22

Bandit 18.92*** 20.45*** 23.22*** 25.43***
Iterative RF 18.47*** 17.18*** 19.51*** 20.28***

HARD ReQ-ReC 24.35 28.22 37.47 42.86
Bandit 26.22* 29.37 39.12** 47.16***

Iterative RF 8.45*** 8.05*** 8.65*** 8.65***
ClueWeb09 ReQ-ReC 13.28 14.90 20.42 25.35

Bandit 14.86* 15.32 22.65* 29.56***

Table 11: MAP (%) as the number of API calls increases.
Data set Method 100 500 1000

Iterative RF 27.19* 27.19*** 27.19***
MB12 ReQ-ReC 25.08 18.65 17.49

Bandit 30.97*** 28.35*** 35.38***
Iterative RF 24.18 26.18*** 26.18***

MB13 ReQ-ReC 25.49 21.32 20.31
Bandit 30.19*** 28.20*** 26.84***

Iterative RF 10.02 10.02 10.02
20NG ReQ-ReC 11.81 10.53 10.5

Bandit 18.92*** 18.75*** 21.49***
Iterative RF 18.47*** 18.47** 18.47***

HARD ReQ-ReC 24.35 15.37 14.06
Bandit 26.22* 19.80*** 33.25***

Iterative RF 8.45*** 8.45* 8.45*
ClueWeb09 ReQ-ReC 13.28 12.09 11.87

Bandit 14.86* 13.91 12.54

calls. No change of performance is observed for ITERATIVE RF,
as the query will not be changed after running out of labeling bud-
get. As a result, ITERATIVE RF always outputs the same ranked
list. In many cases BANDIT and REQ-REC deteriorate, due to the
classifier’s errors on newly retrieved documents when no more new
labels are available to correct the classifier. As observed from Ta-
ble 10, the classifier becomes more robust as the labeling effort
increases. Therefore, to fully utilize the increased API resource,
the number of judgments has to be increased accordingly. Interest-
ingly, on three of the data sets, BANDIT obtains a big gain when
the number of API calls is increased to 1,000. By smartly man-
aging a pool of queries and revisiting promising ones, BANDIT can
still bring in more relevant documents, even with a biased classifier.

We also study τ that controls the size of window in sliding-
window UCB [6]. Overall, the performance is fairly robust over
different values of τ . When the window size is extremely small
(τ = 5), UCB does not have enough history to correctly estimate
rewards. The problem is alleviated as we expand the window. Per-
formance begins to drop when τ is greater than 10. It is beneficial

to forget rewards obtained earlier, as the number of relevant docu-
ments per page generally decreases when we retrieve more pages.

4.5 Result Reranking as a Post-processing
Query pools aim at retrieving more relevant documents from a

black-box search engine. The retrieved results can be fed to any
reranking method, including any algorithm developed for session
search or result diversification. These methods serve as a post-
processor to reorder retrieved documents and potentially improve
the effectiveness of ranking. In this subsection, we use xQuAD [24],
a popular result diversification algorithm, to examine the benefit of
such post-processing. xQuAD considers different aspects of the in-
formation need by exploiting the ranking score of sub-queries. We
directly use the set of queries generated in our system with uniform
weights as the sub-queries for xQuAD, and tune the parameters to
their best. Table 12 and 13 show results of applying xQuAD to
rerank retrieved documents for the second and third experiments.

Table 12: MAP (%) at API call = 100 for the second experi-
ment: bandits for choosing queries from a pool.

20NG HARD ClueWeb09
SINGLE-QUERY-original 14.89 21.68 14.35
SINGLE-QUERY-xQuAD 16.31** 23.24** 14.64

Bandit-original 18.81 23.76 16.34
Bandit-xQuAD 20.26** 25.21** 16.73

“**" means the reranking of xQuAD is significant over the original ranking
according to paired t-test at level 0.05.

Table 13: MAP (%) at API call = 100 for the third experiment:
bandits with new queries.

