Group Theory



with

# Noah Luntzlara

November 21, 2018



Honors 135.004

Fractals: Their Beauty and Topology

**Connor Davis** 

- Group Theory
- Examples of Groups
- Free groups
- Cayley graphs



Group Theory

# **Group theory**

Group Theory

00000

# **Group theory**

Group theory is the study of symmetry.

What is symmetry?

#### **Symmetry**

Group Theory

00000



Which is the most symmetric? Which is the least?

# **Symmetry**

Group Theory

#### **Definition**

A *symmetry* is a transformation that leaves something unchanged.



- Symmetries are always reversible.
- Doing nothing is always a symmetry.

#### **Groups**

Symmetries describe something concrete about an object. A group, on the other hand is a set of abstract symmetries.

#### **Definition**

A *group* is a pair (G, \*), where G is a set and \* is a multiplication rule, which satisfies:

- Associativity g \* (h \* k) = (g \* h) \* k always holds.
- There is an **identity** e in G such that for any g in G, e\*g=g and g\*e=g.
- Every g in G has an **inverse**  $g^{-1}$  in G such that  $g*g^{-1}=e$  and  $g^{-1}*g=e$ .

# **Examples of Groups**

**Group Theory** 

Cayley Graphs

#### **Examples of Groups**

What are some examples of groups?



## **Groups of Numbers**

Associativity g\*(h\*k) = (g\*h)\*k. Identity e such that e\*g = g\*e = g. Inverses  $g^{-1}$  such that  $g*g^{-1} = g^{-1}*g = e$ .

You can make groups out of numbers.

- $(\mathbb{Z},+)$ , where  $\mathbb{Z}$  is integers  $\{\ldots,-2,-1,0,1,2,\ldots\}$ .
  - Associativity. a + (b + c) = (a + b) + c.
  - Identity. 0 + a = a + 0 = a.
  - Inverses. a + (-a) = (-a) + a = 0.
- Same thing with  $\mathbb{Q}$ ,  $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\cdots$
- $(\mathbb{R},\cdot)$  is *not* a group!
  - Associativity.  $r \cdot (s \cdot t) = (r \cdot s) \cdot t$ .
  - Identity.  $1 \cdot r = r \cdot 1 = r$ .
  - Inverses.  $0 \cdot (anything) = 0 \neq 1$ .

#### **Groups of Numbers**

Group Theory

**Associativity** g \* (h \* k) = (g \* h) \* k. **Identity** e such that e \* g = g \* e = g. **Inverses**  $q^{-1}$  such that  $q * q^{-1} = q^{-1} * q = e$ .

- $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), \cdots$
- $(\mathbb{R},\cdot)$  is *not* a group!
  - Inverses.  $0 \cdot (anything) = 0 \neq 1$ .
- $(\mathbb{R} \setminus \{0\}, \cdot)$  is a group.
  - Inverses.  $r \cdot (1/r) = (1/r) \cdot r = 1$ .

## **Groups of Numbers**

Associativity 
$$g*(h*k) = (g*h)*k$$
.  
Identity  $e$  such that  $e*g = g*e = g$ .  
Inverses  $g^{-1}$  such that  $g*g^{-1} = g^{-1}*g = e$ .

- $(\mathbb{Z},+)$ ,  $(\mathbb{Q},+)$ ,  $(\mathbb{R},+)$ ,  $(\mathbb{C},+)$ ,  $\cdots$
- $(\mathbb{R}\setminus\{0\},\cdot)$ ,  $(\mathbb{Q}\setminus\{0\},\cdot)$ ,  $(\mathbb{C}\setminus\{0\},\cdot)$ , not  $(\mathbb{Z}\setminus\{0\},\cdot)$ ,  $\cdots$
- Matrix groups with matrix multiplication, like

$$GL_2(\mathbb{R}) = \{2 \cdot 2 \text{ matrices, entries in } \mathbb{R} \text{ and det} = 1\}.$$

N.B. For most pairs of matrices,  $AB \neq BA$ . For instance,

$$\begin{bmatrix}0&1\\1&0\end{bmatrix}\begin{bmatrix}-1&0\\0&1\end{bmatrix}=\begin{bmatrix}0&1\\-1&0\end{bmatrix}\neq\begin{bmatrix}0&-1\\1&0\end{bmatrix}=\begin{bmatrix}-1&0\\0&1\end{bmatrix}\begin{bmatrix}0&1\\1&0\end{bmatrix}$$

So generally g \* h = h \* g isn't true in any group.

