
Radiation hardness in organic photovoltaics

Figure: (a) Molecular structures, simulated proton interactions and total vacancies within the devices and (b) Current-density-voltage (J-V) characteristics of organic photovoltaic cells.

Objective

> To study the resilience of organic photovoltaic (OPV) cells to proton irradiation at doses equivalent to that experienced by spacecraft in low earth orbit

<u>Impact</u>

The light weight and flexible properties of OPVs make them promising candidates for aerospace applications, where payload weight is a primary concern. Our findings provide the potential of OPVs for space applications and reveal the consequences of radiation-matter interactions in OPVs.

Facilities and Methods Used

- Ion Beam Accelerator
- Vacuum thermal evaporator
- Spin coater

Relevant Papers

• Y. Li, et al., Joule, DOI: 10.1016/j.joule.2024.12.001

<u>Funding</u>

- Seeding to Accelerate Research Themes program, Michigan Engineering
- Pathfinder Grant, University of Michigan Space Institute

Collaborators

- Group of Prof. Jennifer Ogilvie, University of Ottawa
- Yongxi Li, Haonan Zhao, Claire Arneson, and Bin Liu

Optoelectronic Components and Materials Group OCM