MB12 MB13 20NG HARD ClueWeb09
Iterative-RF-original 27.19 24.18 10.02 18.47 8.45
Iterative-RF-xQuAD 28.34* 24.33 10.94 19.58 20.56***
ReQ-ReC-original 25.08 25.49 11.81 24.35 13.28
ReQ-ReC-xQuAD 27.69** 24.9 12.47 24.92 23.11***

Bandit-original 30.97 30.19 18.92 26.22 14.86
Bandit-xQuAD 32.68* 29.82 18.10 28.32** 27.81***

“**" means the reranking of xQuAD is significant over the original ranking
according to paired t-test at level 0.05.

The overall performance indicates that xQuAD can improve the
original ranking in many cases, while in other cases the perfor-
mance stays very close. This suggests that there is no harm to
add a re-ranker, which often benefits. The most interesting case is
ClueWeb09 in Table 13, where the reranked MAP is around twice
as high as the original. We suspect that web pages are noisier than
other documents and it is easy for a classifier to misclassify due to
noises. By considering subtopics in the ranking function, xQuAD
alleviates this problem and promotes relevant documents to the top.

Numbers in Table 12 and 13 are not comparable, as experiments
reported in Table 12 utilized active feedback to accumulate positive
documents before we start counting API calls. Moreover, BANDIT
in Table 12 requires far more labels than that in Table 13.

5. CONCLUSION
We consider a scenario where users have to rely on rate lim-

ited search services to acquire documents pertaining to an informa-
tion need. Traditional approaches do not address this problem well
when a user has a complex information need composed of multiple
aspects. These approaches keep a single active query for docu-
ment retrieval. This single query might either be fixed or updated
by techniques like relevance feedback. We propose a new retrieval
paradigm where a pool of queries are kept active simultaneously,
and a bandit algorithm is used to determine which query to retrieve
another page of results for. The empirical results demonstrate the
advantage of query pools over solo, combined queries. The im-
provement of performance is significant both when the query as-
pects are known in advance and when new queries are generated
in an interactive retrieval process. The new search paradigm can
be launched as a general interface between a user and any black-
box search API. The retrieved documents can be further reranked
by any post-processing algorithm to improve the ranking perfor-
mance. It is worth noting that throughout the study we considered
the search engine as a black box. When one owns the search sys-
tems, there is much more flexibility to improve both the algorithm
(e.g., to use query and clickthrough logs) and the evaluation (e.g.,
to identify diverse subtopic queries from the query log instead of
reverse-engineering the TREC topics).

Acknowledgment
The authors thank Kevyn Collins-Thompson, ChengXiang Zhai,
and reviewers for their useful comments. This work is partially
supported by the National Science Foundation under grant num-
bers IIS-0968489 and IIS-1054199 and by the National Institutes
of Health under grant number NLM 2R01LM010681-05.

6. REFERENCES
[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying search results. In Proc. of WSDM, 2009.
[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis

of the multiarmed bandit problem. Machine learning, 2002.
[3] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski.

Contextual bandits for context-based information retrieval. In
Neural Information Processing. Springer, 2013.

[4] J. Carbonell and J. Goldstein. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In Proc. of SIGIR, 1998.

[5] B. Carterette, E. Kanoulas, M. Hall, and P. Clough.
Overview of the trec 2013 session track.

[6] A. Garivier and E. Moulines. On Upper-Confidence Bound
Policies for Switching Bandit Problems. 2011.

[7] D. Guan, H. Yang, and N. Goharian. Effective structured
query formulation for session search. Technical report, DTIC
Document, 2012.

[8] D. Harman. Relevance feedback revisited. In Proc. of SIGIR,
1992.

[9] J. He, V. Hollink, and A. de Vries. Combining implicit and
explicit topic representations for result diversification. In
Proc. of SIGIR, 2012.

[10] C.-C. Hsieh, J. Neufeld, T. King, and J. Cho. Efficient
approximate thompson sampling for search query
recommendation. 2015.

[11] J. Jiang, S. Han, J. Wu, and D. He. Pitt at trec 2011 session
track. In TREC, 2011.

[12] X. Jin, M. Sloan, and J. Wang. Interactive exploratory search
for multi page search results. In Proc. of WWW, 2013.

