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Abstract

We show that the basic properties of synchrotron sources can be un-
derstood with very simple physics arguments and even simpler math-
ematical tools. This conclusion includes the fact that such sources
provide for the first time in history highly coherent X-rays. In the
second part of the article, the basic notions of coherence are presented,
followed by a few examples of the first applications of coherent X-rays.

1 Introduction

X-rays are the essential tool of an almost endless series of experimental
techniques in biology, medical research, physics, chemistry, materials sci-
ences and other disciplines. The most advanced applications rely on the
X-ray sources known as “synchrotron sources”[1-3]. The reason is obvious:
such sources possess superior qualities with respect to other emitters.

In fact, their qualities progress so rapidly that even experienced users
find it difficult to fully exploit them or even just to be aware of them. This
is true, in particular, for the high coherence of synchrotron sources, which
recently injected a new array of actual and potential techniques into X-ray
science[3].
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In recent years, simplified empirical treatments were presented[1] that
enabled readers to understand the basic properties of synchrotron sources
without a complicated mathematical formalism. Our main objective is to
extend this simplified approach to coherence properties.

The article begins with a short overview of empirical explanations of ba-
sic synchrotron source properties – referring the reader to previously pub-
lished work[1] for a more detailed discussion. Then, the basic notions of
lateral and longitudinal coherence are discussed, with specific reference to
the case of synchrotron light. Finally, a few examples are presented of the
first practical applications of coherent X-rays.

It should be noted that, consistent with the approach of Ref. 1, no
attempt is made to develop a rigorous treatments in detail. Empirical con-
siderations are the focus of our attention, with the objective of intuitively
understanding the underlying physics rather than deriving it from a full
theoretical treatment. Our hope is to make the coherence of synchrotron
sources (as well as other properties) understandable for a non-specialized
audience including many of non-physicists – and to enable such an audience
to make good use of these superb experimental tools.

2 Review of basic synchrotron source properties

In a classical-physics picture, the emission of electromagnetic waves - in-
cluding X-rays - requires the acceleration of an electric charge. A charge
oscillating with a frequency ν is in an accelerated motion, thus it emits
waves. The emitted waves have many frequencies (and wavelengths), and
their spectral peak coincides with the charge oscillation frequency ν. A
quantum picture does not radically change this description: for example,
while emitting a photon during a quantum jump between two atomic levels,
an electron does behave like an oscillating charge.

In most emission phenomena the accelerated charges are particles bound
to complicated systems – e.g., electrons in atoms, molecules or solids, or ions
in solids. Roughly speaking, heavier particles tend to oscillate with lower
frequencies (in classical mechanics the fundamental frequency is proportional
to 1/m1/2, where m = mass). Thus, ion oscillations tend to produce infrared
light rather whereas electrons mainly produce visible and ultraviolet light
as well as X-rays.

The problem in producing X-rays is that the frequencies are much higher
than those of visible or ultraviolet light, and difficult to achieve. Synchrotron
sources overcome this obstacle by adopting a simple strategy. First, the



emitting electrons are freed from all bounds: rather than being in atoms or
solids, they travel as free particles in a vacuum pipe. Second, the electron
speed is brought nearly to the speed of light, c. This causes a series of
relativistic effects that shift the emitted frequencies to the X-ray range.
Furthermore, relativistic effects produce other desirable effects such as the
extreme angular collimation of the emitted X-rays.

The simplest example (Fig. 1a) of this strategy is the so-called[4] in-
verse Compton scattering: the moving electron bunch collides (1a) with
an electromagnetic wave of frequency νo produced by a laser. The wave
is backscattered and its frequency is shifted. The phenomenon can be de-
scribed as the combination of two steps: first (Fig. 1b), the wave forces
the electrons to oscillate in the transverse direction; second (Fig. 1c), the
oscillating electrons emit waves in the backscattering direction.

Relativity affects this phenomenon in two ways. First, the electrons
“see” the frequency of the wave shifted by the so-called Doppler effect. This
is the same type of phenomenon observed, for example, for the sound waves
of a train whistle as the train moves towards the observer. Contrary to
sound waves, for electromagnetic waves the Doppler shift it is a relativistic
phenomenon and must be treated as such.

The relativistic Doppler theory shows that the moving electrons “see”
the incoming wave frequency shifted from νo to 2γνo. Here the “gamma-
factor” γ characterizes the relativistic properties of the moving electron, and
is defined as the electron energy mc2 divided by its Einstein’s rest energy,
moc

2:

γ = mc2/moc
2. (1)

On the other hand, the backscattered waves are observed from the point
of view of the laboratory as waves emitted by moving sources (the electrons).
Thus, their frequency is again Doppler-shifted by a factor 2γ, leading to a
very large overall shift:

ν = 4γ2νo. (2)

In summary, the inverse Compton scattering can be used to convert
a low-frequency wave (e.g., the emission of an infrared laser) into high-
frequency X-rays. As a practical example, consider a primary photon beam
of photon energy hνo = 0.1 eV. Suppose that the electron energy mc2 = 50
MeV. Since the electron rest energy moc

2 ≈ 0,5 MeV, we have γ ≈ 100 and
4γ2 ≈ 4 ∞ 104. Thus, the backscattered photon energy is hν ≈ 4γ hνo ≈ 4
∞ 104∞ 0.1 = 4 ∞ 103 eV – indeed, a frequency in the X-ray range.



Figure 1: Schematic explanation of a way to exploit relativity in order to produce
X-rays: inverse Compton scattering (Ref. 4). The phenomenon can be analyzed as
the effect of a wave of frequency νo which interacts (a) with an electron moving at
relativistic speed. Seen by the moving electron, the wave frequency (b) is Doppler-
shifted to ≈2γνo. The wave forces the electron to oscillate and to emit waves. Seen
from the laboratory frame (c), the frequency of these backscattered waves is again
Doppler shifter, becoming ≈2γ2νo.

