
Towards semitransparent OPV deployment

Figure: (a) Picture (inset) and I-V curve of ST-OPV module. (b) Pictures of an ST-OPV module on test with Sireference PV and environmental monitoring instruments.

Objective

> To study the outdoor stability of semitransparent organic photovoltaics in readiness for deployment

<u>Impact</u>

Semitransparent organic photovoltaic (ST-OPV) has been shown to be efficient and stable in laboratory settings putting it on the cusp commercialization. Power generating widows and agri-photovoltaics are two immediate applications of ST-OPV. To achieve these, the device most be stable in the outdoors. This project studies the stability of ST-OPV modules in the outdoors and make improvements on them to ensure their stability under fluctuating environmental conditions such as solar illumination, temperature, rainfall, and relative humidity.

Facilities and Methods Used

- Vacuum thermal evaporator
- E-beam deposition chamber
- Spin coater
- Magnetron sputterer
- Customized outdoor reliability test station

Relevant Papers

H. K. M. Sheriff, et Al., IEEE 52nd PVSC, DOI: 10.1109/PVSC57443.2024.10749038

<u>Funding</u>

- Solar Energy Technologies Office, US Department of Energy
- Catalyst Grant, Graham Sustainability Institute at the University of Michigan

Contact

- Hafiz K. M. Sheriff, Jr. (hafizkm@umich.edu)
- Emory Townley (etownley@umich.edu)

