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Signal-to-noise optimization of medical imaging systems
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Over recent decades a quiet revolution has taken place in the application of modern imaging
theory to many fields of applied imaging. Nowhere has this movement been more dramatic than
within the field of diagnostic medical x-ray imaging, to the extent that there is now a grow-
ing consensus around a universal imaging language for the description and inter-comparison of
the increasingly diverse range of technologies. This common language owes much to the basic
quantum-limited approach pioneered by Rose and his contemporaries. It embodies the funda-
mentally statistical nature of image signals, and enables scientists and engineers to develop new
system designs optimized for the detection of small signals while constraining patient x-ray ex-
posures to tolerable levels. In this paper we attempt to provide a summary of some of the more
salient features of progress being made in the understanding of the signal-to-noise limitations of
medical imaging systems, and to place this progress within historical context. Reflecting the ex-
periences of both authors, emphasis will be given to medical diagnostics based on x-ray imaging
techniques.

I. INTRODUCTION

Both the complexity and sophistication of medical imag-
ing systems have increased dramatically over the past sev-
eral decades. Alongside this development there has been a
progression in the knowledge of the fundamental relation-
ships that govern image quality in these systems, many of
which can be traced directly to the pioneering work of Albert
Rose. This has facilitated the identification of key metrics
that can be used to compare different imaging technologies,
and the development of predictive theories and models that
can be used in the design of new systems. In earlier days,
attention was initially focused on what might be described as
“mean-level” relationships between the input and output of
an imaging system. For instance, it was determined that the
sensitometric properties of radiographic film-screen systems
could be expressed in terms of a characteristic curve - some-
times referred to as an H & D (Hurter and Driffield) curve
- relating film optical density to x-ray exposure. As insight
came to these important mean-level relationships, practical
control and technical-standards followed.1 At the same time
there was also a growing realization that further progress was
dependent on an improved understanding of the higher-order
relationships between input and output, including the trans-
fer of statistical fluctuations, or noise, and the reproduction
of fine spatial detail.

This article describes some aspects of the development
of transfer theory, as it has come to be known, from the
early photon-counting work of Albert Rose quantifying fun-
damental image-noise limitations for the first time, through
the development by Shaw and his contemporaries of spatial-
frequency dependent metrics including the noise-equivalent
number of quanta (NEQ) and detective quantum efficiency
(DQE), to our current understanding of more generalized

signal- and noise-transfer relationships in complex systems.
These latter relationships, developed within the context of
medical diagnostic imaging over the past decade by Rabbani,
Shaw and Van Metter and discussed in more detail below,
provided an important link between the early Rose approach
and modern linear-systems theories. In its simplest form,
the term signal transfer has come to mean the description of
the transfer of spatial detail in the signal from the input to
the output of an imaging system, while noise transfer relates
to the corresponding noise attributes. Both are expressed
in terms of a spatial-frequency-dependent analysis in which
imaging systems are described as stochastic linear systems.
Together they are now used for the description of image qual-
ity in terms of the NEQ, and system performance in terms
of the DQE and frequency-dependent quantum sinks.

II. IMAGE QUALITY: ROSE MODEL TO
NEQ

A. Rose Model

The stochastic nature of image quanta imposes a funda-
mental limitation on the performance of photon-based imag-
ing systems. This was first recognized in 1948 by Rose2,3

and his contemporaries,4−6 and their work forms the basis of
many introductory descriptions of signal and noise in radio-
graphy. Rose demonstrated this relationship with a series of
pictures7 that in many ways symbolize his seminal contribu-
tions to the medical imaging community and are reproduced
in the introduction to this special issue. They show an im-
age acquired with varying numbers of optical image quanta.
As more quanta are used, image quality improves and finer
detail can be resolved.
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The relationship between the number of image quanta and
perception of detail is embodied in the “Rose Model,” as
it has come to be known, that describes the signal-to-noise
ratio (SNR) for the detection of a uniform object of area A
in a uniform background having a mean q̄b quanta per unit
area. If q̄o is the mean number of quanta per unit area in the
region of the object, the resulting contrast can be written as
C = (q̄b − q̄o)/q̄b. Rose defined signal to be the incremental
change in the number of image quanta due to the object,
A(q̄b − q̄o), and noise to be the standard deviation in the
number of quanta in an equal area of uniform background,
σb. For the special case of uncorrelated background quanta,
noise is described by Poisson statistics and σb =

√
Aq̄b so

that the Rose SNR, SNRRose, is given by

SNRRose =
A (q̄b − q̄o)√

Aq̄b
= C

√
Aq̄b. (1)

Rose showed that SNRRose must have a value of approx-
imately five or greater for reliable detection of an object.
Implications and limitations of the Rose model are described
in terms of modern detection theory by Burgess8 elsewhere
in this special issue.

The Rose model played an essential role in establishing the
fact that image quality is ultimately limited by the statisti-
cal nature of image quanta. However, its limitations quickly
become apparent when used to assess image quality in many
practical situations. The primary restriction was the defini-
tion of noise used by Rose in Eq. (1) that is valid only for a
statistically uncorrelated distribution of image quanta. Esti-
mates of noise based on measured image data for use in the
Rose model may be erroneously high or low as affected by a
number of factors, including the presence of additive system
noise (e.g. electronic or film noise) and in particular statis-
tical correlations in the image data. These correlations may
be introduced by scatter of x rays or secondary quanta in
the detector system (e.g. light in a radiographic screen), and
will affect image appearance. For these reasons, the original
Rose model needs appropriate extension and elaboration to
be of practical value in the analysis of most modern medical
imaging systems.