Compton backscattering has indeed been used (by Frank Carrol et al.

and other authors – see Ref. 4) for the production of X-rays. However, its
applications are still limited with respect to those of synchrotron sources,
which are based on a slightly different strategy. Instead of using a primary
wave, they simulate its effects by using a stationary periodic series of mag-
nets (Fig. 2a). Technology enables us to build excellent magnet systems of
this type with a period L of the order of 1 cm. Relativity de facto trans-
forms this macroscopic period into the microscopic wavelength of an X-ray
beam.

Once again we must “see” the period magnet array from the point of
view of the moving electrons (Fig. 2b). Relativity says that the periodic
magnetic field becomes the combination of a periodic magnetic field and
of a perpendicular electric field of the same frequency. In other words, it
“looks” from the electron point of view as a full electromagnetic wave with



its oscillating electric and magnetic components.
What is the frequency of this wave? The answer is: the speed of light

divided by the wavelength. One could imagine that the wavelength is simply
given by L, the magnet array period. But this is not true: the moving elec-
trons see the length L decreased by a factor ≈1/γ because of the relativistic
effect known as “Lorentz contraction”. Thus, the wavelength becomes L/γ,
and the frequency becomes γc/L.

The moving electrons backscatter the equivalent wave created by the
magnet array, thus producing the electromagnetic waves known as “syn-
chrotron radiation”. Note, however, that the frequency of these waves is not
cγ/L. Seen from the laboratory point of view (Fig. 2c), this frequency is in
fact modified by the Doppler shift, becoming:

ν ≈ 2γx cγ/L ≈ 2γ2c/L. (3)

Note the similarities between Eqs. 2 and 3: in both cases the γ2 factor
reflects the combination of two relativistic effects, which greatly increases
the emitted frequency bringing it to values in the X-ray range.

Here is a practical example for Eq. 3: an electron beam of energy mc2

= 2 GeV and therefore with γ ≈ 4 ∞ 103. A magnet array of period L = 1
cm = 10−2 m gives electromagnetic waves of frequency ν ≈ 1018 s−1. The
corresponding photon energy hν ≈ 6.6 ∞ 10−16 joule ≈ 4 ∞ 103 eV is well
into the X-ray range. One can reach the same conclusion by noting that the
frequency of Eq. 3 corresponds to a wavelength λ = c/ν = L/(2γ2). Thus,
the double relativistic effect shrinks by a factor 2γ2 the macroscopic magnet
period L = 10−2 m, producing a microscopic wavelength l ≈ 3 ∞ 10−10 m
= 3 Å, typical of X-rays.

Periodic magnet arrays - known as “undulators” or “wigglers” - are
widely used in modern synchrotron sources. They are part of a much larger
system known as a “synchrotron light facility”.

A typical synchrotron facility includes a storage ring, which is a closed-
loop vacuum pipe within which electrons circulate at nearly the speed of
light. Along this pipe there are several straight section where wigglers or
undulators are inserted to produce synchrotron radiation – which is then
collected and utilized by suitable “beamlines”. With good vacuum, the
stored electrons can circulate for very long periods of time, exceeding in
some cases one day.

The electrons are first produced and pre-accelerated in a suitable injec-
tion system, and then injected and stored in the storage ring. There they
are kept circulating in closed orbits by a sophisticated system of magnets.



The basic components of the magnet system are “bending magnets”, i.e.,
dipole magnets which bend the trajectory to keep the electrons in closed
orbits. As the electrons lose energy by emitting synchrotron radiation, their
circulation in the ring requires an equivalent injection of energy at each turn.
This is done with a radiofrequency cavity, providing the right electric field
each time an electron bunch enters it.

The bending action of bending magnets is of course an acceleration,
which also produces the emission of synchrotron radiation. Once again the
frequency peak of the emitted wave is shifted towards the X-ray domain by
a combination of two relativistic effects. One of them is again the Doppler
effect – which shifts the frequency by a factor ≈2γ. As to the other effect,
classical physics suggests that the peak frequency should correspond to the
angular speed of the electrons along the bent trajectory, divided by 2π. In
fact, a circulating charge in a circular orbit looks like a charge oscillating
with that frequency when seen from the side.

The classical-physics treatment of the motion of an electron subject to

Figure 2: Undulator emission (Refs. 1-3): in this case, the incoming wave is replaced
by a static periodic magnet field, produced by an undulator (a). The static field,
seen by the electrons moving at relativistic speed, looks like an electromagnetic
wave (b), whose wavelength is the period L of the magnet array shrunk to L/γ by
the relativistic Lorentz contraction. The electron oscillating under the influence
of the undulator emit synchrotron light. Seen from the laboratory frame (c), the
wavelength of this emission is again Doppler-shifted, becoming ≈L/2γ2.



the Lorentz force of a constant B-field (cyclotron motion) shows that the
angular speed is simply eB/mo. Taking relativity into account, the force
magnitude changes by a factor of γ and so does the angular speed, becoming
γeB/mo. The corresponding emitted frequency peak is γeB/(2πmo) in the
electron frame. After Doppler-shifting, the laboratory-frame spectral peak
is:

ν = 2γ2eB/(2πmo), (4)

which again includes the characteristic γ2 factor.
Bending-magnet emission was the first type of synchrotron light used

for practical applications, since it was automatically emitted by electron
accelerators. Even today, many productive beamlines are still fed by bending
magnet sources rather than by undulators or wigglers.

2.1 Bending magnets, undulators, wigglers: What do they

have in common?

