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1 Introduction

The problem considered has the following features: a manufacturing company
wants to buy some material that it needs to fulfill its demand over a planning
horizon of n periods, at minimum cost. Here each period may be a 4-hour
production shift, or some other time interval. The deterministic demand for
this material in each period is assumed to be known and given.

Demand data: D1, . . . , Dn in units, in periods 1, . . . , n (1)

Under the JIT (Just In Time) policy, units of material needed in each period
are procured from the suppliers in that period itself to keep inventories low. We
assume that this policy is being followed.

There are m suppliers who can supply this material, however each supplier
has a limited capacity, and can only supply upto the following quantities in each
period.

Supplier Capacity Data kij units
Maximum ith supplier can
supply in jth period, i = 1
to m, j = 1 to n.

(2)

If the total amount of material procured in any period is less than the de-
mand in that period, the difference between them is the shortage in that period.
Shortages can occur, when they do, production is disrupted, the cost of which
is considered high.

Shortage Cost/Unit α$
is cost/unit short in any period (a high
positive number). (3)

Now we define the decision variables whose values are to be determined
optimally. These are:

Amounts Ordered xij units
amount ordered from the ith sup-
plier in jth period, i = 1 to m, j
= 1 to n.

(4)

Shortages sj units
amount of shortage (unfulfilled demand)
in jth period, j = 1 to n. (5)
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Procurement from Suppliers yi = xi1 + . . . + xin

total ordered from
ith supplier, i = 1
to m.

(6)
Now we will describe the supply cost data. The ith supplier’s charges depend

only on yi, the total quantity delivered by him/her over the entire planning
horizon, and are based on the following broad principle of cost discounting
honored universally in the business world: “the higher the quantity purchased,
the lower the per unit cost”. Let

fi(yi) = cost of yi units supplied by ith supplier, i = 1 to m.

Some ways of implementing the above cost discounting principle, discussed
in the literature, lead to discontinuous cost functions. We will however consider
two different realizations of this principle that have found good acceptance from
practitioners and also lend themselves nicely to mutual negotiations between
buyers and sellers, which are:

Incremental Discounting Cost Principle

Here the practical range of values of yi, 0 to some upper limit, is broken up
into disjoint intervals inside each of which the cost per each additional unit
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Figure 1: Piecewise linear concave cost function under incremental discounting.
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remains constant, this constant strictly decreases as you move from one interval
to the next one right of it. This data is displayed in Table 1 (r is the total
number of intervals into which the range of values of yi is broken up). Under
this principle, fi(yi) is a piecewise linear concave function (see Figure 1).

Table 1
Interval of yi Slope (cost/additional unit when yi in interval)

0 to ai1 ci1

ai1 to ai2 ci2

...
...

air−1 to air cir

air is upper limit for yi, & ci1 > ci2 > . . . > cir.

Unit Discounting Cost Principle

Here we assume that the cost per unit material ordered decreases linearly as
yi increases, i.e.,

Cost Data δi − γyi =
cost in $/unit from ith supplier when
quantity ordered is yi, i = 1 to m. (7)
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Figure 2: Concave quadratic cost function under unit discounting.
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In this case we have fi(yi) = yi(δi − γiyi) where γi > 0, and δi > 2γi(ki1+
. . . + kin}) (this latter condition guarantees that the cost per unit ordered never
becomes negative). In this case the cost function fi(yi) is a concave quadratic
function as shown in Figure 2.

Thus the input data for the problem consists of: demand data in eq. (1),
supplier capacity data in eq. (2), shortage cost data in eq. (3), and the supplier
cost data in Table 1 or eq. (7) depending on which cost function is preferred.
The decision variables in the problem are the xij , sj , yi defined in eqs. (4) (5),
(6).

2 The Mathematical Model

The mathematical model for the problem is

Minimize g(x, s, y) =
m∑

i=1

fi(yi) + α(s1 + . . . + sn)

subject to
m∑

i=1

xij + sj = Dj j = 1, . . . , n

yi −
n∑

j=1

xij = 0 i = 1, . . . , m (8)

0 ≤ xij ≤ kij i = 1, . . . , m, j = 1, . . . , n

sj ≥ 0 j = 1, . . . , n

The objective function g(x, s, y) is a concave function. Finding a global
minimum for this problem is a hard problem because it may have local minima
that are not global minima.

Next we will describe a heuristic approach for obtaining a good solution to
this model with an estimate on the likely error.