B. Communication-Theory Based Ap-
proach

The pursuit of a more complete understanding of image
quality and system performance required the development
of a theory that incorporated second-order image statistics,
and would therefore be sensitive to statistical correlations
in image data. Specifically, these problems called for a gen-
eral communication-theory based approach. The various cru-
cial components of this theory were already substantially in
place, the first and most obvious being the Fourier-transform
linear-systems approach.

1. Signal Transfer: The Modulation-Transfer Func-
tion

The Fourier transform has been used extensively in many
areas of study, including engineering and communication

fields for the analysis of time-varying signals, and optical
science in the development of Fourier optics. During the
1960s, Rossmann, Doi and co-workers9−14 were largely re-
sponsible for adapting these concepts for use by the medical-
imaging community, enabling a quantitative description of
signal-transfer relationships. The Fourier transform was used
to express spatially-varying signals (i.e. images) in medical
systems in terms of spatial frequencies (cycles/mm), u. The
effect of image-blurring mechanisms were represented both
as two-dimensional convolution integrals with a point-spread
function (PSF) in the spatial domain, and as multiplica-
tive transfer functions in the spatial-frequency (Fourier) do-
main. Sinusoidal image patterns are transfered with only
a scalar change in amplitude, and Rossmann and his con-
temporaries expressed these factors as a spatial-frequency
dependent “modulation-transfer function” (MTF).15 Sinu-
soidal functions were thus identified as being the eigenfunc-
tions of imaging systems while the MTF described the eigen-
values. By definition, the MTF is normalized to unity at
u = 0.

With this notation, it became possible to separate the in-
fluence of various image-blurring mechanisms from the over-
all system MTF, including the influence of x-ray source focal-
spot shape (Doi,10 Burgess16,17) and radiographic-screen
blur (Rossmann,9 Metz & Doi18). General works describing
the application of linear-systems analysis have subsequently
been published by various authors including Gaskill.19 Spe-
cific application to radiographic imaging has been described
by Dainty & Shaw20 and Metz & Doi18 among others. Per-
haps the most extensive use of linear-systems theory in the
medical imaging field is described by Barrett & Swindell,21

who used this approach to describe fundamental principles
and characteristics of many imaging systems in radiography,
computed tomography (CT), nuclear medicine, ultrasound
and other areas. Use of the MTF is less established in mag-
netic resonance imaging (MRI), but may have a significant
role to play.22

2. Linear and Shift-Invariant System Response

Use of the Fourier-based approach requires that two impor-
tant conditions be satisfied.18 The first requires the system
to have a linear response to an input stimulus. Essentially,
this means the output must be proportional to the input.
The second condition requires the system to have a shift-
invariant response. That is, any blurring mechanism must
apply equally to all regions of an image. Systems satisfy-
ing both conditions are sometimes referred to as linear and
shift-invariant (LSI) systems. Systems displaying only small-
signal linearity (such as film-screen systems), or only local
shift invariance (such as x-ray image-intensifier systems), can
often be modeled using the linear-systems approach if rea-
sonable practical approximations are made.

3. Image Signals

The transfer-theory approach is based on specific input-
output relationships. In this context, the output may be
an exposed film, or a digital image described in terms of a
two-dimensional array of (unitless) numerical values, and the
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input may be a distribution of x-ray quanta (quanta/mm2)
requiring that principles of distribution theory19 be incorpo-
rated into the transfer relationships. In this article, q(x, y)
is used to represent a sample function of the random process
generating the input distribution. Physical measurements of
the distribution q(x, y) require the use of a sampling func-
tion, or measurement function,19 and will be represented as
d(x, y).

4. The (Wiener) Noise-Power Spectrum

As linear-systems theory was advanced within the medical
imaging community, it was found, as in other fields of ap-
plied imaging, that once the intellectual barrier of visualizing
input-output relationships in the spatial-frequency domain
rather than the spatial domain was overcome, there were
substantial physical insights to be gained in the analysis of in-
creasingly complex systems. At the same time, and with the
practical interest often being in the limitations of quantum-
limited imaging tasks, there was a growing realization that
there was a parallel need for the Rose2,3,7,23,24 approach.
While absolute noise measurements on rare-earth intensify-
ing screens had been reported in the early seventies,25 and
the work of Rose and the advantages of the noise-equivalent
approach were well-known within the medical imaging com-
munity having been introduced by Schade26 and others, these
concepts were often applied with a separate context having
little or no overlap with the linear-systems viewpoint.