The answer is: many things, two of which are most important. The first is
that all these sources emit “a lot of waves”. Consider for example bending
magnets. The emitted power flux, according to classical physics, is propor-
tional to the square of the acceleration. The acceleration is given by the
product of the electron speed (≈c) times the angular speed γeB/mo, there-
fore its square is proportional to γ2B2. Considering the high values of γ
in typical storage rings, this tremendously increases the emitted flux with
respect to the classical case. Similar considerations lead to corresponding
conclusions for undulators.

The second common property of all sources is the very high angular
collimation of the emission. This is the result of the high speed of the source
(the electron), which combines with that of the emitted wave to “project
forward” and therefore collimate the emission. A similar effect is present,
for example, for sound waves emitted by a moving car or by a moving train.

For electromagnetic waves, however, the effects must be treated taking
into account relativity and in particular the invariance of the speed of light.
The key result can be derived with a simple argument. Consider a ray of
synchrotron light, emitted in a given direction. In the reference frame of the
moving electron (Fig. 3). this is the direction of the velocity vector of the
light beam. The velocity component in the “forward” direction is (dx/dt),
and that in the transverse direction is (dy/dt). The angle of the emission
direction is determined by the ratio (dx/dt)/(dy/dt).



How do these components change when seen in the laboratory frame?
The relativistic (Lorentz) transformation (x,,y,t) → (x’,y’,t’) includes a fac-
tor γ for the transformed time interval dt’ and for the “forward” dx’, but not
for the “transverse” dy’. Therefore, the ratio (dx’/dt’)/(dy’/dt’) decreases
by a factor ≈1/γ with respect to (dx/dt)/(dy/dt). Since 1/γ is small, this
implies extreme collimation: the angular spread of synchrotron light does
not exceed ≈1/γ. For undulators, one can show[2] that the angular spread
is further reduced by a factor ≈ 1/N1/2, where N is the number of periods
in the magnet array.

2.2 Bending magnets, undulators, wigglers: What are the

differences?

The primary difference is the spectral width. i.e., the width of the emitted
band of frequencies around the peak value of Eq. 3 or Eq. 4. Consider, first,
a bending magnet source and a small-area detector (Fig. 4a). Because of
the angular collimation, the emitted synchrotron light of an electron looks
like a very narrow “torchlight”. At each passage of the electron, the de-
tector “sees” a rapid pulse of synchrotron radiation. On the other hand, a
rapid pulse of light corresponds to a broad spectrum of frequency (Fourier)
components, therefore the emitted spectral peak will be very wide on the
frequency axis.

The duration of the pulse, ∆t, can be easily calculated[1] and used to
derive the corresponding frequency bandwidth ∆ν ≈ 2π/∆t. The value of
this bandwidth is equal to that of the peak frequency (Eq. 4), thus for a
bending magnet:

∆ν/ν ≈ 1 . (5)

Figure 3: Reference frames used to treat the Lorentz transformation and to explain
the collimation of synchrotron light.



This is a pretty wide bandwidth, which in the standard log-log plot of
the emitted peak looks even broader (see again Fig. 4a). From this broad
spectrum, much narrower bands can be filtered by suitable monochromators
along each beamline, as required for specific applications.

Consider now an undulator (Fig. 4b): if the magnet-induced trans-
verse “undulations” are gentle, the emitted light cone of synchrotron light
never leaves the detector area. Thus, the detected pulse is long rather than
short, and the bandwidth is narrow. In fact, the pulse duration is not any-
more the key factor for the bandwidth, which is determined instead by the
diffraction-grating-like monochromatizing effect of the magnet array. As for
all diffraction gratings, the relative bandwidth is simply determined by the
number of periods:

∆ν/ν ≈ 1/N. (6)

The undulator emission, therefore, is a narrow peak. How can the po-
sition of this peak be modified as required for specific applications? The
solution to this problem can be understood with very simple considerations.

Equation 3, which defines the undulator peak emission, was derived us-
ing 2γ as the Doppler shift factor. In turn, γ is determined by the en-
ergy of the moving electrons, and therefore by their speed. However, the
undulator-induced oscillations of the electron trajectory effectively reduce
the “forward” speed by adding a transverse component. Therefore, the “ef-
fective” (forward) γ-value decreases, and according to Eq. 3 this changes
the emitted peak.

The transverse speed increases (and the forward speed decreases) as the
undulator B-field increases. Therefore, one can tune the emitted peak by
changing B, typically by changing the distance separating the magnet poles.

There is an upper limit, however, in changing the B-field strength. When
the electron undulations become too large, the emitted light cone does not
continuously illuminate the detector – see Fig. 4c. Instead of a long pulse,
the detector “sees” a series of short pulses, corresponding once again to a
broad bandwidth as for bending magnets. The magnet array in this case is
not called an “undulator” but a “wiggler”. The wiggler emission is equiva-
lent to that of a series of bending magnets combined in series.

2.3 Other properties

Our present empirical discussion will not deal with all the properties of
synchrotron sources. This is not because simple explanations are not pos-
sible. On the contrary, virtually all synchrotron light properties can be



understood[1] with simple treatments primarily based on elementary elec-
tromagnetism and relativistic effects – similar to what we have seen above.
We present here a couple of additional examples.

The first case concerns the polarization of the emitted waves – see Fig. 5.
For comparison, imagine a charge oscillating along an antenna. The charge
emits linearly polarized waves in the direction perpendicular to the antenna
– i.e., waves whose electric field is in the direction of the antenna. Imagine
now to observe a circulating electron from the side of a storage ring (or an
electron in an undulator from the forward axis of the magnet array). In
both cases, the observed electron motion is an oscillation, reminiscent of a
charge oscillating along an antenna.