A group (G, \*) is abelian provided that g \* h = h \* g for any elements a, h in G.

Free Groups

The operation is then said to be *commutative*.

## Abelian groups.

- $\bullet$  ( $\mathbb{Z}$ , +), ( $\mathbb{Q}$ , +), ( $\mathbb{R}$ , +), ( $\mathbb{C}$ , +),  $\cdots$
- $(\mathbb{R} \setminus \{0\}, \cdot), (\mathbb{O} \setminus \{0\}, \cdot), (\mathbb{C} \setminus \{0\}, \cdot), \cdots$

# Non-abelian groups.

•  $GL_2(\mathbb{R})$ .

Group Theory

```
Associativity g * (h * k) = (g * h) * k.
Identity e such that e * g = g * e = g.
Inverses q^{-1} such that q * q^{-1} = q^{-1} * q = e.
```

#### Theorem

The set of symmetries of any object where the operation is *composition* forms a group!

#### **Proof.** Recall:

- Symmetries are always reversible.
- Doing nothing is always a symmetry.

Thus we have **inverses**, **identity**. Furthermore, composition of transformations is associative.

## **Symmetry Groups**

Group Theory

What are the symmetry groups of these shapes?



#### **Symmetry Groups**

Group Theory

Amazing but true! These two objects have the same symmetry group:



# **Symmetry in Mathematics**

Group Theory

The greatest developments in modern math have come from studying symmetries of mathematical structures.

Some objects with important symmetry groups:

- Vector spaces (Linear groups)
- Field extensions (Galois groups)
- Manifolds (Mapping class groups)
- L-functions (The modular group)
- Spacetime (Lorentz group and Poincaré group)

**Free Groups** 

Free Groups

•000000000000

Group Theory

Group Theory

## **Definition**

Let S be a set of symbols. A word in S is an ordered list of elements in S, not necessarily distinct.

**Example.** 
$$S = \{a, b, c, d, e, f, g\}$$

$$w_1 = edcedc$$
 $w_2 = aaaaa = a^5$ 
 $w_3 = cabbage = cab^2age$ 
 $w_4 = f$ 
 $w_5 = \emptyset$ 

Group Theory

Let S be a set of symbols. For every symbol x in S, associate a corresponding symbol  $x^{-1}$ . Call the set of such symbols  $S^{-1}$ . Consider words in  $S \cup S^{-1}$ .

Words may be *simplified* by deleting subwords of the form  $xx^{-1}$  or  $x^{-1}x$ . For instance, if  $S = \{a, b, c\}$ ,

$$ab^{3}c^{-1}cb^{-1}c \to ab^{3}b^{-1}c \to ab^{2}c$$
.

#### **Definition**

- **1** A word in  $S \cup S^{-1}$  is *reduced* p.t. it can't be simplified.
- Two words are equivalent p.t. they can be simplified to the same reduced word.

Concatenation is the operation on words which places the symbols of one word after the other.

**Example.** 
$$w_1 = iam, w_2 = sam$$

 $w_1 \circ w_2 = iamsam$ 

 $w_2 \circ w_1 = samiam$ 

N.B. concatenation is not commutative!

The *free group*  $(F_S, \circ)$  on *generating set* S is the group of non-equivalent words in  $S \cup S^{-1}$ , where  $\circ$  is the concatenation operation.

Example. 
$$S = \{a\}$$

$$F_{\mathcal{S}} = \{\ldots, a^{-2}, a^{-1}, \emptyset, a, a^2, \ldots\}$$
  $a^m \circ a^n = a^{m+n}$   $(F_{\mathcal{S}}, \circ) \cong (\mathbb{Z}, +)$ 

The *free group*  $(F_S, \circ)$  on *generating set* S is the group of non-equivalent words in  $S \cup S^{-1}$ , where  $\circ$  is the concatenation operation.

**Example.**  $S = \{a, b\}$ 

$$aba^{2}ba^{-1} \circ ab^{-1}a^{-1}ba^{-1}b^{2} = aba^{2}ba^{-1}ab^{-1}a^{-1}ba^{-1}b^{2}$$
  
=  $aba^{2}bb^{-1}a^{-1}ba^{-1}b^{2}$   
=  $aba^{2}a^{-1}ba^{-1}b^{2}$   
=  $ababa^{-1}b^{2}$ .