As mentioned above, the Rose model described noise in
terms of the statistical variance in a number of uncorrelated
quanta in a specified area A. This was found to be inadequate
when noise was estimated from real image data primarily be-
cause it did not properly treat the influence of spatial correla-
tions in the noise. To overcome this, second-order statistical
correlations were incorporated by specifying the mean and
auto-covariance of the noise process. Adopting the Fourier-
based notation of the linear-systems approach, noise in a
uniform image described by the stationary ergodic random
process (these terms are defined below) d(x, y) was expressed
in terms of the noise-power spectrum (NPS) or Wiener spec-
trum, NPSd(u, v), given both as the Fourier transform of
the auto-covariance of d(x, y),27 NPSd(u, v) = F{Kdd(x, y)},
and as20

NPSd(u, v) = (2)

lim
X,Y→∞

E

 1
2X

1
2Y

∣∣∣∣∣
∫ X

−X

∫ Y

−Y

∆d(x, y)e−i2π(ux+vy)dxdy

∣∣∣∣∣
2


where E{ } is the expectation operator, ∆d(x, y) = d(x, y)−
E{d(x, y)}, and u and v are spatial frequencies in the x and
y directions respectively. It is often more convenient to ex-
press the NPS in one dimensional geometry rather than two,
generally as NPSd(u) = NPSd(u, v)|v=0. It will also be no-
ticed from Eq. (3) that the units of NPSd(u, v) are equal to
those of d2(x, y)×x×y. Therefore, the NPS of a dimension-
less signal such as a pixel value in a digital image, or optical
density, will typically have the units mm2 or mm in two di-
mensions or one respectively, while the NPS of a distribution
of quanta will typically have the units mm−2 or mm−1.

The link to the Rose model is made by first noting that
the variance is related to the NPS by27

σ2 =
∫ ∞
−∞

∫ ∞
−∞

NPS(u, v)dudv. (3)

The distribution of background quanta can be represented
as the sample function qb(x, y) consisting of spatially-
distributed δ-functions where each δ-function represents a
quantum.21 The number of background quanta in a rectan-
gular region A, Nb, is then given by

Nb =
∫ ax/2

−ax/2

∫ ay/2

−ay/2

qb(x, y)dxdy (4)

=
∫ ∞
−∞

∫ ∞
−∞

qb(x, y)Π
(

x

ax
,

y

ay

)
dxdy (5)

where we have let the sampling function coincide exactly with
the rectangular region A. This result can also be expressed
as the convolution of qb(x, y) with Π(x/ax, y/ay) evaluated
at x, y corresponding to the center of A giving

Nb = qb(x, y) ∗ ∗ Π(x/ax, y/ay)|x,y=0,0 (6)

= d(x, y)|x,y=0,0 (7)

where ∗∗ represents the two-dimensional convolution opera-
tion and d(x, y) is a function that, when evaluated at some
position x, y, gives the number of quanta in the rectangular
region A centered at that location. Since qb(x, y) describes
a stationary ergodic random process, d(x, y) also describes a
stationary ergodic random process. Therefore, the variance
of d(x, y) equals that of Nb which are samples of d(x, y), and
the convolution theorem can be used to show28

σ2
b =

∫ ∞
−∞

∫ ∞
−∞

NPSd(u, v)dudv (8)

= a2
xa2

y

∫ ∞
−∞

∫ ∞
−∞

NPSb(u, v)sinc2(πaxu)sinc2(πayv)dudv (9)

where NPSd(u, v) and NPSb(u, v) are the NPS of d(x, y)
and qb(x, y) respectively. When qb(x, y) describes uniformly
distributed uncorrelated quanta, NPSb(u, v) = q̄b for all fre-
quencies, giving

σ2
b = a2

xa2
y q̄b

∫ ∞
−∞

∫ ∞
−∞

sinc2(πaxu)sinc2(πayv)dudv (10)

= axay q̄b = Aq̄b (11)

which is the Rose noise used in Eq. (1).
This example illustrates a specific case where the Rose re-

sult is equivalent to the more general Fourier-based result.
In general, however, the Rose method must be used with
care as misleading results are obtained when image quanta
are statistically correlated, or when the sampling function -
that would normally be the PSF of the system - does not
correspond exactly with the size and shape of the object A.
It is then necessary that the variance be expressed in terms
of the integral of Eq. (8) where the background image NPS is
weighted by the (squared) Fourier components of the desired
object shape before being integrated over all spatial frequen-
cies. In other words, noise variance is tied to both the object
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shape and system sampling function, and cannot be stated
independently. Only if the object dimensions ax and ay are
large with respect to the correlation distances, so that the
sinc-functions are sufficiently narrow that they extend only
over a small frequency range in which the NPS is approx-
imately uniform, does the variance become independent of
object shape and the Rose method give an accurate measure
of noise.

Measurement of the NPS remains a complex subject. In
an effort to provide guidelines and recommendations, the
American Association of Physcists in Medicine formed the
Task Group on Standards for Noise Power Spectra Analysis
(Task Group #16, report pending) in 1994 to help standard-
ize methods of measuring and reporting results.

5. Stationary Ergodic Random Processes

Use of Fourier-based descriptions of image noise requires
two important assumptions.20,27 The first is that processes
responsible for noise both in the input signal and within the
imaging chain be wide-sense stationary (WSS). This means
that the mean and auto-covariance of the noise processes,
and the second-order noise-transfer characteristics of the sys-
tem, are the same in all regions of the image, a condition of-
ten satisfied for the analysis of noise in low-contrast imaging
tasks. The second assumption is that the system be ergodic
which means that statistics that should really be determined
from ensemble averages of many image realizations can be
determined from the statistics of a single realization (a sin-
gle image). While it can be difficult to prove ergodicity, many
systems of practical importance are approximately ergodic.