Figure 4: Three different sources of synchrotron light: (a) for a bending magnet,
a passing electron with its narrow emission cone creates one short pulse at the
detector. Thus, the spectral emission occurs over a large band of frequencies; the
standard log-log plot enhances the impression of a large bandwidth. (b) For an
undulator (small transverse oscillations), the emission cone continues to illuminate
the detector for a long period of time, and the emitted spectral peak is narrow. (c)
For a wiggler, the transverse undulations are large and the detector “sees” a series
of short pulses, again producing a large bandwidth.



We can thus understand why the emission is linearly polarized in the
plane of the ring. But the conclusion cannot be generalized. For example,
by moving our viewpoint slightly out of the ring plane, we see the electrons
moving along a elliptic-like trajectory (Fig. 5a) – and we understand why
the off-plane emission is elliptically polarized.

Elliptical polarization is quite important for many interesting applica-
tions, However, because of its collimation the emitted light decreases quite
rapidly as we leave the plane of the ring. Thus, off-axis emission is not an
ideal solution to the problem of producing elliptically polarized synchrotron
light.

On the other hand, an undulator can be designed to produce electron
undulations not only in one transverse direction, but along an elliptic spiral.
Such a device can produce a very intense and highly polarized beam with
elliptic polarization, which are extremely useful for specialized applications.

Finally, consider (Fig. 6) the time structure of the emitted radiation. We
have seen that each electron produces a pulse of light each time it passes in
front of a bending-magnet beamline. But this is not the most important fac-
tor in the actual time structure of the emitted light. We must also consider
the fact that the circulating electrons are bunched together. A light pulse is
thus produced at the beamline during the passage of the entire bunch rather
than of a single electron. The actual time structure consists of such light
pulses separated by “dark” periods. This time structure finds interesting
applications in time-resolved experiments.

Why are the circulating electrons bunched together? The answer is sim-
ple: we have seen that the radiofrequency cavity must restore the electron
energy by timing its electric field to the passage of electrons after each turn
around the ring. This is only possible by grouping the electrons in one or

Figure 5: Elementary analysis of the polarization of synchrotron light. (a) A circu-
lating electron seen from outside the plane of the orbit appears as moving along an
elliptical trajectory. The corresponding emission is elliptically polarized (circular
plus linear). (b) Seen from the plane of the ring, the emission appears linearly
polarized.



several bunches.

3 A Special parameter: The brightness or

brilliance

The quality of a synchrotron source must be characterized with special pa-
rameters. To some extent, the choice of the parameter depends on the
specific application: certain source characteristics are important for some
applications but irrelevant or even negative for others.

One parameter, however, can be used for the majority of the applications:
the “brightness” or “brilliance”[1-3]. As schematically explained in Fig. 7.
this parameter is the combination of the emitted flux F and of two kinds of
geometric characteristics: the source size (Sy and Sz in the transverse y and
z directions) and the angular spreads (∆θy and ∆θz) of the emitted beam:

brightness or brilliance = constant ∞ F/(Sy∆θySz∆θz). (7)

Therefore, a source can be made brighter by increasing the flux, by
decreasing the size or by enhancing the angular collimation.

Why is brightness important? On one hand, the desirability of a higher
flux is evident: more flux means more signal for the experiments. But why
combining (Eq. 7) the flux with geometric factors?

The answer is provided by fundamental optics. The brightness of a pho-
ton beam cannot be changed by an (ideal, i.e., lossless) optical system. This
implies that to focus a beam of fixed flux (as required for many applications),

Figure 6: The actual time structure of synchrotron light is determined by the
”bunching” of the electrons circulating around the storage ring.



one must accept an increase in angular spread. But this often requires ex-
pensive or unavailable large-size optical devices. By and large, a beam is
much more easily handled if it comes from a high-brightness source.

The comparison between a light bulb and a laser is - quite literally - very
illuminating: the bulb may emit more light, but the laser is more effective
because it concentrates its emission in a small area and in a narrow angular
range, thereby achieving higher brightness.

How can the brightness of a synchrotron source be increased? In the
first place, by increasing the flux. The average flux emitted by each single
circulating electron is fixed by the electron motion parameters (as discussed
above). One could, however, increase the number of circulating electrons,
i.e., the stored current in the ring. Unfortunately, the improvements in that
sense practically saturated at ≈1 ampère in the 1980’s.

The other possible way to increase the brightness (Eq. 7) is to improve
the source geometry. This requires a better control of the motion of circu-
lating electrons. Each individual electron follows its own trajectory, which
slightly deviates from the “reference” ideal trajectory. The cross section of
the bunch of all trajectories determines the size of the synchrotron radiation
source. Likewise, the small angular deviations of each electron trajectory
from the “reference” trajectory contribute to the overall angular spread of
the emitted synchrotron radiation, in addition to the “natural” spread ≈
1/γ.

Spectacular improvements in the electron motion control led in the past
twenty years[2,3] to increases in the source brightness by many orders of
magnitude. How far can we go? The answer to this important question

Figure 7: Simplified definition of brightness (or brilliance).



is very simple: no improvement will be able to overcome the “diffraction
limit” (see later), i.e., to bring the Sy∆θy or Sz∆θz products in Eq. 7 below
a minimum value linked to the wavelength λ.

4 What makes a synchrotron source “Coherent”?

The efforts to improve the source geometry thereby improving the bright-
ness yielded a very important byproduct: coherence. The most recent syn-
chrotron sources are “fully coherent” down to wavelengths in the ultraviolet
and soft-X-ray range – and quite coherent for shorter wavelengths[3]. This is
a landmark event: for the first time, more than one century after Röntgen’s
discovery, we can utilize coherent X-rays! This means opening up a huge
array of novel techniques, many of which are already used at longer wave-
lengths.