[13] K. Jones and V. Rijsbergen. Report on the Need for and
Provision of an Ideal Information Retrieval Test Collection.
1975.

[14] R. Krovetz. Viewing morphology as an inference process. In
Proc. of SIGIR, 1993.

[15] T. L. Lai and H. Robbins. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics, 1985.

[16] C. Li, Y. Wang, P. Resnick, and Q. Mei. Req-rec: High recall
retrieval with query pooling and interactive classification. In
Proc. of SIGIR, 2014.

[17] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline
evaluation of contextual-bandit-based news article
recommendation algorithms. In Proc. of WSDM, 2011.

[18] D. E. Losada, J. Parapar, and A. Barreiro. Feeling lucky?
multi-armed bandits for ordering judgements in
pooling-based evaluation. In 31st Symposium on Applied
Computing, 2016.

[19] J. Luo, S. Zhang, X. Dong, and H. Yang. Designing states,
actions, and rewards for using pomdp in session search. In
Advances in Information Retrieval. 2015.

[20] J. Luo, S. Zhang, and H. Yang. Win-win search: Dual-agent
stochastic game in session search. In Proc. of SIGIR, 2014.

[21] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
information retrieval. Cambridge University Press
Cambridge, 2008.

[22] F. Radlinski and S. Dumais. Improving personalized web
search using result diversification. In Proc. of SIGIR, 2006.

[23] J. J. Rocchio. Relevance feedback in information retrieval.
1971.

[24] R. L. Santos, C. Macdonald, and I. Ounis. Exploiting query
reformulations for web search result diversification. In Proc.
of WWW, 2010.

[25] B. Settles. Active learning literature survey. University of
Wisconsin, Madison, 2010.

[26] X. Shen, B. Tan, and C. Zhai. Context-sensitive information
retrieval using implicit feedback. In Proc. of SIGIR, 2005.

[27] X. Shen and C. Zhai. Active feedback in ad hoc information
retrieval. In Proc. of SIGIR, 2005.

[28] M. Sloan and J. Wang. Dynamical information retrieval
modelling: a portfolio-armed bandit machine approach. In
Proc. of WWW, 2012.

[29] M. Sloan and J. Wang. Dynamic information retrieval:
Theoretical framework and application. In Proc. of ICTIR,
2015.

[30] E. J. Sondik. The optimal control of partially observable
markov processes over the infinite horizon: Discounted
costs. Operations Research, 1978.

[31] S. Srinivasan, E. Talvitie, M. Bowling, and C. Szepesvári.
Improving exploration in uct using local manifolds. In Proc.
of AAAI, 2015.

[32] X. Wang, H. Fang, and C. Zhai. A study of methods for
negative relevance feedback. In Proc. of SIGIR, 2008.

[33] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proc. of SIGIR, 2001.

[34] C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond
independent relevance: methods and evaluation metrics for
subtopic retrieval. In Proc. of SIGIR, 2003.

	1 Introduction
	2 Related work
	2.1 Query Pooling
	2.2 Reinforcement Learning in Retrieval

	3 Methods
	3.1 Query Pools
	3.1.1 Query Pools vs. Single Queries

	3.2 Bandits for Choosing Queries from a Pool
	3.2.1 The multi-armed bandit problem
	3.2.2 Formulating the bandit

	3.3 Bandits with New Queries
	3.3.1 Reward Estimation for New Queries
	3.3.2 A Case Study: ReQ-ReC with Bandits

	4 Experiments
	4.1 Data sets
	4.2 Query Pools vs. Single Queries
	4.2.1 Procedure
	4.2.2 Results

	4.3 Bandits for Choosing Queries from a Pool
	4.3.1 Procedure
	4.3.2 Results

	4.4 Bandits with New Queries
	4.4.1 Metrics
	4.4.2 Methods
	4.4.3 Parameters
	4.4.4 Overall Performance
	4.4.5 Relaxation of constraints

	4.5 Result Reranking as a Post-processing

	5 Conclusion
	6 References