6. Noise-Equivalent Quanta, NEQ

The critical need for bridging the seemingly distinct Rose-
based particle approach and the Fourier-based wave ap-
proach came with the practical problem of absolute scaling
of signal- and noise-power spectra. Results obtained using
Eq. (3) are expressed in output units which may be arbitrary
or specific to a particular imaging system. By expressing im-
age noise in terms of the number of Poisson-distributed input
photons per unit area at each spatial frequency, Shaw ob-
tained a common absolute scale of noise - the noise-equivalent
number of quanta (NEQ).20,29

The NEQ of linear imaging systems is given by

NEQ(q̄, u) =
q̄2Ḡ2MTF 2(u)

NPSd(u)
(12)

=
d̄2MTF 2(u)
NPSd(u)

(13)

where q̄ is the (uniform) average number of input quanta per
unit area, Ḡ is the scaling factor relating q̄ to the average
output d̄, and NPSd(u) is the output NPS. The units of
NEQ are the same as those of q̄. Equation (13) is particu-
larly convenient to use in many practical situations as it only
requires the terms d̄, MTF (u), and NPSd(u), all of which
are readily determined experimentally from measured image
data. Film-screen systems have a non-linear response to x-
ray exposure, and exhibit only small-signal linearity. The

NEQ is therefore given by20

NEQ(q̄, u) =
(log10 e)2γ2MTF 2(u)

NPS(u)
(14)

where γ is the slope of the characteristic optical density ver-
sus log-exposure curve corresponding to the same exposure
level as the NPS measurement.

The NEQ concept is attractive as it expresses image qual-
ity on an absolute scale - the number of equivalent Poisson-
distributed input quanta. It can be measured for specific
systems at specified exposure levels in various laboratories
and the results can be directly compared. An image with a
greater NEQ corresponds to lower image noise. An excellent
description of the NEQ in terms of modern detection theory
is available as an ICRU report.30

III. QUANTIFYING SYSTEM PERFOR-
MANCE

In spite of these and other early contributions, in the medi-
cal imaging community it was not until the mid-eighties that
the application of modern SNR-based theory to imaging pro-
gressed from an occasionally interesting fringe activity to a
core topic providing a universal language. Since that time,
the number of publications in this area has grown tremen-
dously, certainly too many to fully acknowledge here.30,31 In
the following, we attempt to summarize some of this develop-
ment with examples and illustrations that reflect the mutual
interests of the authors.

A. Signal-to-Noise Ratio, SNR

In the Fourier-based analysis, signal is described as the
modulation of a sinusoidal signal. Thus, the Fourier-based
description of the signal-to-noise ratio (SNR) at a specified
exposure level is determined by

SNR2(q̄, u) =
d̄2MTF 2(u)
NPSd(u)

= NEQ(q̄, u) (15)

showing that in the Fourier-based analysis, the SNR is
equal to the square root of the effective number of Poisson-
distributed quanta, i.e. SNR(q̄, u) =

√
NEQ(q̄, u), analo-

gous to the particle relationship used by Rose where SNR =√
N .

B. Detective Quantum Efficiency, DQE

It was further realized that the absolute scaling of system-
performance metrics was greatly facilitated by the introduc-
tion of the Rose-based concept of detective quantum effi-
ciency (DQE). Whereas this arose in a discrete (photon-
counting) context, it was readily extended to be compatible
with Fourier concepts by the introduction of a fuller defini-
tion in terms of spatial-frequency power spectra. Specifically,
it was shown29 that the DQE of a linear imaging system could
be written as

DQE(u) =
NEQ(u)

q̄
=

q̄ Ḡ2MTF 2(u)
NPSd(u)

(16)
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=
d̄2MTF 2(u)
q̄ NPSd(u)

(17)

which, in the absence of additional noise sources, is indepen-
dent of q̄. The DQE is closely related to the NEQ, but rather
than expressing the effective number of Poisson-distributed
input quanta, it is normalized to express the fraction of in-
put quanta used to create an image at each spatial frequency.
Thus, while the NEQ is a metric describing image quality and
is generally dependent on q̄, the DQE describes the ability
of a particular imaging system to effectively use all available
input quanta. An ideal imaging system has a DQE of unity.
No system can have a DQE greater than unity.

The DQE has been described in a number of different but
consistent forms. For instance, Eq. (17) is particularly use-
ful for experimentally determining the DQE of particular
systems32 although it can be difficult to obtain an accurate
measure of the input q̄ for diagnostic x-ray spectra that con-
sist of a wide range of energies. Additional details of this
challenge have been described elsewhere.28 For the special
case when input quanta are uncorrelated and photon noise is
the only significant source of input noise, the input squared
SNR is SNR2

in(u) = q̄2/NPSq(u) = q̄. The output squared
SNR is d̄2MTF 2(u)/NPSd(u) and in this special case the
DQE can be interpreted as the squared-SNR transfer rela-
tionship

DQE(u) =
SNR2

out(q̄, u)
SNR2

in(q̄, u)
. (18)

However, as we shall see for non-radiation limited inputs and
for multistage analyses, this interpretation must be used with
caution as the DQE of a cascaded system is generally not a
multiplicative cascade of DQEs.

The DQE of a film-screen based system is given by

DQE(q̄, u) =
(log10 e)2γ2MTF 2(u)

q̄ NPS(u)
(19)

and is dependent on q̄ due to its non-linear response.
During the mid-seventies, metrics based on DQE were

gradually introduced in an attempt to clarify such abso-
lute scaling problems across a variety of medical imaging
technologies33,34 with Wagner and co-workers30,34 deserving
much of the credit for championing the widespread applica-
tion of the noise-equivalent approach and providing some of
the first absolute sets of DQE measurements.