Before discussing its applications, we must understand what coherence
is and why synchrotron sources are becoming highly coherent. Once again,
we will emphasize empirical aspects rather than mathematical formalism.

A “wave” is characterized by its potential capability to produce wave-
specific phenomena like interference and diffraction. However, such phenom-
ena are rarely seen in everyday life even if we are continuously surrounded
by waves like light or sound. “Coherence” is what makes a wave capable to
produce observable interference and diffraction effects.

In order to focus our discussion, consider the diffraction produced by a
circular slits of diameter d (Fig. 8a). Suppose that the wave source is a point
source that emits a single wavelength λ (i.e., a single frequency ν = c/λ).
Then, the diffraction manifest itself with a series of circular fringes at the
detector.

We can therefore conclude that a point-like single-wavelength
(monochromatic) source is a coherent source. But what happens if the
source is no longer monochromatic, or no longer point-like, or both? The
fringes will be blurred and, beyond a certain point, no longer visible. This
point marks the difference between coherent and non-coherent sources.

4.1 Lateral coherence – the “Diffraction limit”

We consider first a finite source size, modelled (Fig. 8b) by two point sources
at a distance Sz from each other. Each point source produces its own fringe
pattern, and the two patterns are superimposed at the detector. The centers
of the two patterns are at an angular distance of Sz/D radians from each
other (D = source-pinhole distance).



The elementary theory of diffraction tells us that the angular distance
between two adjacent fringes is ≈ λ/d radians. If this value is substantially
larger than Sz/D, then the superposition of the two patterns gives a some-
what blurred but still clearly visible set of fringes. Thus, the first condition
for source coherence - known as “lateral coherence” or “spatial coherence”
- is Sz/D < λ/d, or Sz(d/D) < λ.

Note that (d/D) ≈ Ωz, where Ωz is the “illumination angle” of each of
the two slits. Thus, the condition for spatial coherence can be written:

SzΩz < λ. (8)

This equation implies that while reducing the source size Sz we improve
not only the source brightness but also the spatial coherence.

The source angular collimation is also important for spatial coherence:

Figure 8: Simplified analysis of spatial coherence. (a) Diffraction by a circular
slit, whose analysis is used to discuss: (b) lateral coherence, and (c) longitudinal
coherence.



let us see why. Suppose (see Fig. 8b again) that each one of the two
point source has an angular divergence ∆θz. Only a portion of this angular
emission can be used to produce a detectable fringe pattern. According to
Eq. 8, this portion is λ/Sz. This implies that of the entire emission over the
angular range ∆θz only a fraction (λ/Sz)/∆θz = λ/(Sz∆θz) can be used to
produce coherence-requiring phenomena.

By increasing the source collimation, i.e., by decreasing ∆θz, one in-
creases this fraction. A similar conclusion is valid for the y-direction, leading
to the definition of the “coherent power” of the source – the fraction of the
emitted power that can be used to produce coherence-requiring phenomena:

Coherent power ≈ [λ/(Sy∆θy)][λ/(Sz∆θz)] = λ2/(Sy∆θySz∆θz). (9)

Equation 9 enables us to generalize the previous conclusion about the
correlation between increases in brightness and increases in spatial coher-
ence. In fact, when the brightness is increased (Eq. 7) by decreasing one or
more of the source geometry parameters Sy, ∆θy, Sz, ∆θz, then the coherent
power is also enhanced.

Also note that the coherent power increases with the square of the wave-
length. Reaching high spatial coherence is thus more difficult for X-rays
than for visible light.

How much spatial coherence can one obtain? Equation 9 suggests that
if Sy∆θy (or Sz∆θz) equals the wavelength, the source is “fully coherent”
along y (or z). This is the so-called “diffraction limit”, and it can be easily
understood in the following way.

Take a large-size, angularly divergent source and try to convert it into
a small-size, collimated source. This is possible, for example, by using a
shield with a pinhole placed at a large distance from the original source. The
approach is rather inefficient, since the shield blocks most of the emission –
but it does succeed in improving the source geometry.

However, the pinhole produces diffraction, which contributes to the an-
gular spread. If the pinhole size is Sy in the y-direction, then the diffraction-
caused angular spread ∆θy is ≈ λ/Sy. This implies that the product
Sy∆θy(or Sz∆θz) cannot become smaller than λ.

Note that this is not a technological limit but a fundamental optics prop-
erty: no source can have better geometric characteristics than the diffraction
limit. This limit corresponds both to the maximum brightness for a given
flux and to full spatial coherence.

What is the present situation? Sources of the class of ELETTRA,
BESSY-II and ALS are fully coherent down to wavelengths of the order



of 1,000 Å. The Swiss Light Source will move this limit down to ≈100 Å.
Within this spectral range, the Swiss light source will thus have unsurpass-
able geometric characteristics: not even an “X-ray laser” can do better.

4.2 Longitudinal coherence

This is the coherence condition related to the non-monochromaticity of the
source, i.e., to its bandwidth ∆λ. To simplify the analysis, consider a point
source emitting only two wavelengths, λ and λ + ∆λ – see Fig. 8c. Each
wavelength produces a fringe pattern. Specifically, the first-order fringe for
λ occurs at the angle λ/d radians, and that for λ + ∆λ at (λ + ∆λ)/d
radians.

These fringes are difficult to observe in the superposition pattern if they
are too much shifted from each other. On the contrary, if λ/d ≈ (λ+∆λ)/d
then they are blurred but visible. This implies ∆λ << λ, or:

∆λ/λ << 1 . (10)

Equation 22 expresses a condition of “longitudinal coherence” or “time
coherence”. Depending on the specific phenomenon, the actual condition
can be more or less stringent – and quite forgiving in some cases, only
requiring ∆λ/λ to be slightly smaller than 1.