Group Theory

# **Definition**

The free group  $(F_S, \circ)$  on generating set S is the group of non-equivalent words in  $S \cup S^{-1}$ , where  $\circ$  is the concatenation operation.

**N.B.**  $F_S$  depends only on the number of generators |S|.

Thus the (finitely generated) free groups are  $F_1, F_2, F_3, \dots$ 

The *free group*  $(F_S, \circ)$  on *generating set* S is the group of non-equivalent words in  $S \cup S^{-1}$ , where  $\circ$  is the concatenation operation.

We check that the free group is a group.

**Associativity.** Word concatenation is associative:

$$w_1\circ (w_2\circ w_2)=a_1\cdots a_jb_1\cdots b_kc_1\cdots c_\ell=(w_1\circ w_2)\circ w_2$$

Identity. 
$$e = \emptyset$$
:  $\emptyset \circ w = w \circ \emptyset = w$ .  
Inverses.  $g = a_1 \cdots a_k$ ,  $g^{-1} = a_k^{-1} \cdots a_1^{-1}$ 

$$a_1 \cdots a_k \circ a_k^{-1} \cdots a_1^{-1} = a_k^{-1} \cdots a_1^{-1} \circ a_1 \cdots a_k = e.$$

#### Relations

We impose *relations*  $r_1, r_2, \ldots, r_k$  in  $F_S$  on a free group by declaring

Free Groups

0000000000000

$$r_1 = r_2 = \cdots = r_k = e$$

and following through all the implications.

**Example.** The *free abelian group*  $\mathbb{Z}_S$  from  $F_S$  by setting

$$aba^{-1}b^{-1} = e$$

for every pair of generators a, b.

#### Relations

Group Theory

We impose relations  $r_1, r_2, \ldots, r_k$  in  $F_S$  on a free group by declaring

$$r_1 = r_2 = \cdots = r_k = e$$

and following through all the implications.

**Example.** The projective special linear group  $\mathsf{PSL}(2,\mathbb{Z})$  from  $F_{\{s,t\}}$  by



$$s^2 = (st)^3 = e.$$

 $PSL(2,\mathbb{Z})$  can be realized as symmetries on the upper half plane  $\mathbb{H}^2 = \{x + iy \in \mathbb{C} : x > 0\}$  formed by

$$S: z \mapsto -1/z, \qquad T: z \mapsto z+1$$

#### $PSL(2,\mathbb{Z})$

Group Theory

 $PSL(2,\mathbb{Z})$  can be realized as symmetries on the upper half plane  $\mathbb{H}^2 = \{x + iy \in \mathbb{C} : x > 0\}$  formed by

$$S: z \mapsto -1/z, \qquad T: z \mapsto z+1$$



#### **Presentations**

Group Theory

## Definition

A *presentation* of a group is a way of writing it as a free group with relations.

#### **Theorem**

Every group has a presentation!

#### **The Word Problem**

Given a presentation of a group, and two words  $w_1$ ,  $w_2$ , how can you tell if they are equal in the group?

#### The Word Problem

Group Theory

#### The Word Problem

Given a presentation of a group G with finitely many relations  $r_1, \ldots, r_k$  and two words  $w_1, w_2$  written in the generators, how can you tell if they are equal in G?

**Example.** In PSL(2, 
$$\mathbb{Z}$$
) [=  $F_{\{s,t\}}$  with  $s^2 = (st)^3 = e$ ],  $sts = t^{-1}st^{-1}$ 

#### Theorem

There is no algorithm which can solve the word problem.

# **Cayley Graphs**

# **Cayley Graphs**

Group Theory

# **Definition**

Given a group G and a presentation with generators S, its *Cayley graph* is the graph with the elements of G as vertices and edges g - (s \* g) if s is a generator.

**Example.** 
$$G = (\mathbb{Z}, +), S = \{1\}.$$



Group Theory

# **Example.** The free group $F_2$ on 2 generators.



This graph used in the proof of the Banach-Tarski theorem.

## **Cayley Graphs**

**Group Theory** 

**Example.** The free group  $F_3$  on 3 generators.



## **Cayley Graphs**

**Group Theory** 

**Example.** PSL(2,  $\mathbb{Z}$ ) with generators {s, t}.



# **Cayley Graphs**

# Some random Cayley Graphs