1. DQE analysis of screen-film systems

During the mid-eighties, a series of publications35−40 con-
sidered a new comprehensive model for radiographic film-
screen imaging systems. This work also described a set of
absolute experimental DQE and NEQ values made possible
by carrying practical estimates of the Wiener spectrum of the
image noise-power in order to carry out the absolute scaling
required. An important aspect of the new model was that
it combined the principal imaging components of screen and
film systems separately into an overall DQE expression that
typically reduced to the form35

DQESF (q̄, u) =
ηS

1 +
εm

m
+

1
mηF DQEF (q̄, u)MTF 2

S(u)

(20)

Figure 1: NEQ characteristics for a model screen,38 com-
pared with an ideal quantum-limited detector,
NEQideal(q̄, 0).

Figure 2: The low-spatial frequency NEQ characteristics for
a model film.38

where ηS is the quantum efficiency of a screen having an op-
tical conversion quantum gain m, εm is the Poisson excess in
the gain that is related to the variance σ2

m by εm = σ2
m/m−1

and reflects the fact that conversion from x rays to light is a
random process, ηF is the coupling efficiency of light to the
film, DQEF (q̄, u) is the DQE associated with the film alone,
and MTFS(u) is the MTF associated the screen alone. This
model assumes a “thin” screen, neglecting variable x-ray in-
teraction depths in the phosphor.

An important aspect of this model35,36,38 was that it pro-
vided the first basis for the comparison of practical mea-
surements of system DQE and those predicted from compo-
nent values, and demonstrated a satisfactorily high degree
of agreement.37,39 Equation (20) has subsequently been of
use in establishing a broad understanding of the separate
roles of the screen and film, and the manner in which their
combinations may be optimized. It showed that the DQE
is proportional to the quantum efficiency of the screen, and
that a poor film DQE can be compensated for with a large
optical conversion factor m. Figures 1 to 3 give an example
of such combinations, demonstrating the predictive power of
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Figure 3: Model NEQ characteristics for screen-film combi-
nation. Regions A to D indicate differing influences of screen
and film component parameters.

the model. Figure 1 shows the NEQ associated with the
screen detection process as a function of both q̄ and spatial
frequency, u. The ideal characteristics (the Rose quantum-
limit), NEQideal(q̄, 0), are also shown for comparison. Fig-
ure 2 shows the low spatial-frequency NEQ characteristics
of the film. Finally, Fig. 3 shows the modeled NEQ char-
acteristics of screen-plus-film. In region A the screen-film
combination approximates to that of the screen alone, but
at the very low and very high exposures the low-frequency
NEQ (region B) will be that of the film alone. In region
C the NEQ approximates the product of that of the film
with that of the square of the transfer function (MTF) of
the screen, while within region D all three factors (the NEQs
of both screen and film and the screen transfer function) are
significant in determining the output NEQ.

IV. GENERALIZED SIGNAL- AND
NOISE-TRANSFER THEORY

A byproduct of this renewed interest in signal-to-noise
transfer limitations was the realization that film-screen sys-
tems could be modeled as a serial cascade of simple am-
plifying and scattering processes,41 and that expressions for
both the signal- and noise-transfer characteristics of each pro-
cess could be written in a simple closed form. This led di-
rectly to the development of a more generalized model of
cascaded imaging systems, and this generalized model has
subsequently been used to describe a wide range of modern
digital and non-digital medical imaging systems. Because of
these general signal- and noise-transfer implications, a brief
summary will be given here.

A. Elementary Processes

Use of the generalized transfer approach to model com-
plex systems as a serial cascade of simple amplification and
scattering stages was an important step in the development
of SNR-related concepts. It allowed the analysis of complex
systems to be separated into more manageable components.

Figure 4: Schematic illustration of a stochastic amplification
stage cascading into a stochastic scattering stage.41

The cascaded model was physically intuitive, and provided
a solid theoretical framework from which a rigorous math-
ematical analysis could be developed. Rabbani, Shaw and
Van Metter42,43 pioneered the cascaded approach in a num-
ber of early studies using a multi-variate moment-generating
analysis to determine the transfer characteristics of relatively
complex systems. This allowed the statistical properties in
the output image to be described in terms of the variance and
auto-covariance in the input distribution of image quanta.
They also showed that for the important case of wide-sense
stationary noise processes required for any Fourier-domain
analysis, the output image noise could also be described in
terms of the spatial-frequency dependent noise-power spec-
trum. This offered an additional simplification since the sig-
nal and noise power transfer through a complex system could
be determined by cascading simple transfer expressions for
each elementary stage. Figure 4 illustrates the elementary
processes of amplification and scattering, and Table 1 pro-
vides a summary of the transfer characteristics associated
with each.