In some applications of longitudinal coherence, what matters is the so-
called “coherence length”, Lc. This notion can be understood by noting
that two waves of wavelengths λ and λ + ∆λ, which happen to be in phase
at a certain point in space, will become out of phase beyond this point.
Specifically, they will be totally out of phase (i.e., the maximum on one
wave coincides with the minimum of the other) after a distance Lc such that
Lc/λ - Lc/(λ + ∆λ) = 1/2, which for a small ∆λ gives Lc∆λ/λ2 ≈ 1/2 , or:

Lc ≈ λ2/(2∆λ). (11)

In other words, the coherence length characterizes the distance over
which the phase difference between the two waves becomes significantly
large.

Is synchrotron radiation longitudinally coherent, i.e., is its bandwidth
∆λ sufficiently narrow? The answer depends on the specific application. In
some cases, the bandwidth of an undulator (Eq. 6, implying ∆λ/λ ≈ 1/N),
or even that of a bending magnet (Eq. 5, implying ∆λ/λ ≈ 1) are sufficient.
In other cases the emission must be filtered by a suitable monochromator
to further decrease ∆λ.



In general, the monochromatization is easier when the source is bright.
Therefore, brightness is also somewhat connected to the longitudinal coher-
ence, although in a much less direct way than to spatial coherence.

5 How can we use coherent X-rays?

Coherence is a recent development for X-rays, therefore its applications are
still quite limited. The potential, however, is tremendous, ranging from un-
conventional radiology to microscopic-scale metrology and to X-ray holog-
raphy.

Our objective is not to present a review of the present and potential
applications, but to illustrate with a few practical examples the possible
future impact of coherence on X-rays research. We selected the oldest and
most important use of X-rays: radiology.

5.1 Refractive-index radiology

Radiology is important because it can image “hidden things” in medical,
biological and materials science specimens. It does so by exploiting the
low absorption coefficient of X-rays. The contrast in radiological images
originates from differences in the absorption coefficient. As the absorption
is weak, the differences are also weak. This creates serious difficulties in
very important applications like mammography for breast cancer screening.

What else, however, could one use to achieve contrast in radiology? The
answer is found in a more complete description of the interaction between
X-rays and materials. Consider a simple case: a monochromatic plane wave
in vacuum along the x.-direction:

Aexp(ikx)exp(-iνt/2π) .
Its interaction with a material is described by the complex refractive

index, n = nR + inI . In the material, k is replaced by nk, and the wave
becomes:

Aexp(-nIkx)exp(inRkx)exp( -iνt/2π).
The exp(-nIkx) factor gives the attenuation due to absorption. The

exp(inRkx) factor is an oscillating wave and describes the effects of the classic
(real) refractive index. Radiology, since Röntgen’s discovery, has been only
based on absorption. But could one use instead effects related to the (real
part of the) refractive index, described by the exp(inRkx) factor?

This is a very attractive idea: the differences from material to material
in the real part of the refractive index, although still small for X-rays, are
more pronounced than the absorption differences. Furthermore, the real



part of the refractive index and its differences between materials decrease
less rapidly with the wavelength than absorption.

Apparently, we implemented radiology in an ineffective way for over
one century! There are, of course, good reasons for this “mistake”: using
refractive-index effects requires superior-quality X-ray sources, which were
not available until quite recently.

This point can be easily understood. One can exploit for radiology dif-
ferent effects related to the (real part of the) refractive index: diffraction,
refraction, interference etc. All such effects, however, require a collimated
beam of X-rays, and in some cases a highly coherent beam. In the past,
such beams could be obtained from conventional X-rays sources by using
pinholes. But the price was the waste of most of the emission – and a flux
too low for most practical applications.

The picture dramatically changed when synchrotron sources arrived with
their superior collimation and coherence. The results, as we will see shortly,
are quite spectacular.

5.2 Refraction and diffraction effects

The difference between conventional, absorption-based radiology and
refractive-index-based radiology can be quite striking indeed – see for exam-
ple the direct comparison of Fig. 9. What are the causes of this difference?
To explain this point, sophisticated image-formation theories are presented
in the literature[5]. Here, following again our empirical approach, we will
illustrate basic mechanisms by using simple modelling.

5.2.1 Edge Diffraction Contrast

Consider the case of Fig. 10a: the edges between vacuum and a partially
opaque object illuminated by a monochromatic point-source. The absorp-
tion by the object contributes to the image formation on the detector by
shading the projected area. In addition, because of the coherence of the
source, one can observe the phenomenon known as “Fresnel edge diffrac-
tion” (or edge interference). This produces sharp bright-dark fringes which
enhance the visibility of the object edges[5,6].

The theory of this effect for fully opaque objects[6] is a classic problem in
optics, discussed by in any textbook under standard approximations. Calling
z the transverse coordinate (Fig. 10b), z = 0 the detector coordinate, -zo

the edge coordinate, and ro and ro the source and detector distances from
the plan of the object, the detected intensity is expressed[6] in terms of sine



Figure 9: Direct comparison of two radiological images of a mimosa flower. Top:
conventional (absorption) image; bottom: coherence-enhanced image. Data from
Arfelli et al., Ref. 5.

Figure 10: Simplified analysis of the edge enhancement mechanism by Fresnel edge
diffraction, based on a coherent source.



and cosine “Fresnel integrals”:

Intensity(−uo) = constant∞[C(∞)−C(−uo)]
2 + [S(∞)−S(−uo)]

2, (12)

where u is the standard reduced variable for Fresnel integrals:

u = [2(ρo + ro)/ρoroλ]1/2z, (13)

and -uo is its value for z = -zo.
A standard analysis[6] (often based on the “Cornu spiral” method) shows

that Eq. 12 gives indeed a series of bright-dark fringes as zo and therefore
uo increase.

