
① Intro

Reminder : A Turing invariant function f
: 2°→2° is

• order preserving if V-x.ge 2W (x>Ty ⇒ that fly)) :¥÷V
• measure preserving it V-z-J-yht-EIIYg.jo?b!II?#a cone

T.tn#CSlaman- Steel) Part 2 of Martin 's conjecture holds for all
order preserving functions which are not above the hyperjump

ya,,
← Thm_ Part 1 of Martin's conjecture holds for all measure preservingfunctionsff¥t→e or f-G) It ✗ on a cone

week Thin Every order preserving function is either constant on a cone
← or measure preservingtoday
.CI Part 1 of Martin's conjecture holds for all order preserving functions



Goal for today: Every order preserving function is either
constant on a cone or measure preserving
"order preserving ⇒ measure preserving

"

Main tool : Basis theorem for perfect sets

① Explain basis thin
② show order preserving⇒ measure preserving
③ Prove basis thin



Perfect sets
and

Martin's conjecture
4¥ for Order Preserving
Functions .



② A Basis Theorem for Perfect sets in

Def A set AS 2W is perfect if it is nonempty , closed
and has no isolated points
↳ technically correct, but not very intuitive

Def A tree 1- c- 2
"

is perfect if "" YEEevery node has incomparable descendants
'Ñ

↳Note : T has no dead ends µ

Example T = { 6 c- 2
" I ocp] = 0 for all primes pedomG)§

Notation If T is a tree, CT] denotes the set of infinite

paths through T

Prop If T is perfect then CT] is homeomorphic to 2°

Prop A c- 2W

A is perfect ⇐
there is a perfect tree
T such that A= CT]



Basis thin, version I Suppose A- e- 2° is perfect and
T is a perfect tree such that A=[T]. Then for all
✗ c- 2W there is some y c- A such that

✗ E- y ⑤ T

proof Using T, compute a homeomorphism f : A→ 2° and
pick YEA srt. fly)=x

what this means : Encode bits of ✗ into decisions about
whether y turns left or right at each branch point
it encounters in T

✗ = 101 . . .

g- ① 1000100
. -

,

"i¥¥"



Basis thin, version
2 Suppose A- e- 2° is perfect and

(ao , ai , az, . . - ) is a countable dense subset of A. Then
for all ✗ c- zw there is some yea such that

✗ ET y ⑧ (tone
an)

Obstacle Don't know a tree T s.t.LT]=A so don't know
when

y encounters branch pts

Solution Use Can> to compute a perfect subtree of T

What this means Encode the bits of ✗ into

decisions about whether to continue following
current ai or to switch to the next

compatible ajiaoy.am
is

is o_0 -

✗ = 101 . - - - .

azs



Basis thin, version 3 Suppose A- e- 2° is perfect and
(ao , ai , az, - - - )c a countable dense subset of A. Then

for all ✗ c- 2W
, there are yo,y , ,yz€A such that

ET yotoy , ⑤yzt Cotney an)↳
Groszek-shaman Csimplified version)

Application If there is a nonconstructive real then every
perfect set contains a nonconstructive i.real

Obstacle ttow do you
avoid ai 's which are not in A?

Solution Use y, , yz to code information about which ai 's
• ÷



Basis thin, version 4 Suppose A- e- 2° is perfect and a

f computes every element of a countable dense subset of A.
Then for all ✗c- 2W there are yo>y , ,yz , y >

c- A such that

final
version ✗ It yo⑧Yi⑤Yz⑤yz⑦ a

obstacle How do you avoid partial functions computable
from a?

Solution Use y,
to code information about convergence

times

¥¥¥÷i÷



③ Order Preserving
⇒ Measure Preserving

This Every order preserving function is either constanton
a cone or measure preserving

Main Ingredients
① Basis theorem for perfect sets

← ② Perfect set theorem 2-f-+AD ⇒ Every set A- E- 2°
Morton is either countable or contains a perfect set
Davis ↳ Implies a version of CH holds in ZFTAD

proof Fix f : 2W→ 2W order preserving
c-other range(f) ctbl or range contains a perfectset
we will show

rangecf) ctbll ⇒ f constant on a cone

range(f) contains a perfect set ⇒ f- measurepreserving



proof (continued)
Assume : f :2w→ 2

"
is order preserving

A- € rangeCf) is a perfect set

Fix 2- c- 20
We want to show f- is above ✗ on a cone

since f- is order preserving , enough to show Fyfcy>7+-2
↳ ✗ Zty ⇒ fcx) 7T fly] It 2-

Pick Lai> c- A ctbl dense subset
1- ( ✗is sot. f(✗ i)=ai AS range(f)

& countable choice

set a = fctxi) fcotxi) > c- fcxi)=ai Hi ②&i④Wo⑦. -
⑦us

3- Yo , y , , Yz , y] EA ✗E-iyotypyzs-oyztaarsas.mn É!ÉÉ¥,÷ÉÉFwoiwiiwz
,
w} fcwi)=y, AE range(f)

y=(⑤xi)④wo⑦4 wztwz Wi A

f-(g) 7T a ⑤yoty ,⑦ yz⑦y} 7T 2- ☐
"

FCWD YZTWO tf is order preserving



④ Proof of the Basis Theorem

Thm_ Suppose AE 2° is perfect and aezw computes every
element of a countable, dense subset of A . Then
for every ✗c- 2W there are yo, y , ,yz, y,

c-A such that

✗ IT Yo•yityz ⑤ Yrs ⑤a
proof arbitrarily powerful

coder : knows ×, a, -1 -9 owes yo, yiiyryy}
Decoder : knows a) yo,y , , yay,- computes ✗

step in
first disagreement current
WI

q guesses

¥
e. →
Zein

helper f 90 & matches

yo
sofar

mode Ly , e,d&M¥£
coding next S yz

)-1 z→ New guess
: least e

which matches yz on
bit of ✗ I Y} 1-1 ? Ist e bits after

running K steps
If ez > ez ! ✗G) = 0

If ezazez : ✗Cn)= I





⑤ Application 2 : sacks 's Question

Question Which partial orders embed into DT ?

Obvious restrictions

① DT has size 2*0

② Every element of Da has countably many predecessors

conjecture (Sacks) Every locally countable partial order of
size continuum embeds into DT

① Provable in ZFCTCH ← sacks

② Independent of ZF ← ?
←
Met Kojima Higuchi

③ Borel version :

Every height two locally countable Borel partial order embeds
C. 1.) Not every height three locally countable Bond partial order

embeds



This There is a locally countable Borel partial order of
height three with no Borel embedding into the
Turing degrees ↳ f. zw→ zw → usually called

Borel reduction
✗ spy

⇐ f-(E) ET fly)
proof Ep on 2W sufficiently

"free"

suppose f : 2W → 2W Borel & reduces Ep to £-1

fast level) uncountable ⇒ contains a perfect set A

ao, ai , az, . .. in
1st level of Ep S.t. fcao),fCaD,f(az], . .. ctbl dense in A

a Z-paqq.az , . - - upper bd ⇒ fca)ZTf(ao), flail, - -
on 2nd level

yoiynyziy] E A f(b) IT fCa)⑦yo④.-
④y}

•iokb not below a

÷¥¥Jo*¥☒É
Fco , cyczis c- 1st level fcci)=yi
Pick d above a

,
co, a ,cz,g not above b

f-(d) 7T f-(a), fcco), - . ,f(g) ⇒ f(d)Ztfcb) →←