1. Stochastic Amplification

Stochastic amplification42 represents the process where
each quantum in a distribution is converted into g quanta
where g is a random variable that may assume only posi-
tive values and has a mean ḡ and variance σ2

g . Noise-power
transfer as shown in Table 1 is essentially a Fourier-based
generalization of an earlier particle-based result described
by Zwieg44 in the mid-sixties. He described the DQE for a
multi-stage quantum detector with gain and showed that

σ2
out = ḡ2σ2

in + σ2
gN̄in. (21)

Stochastic amplification stages can also be used to describe
the random selection (random loss) of events such as the
quantum efficiency of a detector. In that case, g is a random
variable with a value 0 or 1 only, an average ḡ ≤ 1, and a
variance given by21

σ2
g = ḡ(1− ḡ). (22)

Stochastic amplification of photon noise by one stage may
produce a structure that constitutes effective signal to the
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Figure 5: Schematic of the approach used to find a solution
for noise transfer by a radiographic screen-film system.46,47

next stage, and thus it is essential to cascade these compo-
nents in the proper way at each amplifying and scattering
stage.

2. Stochastic Scattering

Stochastic scattering represents the process of randomly
relocating each quantum in a distribution according to a
specified PSF. It is thus a translated point process and has
been called a stochastic mislocation process.45 Analysis of
the scattering stage42 demonstrated that while by definition
the signal structure (or modulation) is transferred via the
MTF, photon noise is essentially unmodulated signal and as
such bypasses the MTF of that stage as shown in Table 1
where MTF (u) is the scatter MTF.

3. Deterministic Blur

Also shown in Table 1 is a description of power-spectrum
transfer through a unity-gain linear filter (i.e. a convolu-
tion integral). As known from linear-systems analysis,19 the
power spectrum of a stochastic process in this case is passed
via the MTF of the filter as shown in Table 1. The differ-
ence between noise-transfer through a linear filter and that
through a stochastic scattering stage is fundamental to any
analysis of medical imaging systems, and is a direct conse-
quence of the discrete nature of image quanta. Stochastic
amplification and scattering processes act on distributions of
quanta only. No such restriction applies to deterministic blur
processes.

B. Early Application of the Cascaded Ap-
proach

One of the first applications of the cascaded approach ex-
amined the simplest case of nonlinear film-grain response;
namely, that associated with a 2-quantum threshold.46,47

Rabbani and Shaw showed that an exact solution was ob-
tained for radiographic screen-film noise as a function of
quantum exposure level and grain sensitivities, although un-
der the assumption of a uniform checkerboard array of grains.
Figure 5 shows a schematic of the radiographic screen-film
model according to their assumptions. This approach was
subsequently extended to a more complete analysis of screen-
film systems,43,48 including a detailed study of the effects of
the depth-dependence of x-ray interactions on the MTF and
noise-power spectrum of radiographic screens.49 It was also
extended to include the effect of a broad x-ray spectral width
on the transfer of signal and noise in a screen-film system
by allowing the average gain characterizing the amplification

stage (conversion to light) to be a random variable reflecting
the distribution of x-ray energies.43

While the relationships in Table 1 describing photon signal
and noise transfer were initially derived using a moment-
generating approach, Barrett et al.45 showed that the same
results can be obtained very elegantly using statistical point-
process theory, and Mulder50 obtained similar results based
on a variance approach. The transfer approach has since
been applied and extended by several investigators in the
analysis of medical imaging systems. For instance, Nishikawa
and Yaffe51 described a theoretical model of the NEQ and
DQE in radiographic screens allowing for a distribution of
x-ray interaction depths.

It is satisfying to note that intuitive theories and empiri-
cisms that ignored the subtleties of photon noise transfer
(for instance by representing image-blurring processes as lin-
ear filters rather than as stochastic scattering stages - hence
leading to misleading predictions and interpretations of out-
put/image power-spectra shapes) have at least partially sub-
sided within medical imaging, although the reader should be
aware that they still prevail elsewhere, for example in some
multi-stage theories of SNR-transfer in electrophotography.

C. DQE of Cascaded Systems

The concept of noise transfer through cascaded multi-stage
systems with gain has been known for some time. Notably,
Zwieg44 described the effect of multi-stage gains in terms of
the DQE in the nineteen-sixties. Using this approach, an
imaging system is represented as a cascade of amplification-
only stages, and the number of image quanta (per arbitrary
resolving element such as an image pixel) is computed for
each stage. If the cascaded amplification factor through each
successive stage is always much greater than unity, the out-
put SNR is determined only by the number of input quanta.
However, if the cascaded amplification factor falls to less than
unity at any stage, a bottleneck occurs that will degrade the
output SNR. When this happens, this stage is sometimes
referred to as the “quantum sink” of the system.

This type of analysis in imaging can be traced directly to
Albert Rose. In the nineteen-forties, he published what is
thought to be the first analysis of this type in which he as-
sessed a video chain in a model that included the distribution
of light quanta making up the original scene, the television
pickup tube and lenses, video amplifiers and CRT display,
and the retina in an observer. He plotted the number of im-
age quanta at each stage and showed that two bottlenecks
were predicted: one at the photo cathode of the pickup tube
and the other at the photo surface of the retina.3

This “quantum accounting diagram” (QAD) analysis was
subsequently performed routinely for many medical imaging
systems52−56 where system designers used this information
to optimally choose gain parameters when matching com-
ponents. It is known now from the binomial theorem that
the DQE for an N -stage Zwieg-type cascaded model can be
written approximately as

DQE =
1

1 + 1
ḡ1

+ 1
ḡ1ḡ2

+ ... + 1
ḡ1ḡ2...ḡN

(23)
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Elementary Process q̄ Transfer NPS(u) Transfer

Stochastic amplification q̄out = ḡq̄in NPSout(u) = ḡ2 NPSin(u) + σ2
g q̄

Deterministic blur q̄out = q̄in NPSout(u) = NPSin(u) MTF 2(u)

Stochastic scattering q̄out = q̄in NPSout(u) = [NPSin(u)− q̄in]MTF 2(u) + q̄in

Table 1: Expressions describing transfer of average number of quanta, q̄, and noise, NPS(u), through three elementary
processes.

where ḡj is the mean quantum gain of the j-th amplification
stage. The product ḡ1ḡ2...ḡj gives the normalized number
of quanta at the j-th stage, and is displayed graphically as
a function of the stage number in a QAD analysis. Any
stage with a product less than unity is a quantum sink and
degrades the system DQE.