In the case of X-rays, the object is not opaque but partially transparent.
Furthermore, its (real) refractive index changes the phase of the waves which
travel through it. This case can be treated as a simple extension of the
previous analysis. Under reasonable approximations (see Ref. 6 ), the result
corresponding to Eq. 12 is:

Intensity(−uo) = constant∞{1 + φ[C(−uo) − S(−uo)]}, (14)

which again gives a series of bright-dark fringes, with the first occurring for
uo ≈ 0.7 and uo ≈ -0.7.

What are the conditions for observing such fringes? First of all, the
resolution of the detector must be sufficient to separate a bright fringe from
the adjacent dark fringes. Note, from Eq. 13, that for a given value of
uo the actual coordinate zo changes as the detector distance ro changes –
and so does the z-distance between bright and dark fringes. Specifically, this
distance increases as ro increases. Given a detector with a certain resolution,
one can thus try to detect the fringes by placing it far enough from the object.

This is indeed how the image formation in Fig. 9 was changed from the
“absorption” mode to the “edge diffraction” mode. Alternatively, one can
use a detector with high enough resolution[6] to detect the fringes even when
placed close to the object.

The second condition concerns longitudinal coherence: if the source
emits a wide bandwidth ∆λ, then the fringes may become too blurred and
no longer visible. We have seen that the uo-distance between the first bright
fringe and the adjacent dark fringe is ≈ 0.7 - (-0.7) = 1.4. The corresponding
“real” z-distance is (Eq. 13):

δz ≈ [ρoroλ/2(ρo + ro)]
1/2 ∞ 1.4.

A bandwidth ∆λ, i.e., a “blurring” of the wavelength would “blur” δz
by ∆(δz), in such a way that ∆(δz)/δz ≈ ∆λ/2λ. But the fringes are



still distinguishable if ∆(δz )/δz < 1, thus the condition for longitudinal
coherence is:

∆λ/2λ < 1 , (15)

which is a rather forgiving version of Eq. 10 – and, for most synchrotron
sources, does not even require a monochromator.

The third condition concerns spatial coherence. More specifically, what
matters in this case is primarily the source size (although the collimation
is helpful in concentrating a high flux on the object). Consider a source of
finite size Sz instead of a point source. This would blur the fringe pattern
by ≈(ro/ρo)Sz. The fringes are still visible if (ro/ρo)Sz does not exceed the
bright-dark distance δz ≈ [ρoroλ/2(ρo + ro)]

1/2∞ 1.4:

(ro/ρo)Sz < [ρoroλ/2(ρo + ro)]
1/2∞1.4. (16)

As a typical example, take ρo = 20 m, ro = 2 m and λ = 1 Å. Eq. 16
approximately gives Sz < 140 µm, which is again a rather forgiving condi-
tion. In fact, diffraction-enhanced radiology could have been implemented
with synchrotron sources of the 1980’s generation – or even with conven-
tional X-rays sources equipped with pinholes. However, the high flux of
modern synchrotrons sharply decreases the time required to take an image,
and makes it possible to perform real-time experiments.

Note that the condition of Eq. 16 becomes progressively less stringent
as the distance ratio (ρo/ro) increases. This, however, is in conflict with
the requirement to increase the object-detector distance to compensate the
limited detector resolution – and makes even more desirable to use high-
resolution detectors.

5.2.2 Refraction contrast

The model of Fig. 10 assumes that the edge is infinitely sharp, which is
not true in most cases. Finite-width edges can produce another type of
edge-enhancement in radiological images. This is still related to the real
refractive index, but is due to refraction rather than to edge diffraction.

A simple model[7] is presented in Fig. 11: a tapered edge between
vacuum and an object which partially absorbs but also refracts an X-ray
beam. The (weak) absorption does produce some contrast. However, the
edge visibility is strongly enhanced by the refraction in the edge region,
which produces a bright pseudo-fringe plus a dark pseudo-fringe.



No longitudinal coherence at all is required for this refraction mechanism
of edge enhancement. As to other conditions, even a simple analysis encoun-
ters significant difficulties. In fact, no general conditions can be derived for
this case, since the enhancement mechanism depends on the specific shape
of each edge. Qualitatively considerations, however, still yield interesting
results.

Call a the distance between the centers of the dark and illuminated
pseudo-fringes on the detector and b the width of each pseudo-fringe. The
distance a is determined by the width of the tapered edge, thus it is a mor-
phological characteristic of the object. On the other hand, the fringe width is
given by b ≈ roα, where α is the refraction-induced angular deviation of the
X-ray beam (which in turn depends on the edge slope and on the real part
of the object refractive index) – thus it increases with the object-detector
distance ro.

When b becomes too big, i.e., when no longer b < a, it becomes difficult
to separate the dark fringe and the illuminated fringe. Therefore, contrary
to what happens for the diffraction-based edge enhancement, the refraction-
based enhancement becomes less visible when ro increases. On the other
hand, when ro is too small the limited detector resolution makes it impos-
sible to observe the refraction-induced edge enhancement as it does for the
diffraction-induced edge enhancement.

Figure 11: Simplified analysis of the enhancement of a tapered edge by a refraction
mechanism, again based on a coherent source.

Qualitatively speaking, therefore, the refraction-based edge enhancement
is visible only within a certain interval of object-detector distances. The
same conclusion is valid if the edge, rather than separating the object from
vacuum, is between two different specimen areas with different refractive
index.