This result had great utility for “back-of-the-envelope”
type calculations of the DQE, but it is now known this result
is too simplistic and was responsible for much wasted effort
in the development of some new designs by failing to predict
quantum sinks at non-zero spatial frequencies. Even today,
Eq. (23) is sometimes used to predict a high DQE for system
designs that have no chance of success. The primary reason
for this limitation is the fact that similar to the Rose model,
this analysis shows only first-order statistics, and does not
reflect spatial correlations in the image quanta. These cor-
relations degrade the DQE at non-zero spatial frequencies.

This Zwieg-type model was generalized to include second-
order statistics by Cunningham et al.57 using the noise-
transfer relationships of Rabbani et al.42 They showed that
the frequency-dependent DQE of a cascaded system consist-
ing of amplification and scattering stages is described by

DQE(u)

=
1

1 + 1+εg1MTF 2
1 (u)

ḡ1MTF 2
1 (u)

+ ... + 1+εgN
MTF 2

N
(u)

ḡ1...ḡN MTF 2
1 (u)...MTF 2

N
(u)

(24)

where εgj
is the gain Poisson excess of the j-th stage given

by

εgj
=

σ2
gj

ḡj
− 1. (25)

Poisson gain corresponds to a variance σ2
gj

= ḡj and excess
εgj

= 0. Deterministic gain (a gain with no random variabil-
ity) corresponds to a variance σ2

gj
= 0 and excess εgj = −1.

MTFj(u) is the MTF of the scattering process at the j-th
stage. Each stage can represent only an amplification or scat-
tering process, but not both. For amplification at the j-th
stage, MTFj(u) = 1. For a scattering j-th stage, ḡj = 1
and εgj

= −1. In practice, the excess terms are often small
enough to be neglected and Eq. (24) then simplifies to

DQE(u)

≈ 1
1 + 1

ḡ1MTF 2
1 (u)

+ ... + 1
ḡ1...ḡN MTF 2

1 (u)...MTF 2
N

(u)

(26)
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Figure 6: Schematic of a hypothetical system consisting of a
radiographic screen, lens assembly and CCD camera.

which has a pleasing symmetry with Eq. (23) and is often
sufficiently accurate for “back-of-the-envelope”-type calcula-
tions.

The Fourier-based Eq. (24) differs to the particle-based
Eq. (23) in several respects. It shows that scattering stages
can degrade the DQE dramatically when the MTF value
drops with increasing spatial frequency. In fact, where
Eq. (23) might predict that a minimum of approximately 10
quanta at each stage will easily prevent a secondary quan-
tum sink, Eq. (24) shows that approximately 10 times that
number is required at the frequency for which the MTF has
a value of 0.3. Specific values will depend on system partic-
ulars, but it is clear that the frequency dependence of this
type of analysis is critically important.

The Fourier-based QAD analysis provides a theoretical es-
timate of the DQE based only on the mean gain, gain vari-
ance, and scattering MTF of each stage - parameters that can
generally by estimated or measured from an analysis of each
stage independently. Equation (24) also establishes a direct
theoretical relation between the frequency-dependent DQE
and the number of primary or secondary image quanta at
each stage. If any of the product terms of gains and squared
scatter MTFs in the denominator of Eq. (24) are less than
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Figure 7: The “quantum accounting diagram” analysis of the system in Fig. 6 shows that a secondary quantum sink exists in
the number of optical quanta at spatial frequencies greater than approximately 2.5 cycles/mm. A Monte Carlo calculation
was used to generate images composed of the distribution of image quanta at each stage of the cascade, illustrating the
degradation in image quality.

unity at any specified frequency, the DQE will be degraded.
This result forms the basis for interpretation of a Fourier-
based quantum sink concept that can be used to ensure that
a sufficient number of quanta are present at each stage to
adequately transfer the SNR for all spatial frequencies of
interest.57

The visual appearance of a secondary quantum sink at
non-zero frequencies is illustrated with a Monte Carlo cal-
culation for the hypothetical imaging system illustrated in
Fig. 6. The system consists of a radiographic screen, optical
lens assembly, and CCD camera. Figure 7 shows the corre-
sponding QAD analysis with simulated images correspond-
ing to each stage in the cascaded model, demonstrating the
deteriorating image quality.58 In this example, a secondary
quantum sink exists in the detected optical quanta at spa-
tial frequencies greater than approximately 2.5 cycles/mm
causing a loss of image SNR for the high-frequency patterns.