These qualitative conclusions can be transformed into quantitative re-
sults under reasonable assumptions – see Ref. 7. The interesting point is
that one can play with the geometry of the experiment to enhance either
the edge diffraction mechanism or the refraction mechanism, and match the
requirements of specific applications.

5.3 Some recent examples

Figures 12 and 13 show two recent, spectacular examples of coherence-
enhanced radiographic images[13]. Their quality requires no comment. Note
that very small details can be observed, opening up many new opportunities
in microradiology.

Figure 14 directly illustrates the interplay between diffraction-enhanced
and refraction-enhanced coherent radiology[7]. We see on the right the char-
acteristic series of diffraction fringes for each edge. On the left, only a pair
or fringes are seen for each edge. The transition from one regime to the
other (center) is accomplished, as mentioned above, by changing the geom-
etry, i.e., by changing the distance ro between source and detector. The
transition can be quantitatively justified[7] with the simple models of the
previous two sections.

Finally, we would like to mention that coherence-based radiology was
recently extended to live specimens[8]. Spectacular real-time images of dif-
ferent organs in live animals were obtained with high lateral resolution and
excellent contrast. These positive tests indicate that the extension to human
patients is not too far away.

Figure 12: A recent example (Hwu, Je et al., Ref. 13) of coherence-enhanced
radiological image, showing the microstructure of a leaf.



6 Future sources

Can X-ray sources be further improved? The answer is a qualified “yes”.
There exists some flexibility for additional improvements of storage-ring
sources, but also the possibility of using entirely different sources: the “free
electron lasers”.

As we see already mentioned (Eq. 7), the brightness of an X-ray source
can be improved by either increasing the flux F or by improving the geomet-
ric parameters. In a storage ring, each circulating electron emits synchrotron
light stochastically, acting as an independent source. The total flux can thus
be increased by increasing the number of circulating electrons, i.e., the total
current of the electron beam.

Figure 13: Another example (Ref. 13) of coherence-based radiology: the head of
an insect.

This was indeed the objective of a major effort in the early history of
synchrotron light. As we already discussed, progress along this direction



saturated in the mid-1980’s.
The attention thus shifted to the geometric factors. The source size

and the divergence were greatly improved by closer control of the electron
beam around the ring and by more advanced storage ring designs. This
resulted in very spectacular increases in the brightness, by orders and orders
of magnitude.

Figure 14: By changing the geometry in coherence-based radiology, one can
move from the edge-refraction-enhancement regime (left) to the edge-diffraction-
enhancement regime (right). The images show the two edge between different parts
of an optical fiber (Ref. 7).

We have seen, however, that this progress cannot go on forever: the
improvement of the source geometry cannot overcome the diffraction limit
set by the wavelength. The actual sources are getting closer and closer to the
diffraction limit. However, substantial improvements in the source geometry
and brightness are still possible for hard-X-rays, since the diffraction limit is
still far away at small wavelengths. On the contrary, limited improvements
or no improvement at all are possible at longer wavelengths.

This sobering assessment changes somewhat if one consider not the av-

erage brightness, but the peak brightness of very short pulses. Spectacular
improvements can in fact be achieved by enhancing the peak flux.

This is possible using a laser mechanism. As it is well known, a laser is a
source based on the light emission mechanism called “stimulated” emission.
Such a mechanism produces the “optical amplification” characteristic of a
laser. The amplification is almost always enhanced by an “optical cavity”
formed by two mirrors.

A synchrotron source is not a laser since it is not based on stimulated
emission. In fact, its electrons emit photons independently from each other
through “spontaneous” emission. In spite of this and thanks to relativity,
we have seen that the source reaches collimation and brightness levels com-
parable to a laser. In other words, it is a “laser-like” source, but not a
laser.



True laser action by electrons in an accelerator can be achieved with a
different approach. Under the right conditions, an electron packet interact-
ing with a wiggler can produce substantial stimulated emission and therefore
optical amplification[9]. Laser action of this type was accomplished many
years ago. Since the active medium is formed by electrons in vacuum , a
device of this kind is called a free-electron laser (FEL)[9].

The FEL technology is primarily used for the emission of infrared light
rather than for X-rays. This is due to two facts: first, the optical amplifi-
cation decreases with the wavelength. Second, no mirrors and therefore no
optical cavities exist for X-rays.

The only way to build an X-ray FEL is to increase the optical amplifica-
tion so much that the optical cavity is no longer necessary. This is the basic
philosophy of the so-called SASE (Self-Amplified Spontaneous Emission)
FEL’s[10].

Not tested and even controversial for a few years, the SASE concept
recently became - literally - a very bright reality. Test experiments with
the TESLA facility in Hamburg (HASYLAB-DESY)[11] demonstrated laser
action in excellent agreement with the SASE theory. Positive results were
also obtained at Argonne at higher wavelengths[12]. This may open the way
to a whole new generation of sources with peak brightness more than ten
orders of magnitude higher than existing sources.

Note, however, that the future X-ray FEL’s will not replace storage
ring. Their working mechanism is in fact only valid for short pulses of
extremely high brightness. Such sources will thus be very useful for nonlinear
phenomena and for other applications that require ultrabright short pulses.
For other X-ray techniques, synchrotrons will continue to play the key role.

In a few years, pulsed X-ray FEL’s will work in parallel to very advanced
synchrotron sources at the service of science and technology. Together, they
will constitutes an unprecedented arsenal for a wide variety of research and
technical fields, ranging from many branches of science to medicine and to
industrial fabrication. We can thus conclude our short review by coherently

saying that the future of this field is brighter than ever.

Work supported by the Swiss National Science Foundation and by the
Ecole Polytechnique Fédérale de Lausanne
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