The practical utility of using the cascaded linear-systems
approach has been demonstrated in recent studies of real sys-
tems. Figure 8 shows excellent agreement obtained between
the experimentally measured DQE of a video-camera-based
imaging system being developed by Munro et al. and the
theoretical DQE generated with the cascaded linear-systems
analysis by Bissonnette et al.59 The system produces images
using high-energy (several MeV) x rays from a linear accel-
erator. It uses a copper plate to generate electrons from the
high-energy x rays which subsequently generate an optical
image using a phosphor layer. The QAD analysis showed
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Figure 8: The experimentally measured DQE and the the-
oretical DQE based on the cascaded model show excellent
agreement for a video-based imaging system developed for
radiation therapy verification.
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that output SNR was degraded by an inadequate number of
light quanta being collected by the optical system at spatial
frequencies above approximately 0.25 cycles/mm. Excellent
agreement between theory and experiment was also obtained
by Siewerdsen et al.60,61 for an active matrix flat-panel im-
ager being developed for digital radiography by Antonuk et
al.60

D. Parallel Cascades

The cascaded models described so far have consisted of a
single serial cascade of elementary processes, which is inad-
equate for the analysis of more complex systems in which
the output signal consists of contributions from two or more
processes. For example, non-zero cross-over film in a double-
screen cassette is exposed to light coming from both the front
and rear screens. If these parallel processes are statistically
independent of each other, the output NPS may be simply a
sum of the output NPS from each process. However, when
the processes are not statistically independent, it has been
shown by Cunningham62 that is necessary to include appro-
priate cross-spectral density terms in the cascaded model.
An example of this problem occurs in the analysis of re-
absorption of characteristic radiation generated within an
imaging detector such as a radiographic screen, where light
is emitted at both the primary x-ray interaction and reab-
sorption sites.

Reabsorption will occur at a random location according to
some probability density distribution near the primary inter-
action, adding a statistical correlation to the image quanta
and hence an additional spatial-frequency dependence to the
NPS. These considerations can be important in many imag-
ing detectors, including x-ray image intensifiers, computed
radiography systems and flat-panel active matrix array digi-
tal detectors of various designs, and can be incorporated into
a cascaded model as illustrated in Fig. 9. The single input
(representing a single incident quantum) splits into three par-
allel cascades corresponding to paths A, B and C in Fig. 9,
representing three possible sequences of events whereby light
is generated in the screen: A) light generated at the primary
interaction site when no characteristic K x ray is emitted;
B) light generated at the primary site when a characteris-
tic K x ray is emitted; and, C) light generated at the re-
absorption site. Cascades A and B are connected through
“stochastic branch points” which, for each interaction, de-
termines an outcome “yes” or “no” where “yes” is obtained
randomly with the specified probability and “no” otherwise.
Light emitted from the screen is the sum of contributions
from each path. The corresponding NPS is the sum of the
NPS from each of the three serial cascades plus the cross-
spectral density terms. In this case, the effect of the cross
term was to increase the NPS (and decrease the DQE) at
spatial frequencies below approximately 2 cycles/mm by up
to 10%.

Reabsorption was studied prior to use of the cascaded
model, but required a more complex statistical analysis. For
instance, Metz and Vyborny63 looked at the same radio-
graphic screen and obtained the same result, and Hillen64

has examined reabsorption in an x-ray image intensifier.

E. Digital Imaging Systems

The use of digital imaging systems is now well established
clinically. However, the theoretical tools required to describe
effects such as noise aliasing or a non-unity detector fill fac-
tor remain surprisingly elusive and misused. While the cas-
caded linear-systems approach can be used to describe these
digital systems,28,65 care must be taken to properly handle
the mathematical infinities and generalized functions which
may arise, and to make proper use of the discrete Fourier
transform as a representation of the Fourier transform inte-
gral. As noted earlier, the Fourier approach assumes shift-
invariant imaging systems and WSS noise processes. Bar-
rett et al.66,67 have recently described methods such as the
Fourier crosstalk matrix which provide a direct mapping of
the continuous image space to digital image data, and do
not require shift invariance or WSS noise processes. These
approaches may provide additional insight in the future, par-
ticularly for the analysis of digital imaging systems.

V. CONCLUSIONS

The theoretical representation of signal and noise in med-
ical diagnostic imaging has undergone a revolution so far
as a general approach is concerned. The authors have at-
tempted to illustrate this primarily from the viewpoint of
screen-film systems, where a community concerned mainly
with sensitometry and densitometry has given way to one fo-
cused around modern SNR-based imaging theory, and early
particle-based models of noise pioneered by Rose have been
extended by linking to more comprehensive Fourier-based
models. The development of screen-film systems has reached
the stage where further advances within tightly-bound con-
straints of quantum efficiency, speed, and image quality are
not far from those set by the bounds of physics, as opposed
to the bounds of technology. Indeed, incremental but im-
portant advances in performance now come mainly from the
insight cast by fundamental analysis and evaluation afforded
by modern imaging theory. A further important factor is
due to the parallel development of competing technologies,
especially in the digital domain. A broad-based information-
theoretic imaging theory has thus been essential so that those
concerned with all technologies might continue their dialogue
within a general language. In this context it is worth em-
phasizing the point that far from being a passing fashion,
the major parts of this theory have been in place for almost
half a century. Those who came before - including Al Rose
and his contemporaries - laid a solid foundation, and those in
modern times concerned with transferring this knowledge to
the field of medical diagnostic imaging have had a relatively
straightforward task.
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