3 A Heuristic Approach

We will first obtain a good initial feasible solution for the model using a lower
bounding linear approximation for the objective function. This also yields lower
and upper bounds for the global optimum objective value. If the difference
between the bounds is small, this initial feasible solution can be accepted as an
approximation to the optimum and the method terminated. Otherwise, a local
search scheme is carried out to improve on the initial feasible solution.
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Step 1: Finding a good initial feasible solution

1. For each i = 1 to m, select a practical upper bound Yi for the variable yi

based on cost data, supplier’s capacities, past experience, and any other
practical information on the likely optimum value of yi. Then in the
interval of interest 0 ≤ yi ≤ Yi, the linear function ciyi where

ci = fi(Yi)/Yi

is a lower bound for fi(yi) (see Figure 3) for each i = 1 to m.
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Figure 3: Lower bounding linear function for fi(yi) for values of yi in the interval
of interest [0, Yi].

2. Rearrange the suppliers in increasing order of ci. After this permutation,
we will have c1 ≤ c2 ≤ . . . ≤ cm.

We will now minimize the linear objective function
∑m

i=1 ciyi +α
∑n

j=1 sj

subject to the constraints in (8). Since ciyi = ci

∑n
j=1 xij , ci is the cost

coefficient associated with xij in this problem. This is a special problem for
which an optimum solution can be found easily by this simple procedure:
in the following 2-dimensional array, in each column j representing period
j allocate the largest possible nonnegative value to the variables xij i the
order i = 1 to m (top to bottom) taking the upper bound on it in (8) and
the remaining demand in this column into account.
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Table 2: Array for finding an initial feasible solution. Rows rearranged
so that c1 ≤ . . . ≤ cm. Fill demand to the maximum extent possible in
each column separately in the order from top to bottom, noting xij ≤ kij .
At the end make the sj in that column equal to any left over demand.

Period → j = 1 2 . . . n
Supplier i = 1 x11 x12 . . . x1n

c1 c1 . . . c1

2 x21 x22 . . . x2n

c2 c2 . . . c2

...
m xm1 xm2 . . . xmn

cm cm . . . cm

Shortage s1 s2 . . . sn

α α . . . α
Demand D1 D2 . . . Dn

Let (x̄ = (x̄ij), s̄ = (s̄ij)) denote the solution obtained by this procedure.
This is the initial feasible solution for (8). For i = 1 to m, define ȳ = (ȳi),
where ȳi =

∑n
j=1 x̄ij . Then

∑m
i=1 ciȳi + α

∑n
j=1 s̄j is a lower bound for the optimum objective value

in (8).
g(x̄, s̄, ȳ) is an upper bound for the optimum objective value

in (8).

If the difference between the two bounds is small, accept (x̄, s̄, ȳ) as the
approximate optimum solution and terminate. Otherwise go to Step 2.

Step 2: Local search to move to a better solution

Let (x̂ = (x̂ij), ŝ = (ŝj), ŷ = (ŷi)) be the present feasible solution. Look for
a pair of suppliers p and q satisfying the following two conditions.

(i) f ′
p(ŷp) − f ′

q(ŷq) < 0. In the incremental discounting case f ′
p(ŷp) is the right

derivative, and f ′
q(ŷq) is the left derivative here. Also, this difference can

be approximated by fp(ŷp + 1) − fp(ŷp) − (fq(ŷq) − fq(ŷq − 1)).

(ii) It is possible to simultaneously increase yp above ŷp, and decrease yq below
ŷq (this means that there is at least one j such that x̂pj < kpj and x̂qj > 0).

If a pair of suppliers p and q satisfying the above conditions are found, it is
possible to get a better solution than the present (x̂, ŝ, ŷ) by doing the following
for each j = 1 to n:
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replace x̂pj by x̂pj + ∆ and x̂qj by x̂qj − ∆ where ∆ = min{kpj −
x̂pj , x̂qj}.

Repeat this step with the new solution obtained and continue as often as
possible. Each of these steps decreases the objective value strictly.

When we reach a feasible solution where thre is no possibility of carrying out
this local search step, that feasible solution is a local minimum for (8), and the
heuristic algorithm terminates with the final feasible solution as an approximate
optimum for (8).

4 How to Use a Storage Buffer

The model in (8) is based on the assumption that there is to be no storage of
material from one period to the next.

Now, suppose there is a storage buffer available with the following capacity.

Buffer Capacity B units =
maximum number of units
that can be stored, each for
any number of periods.

(9)

When such a buffer is available, shortage in any period could be reduced by
building up some stock in the buffer during earlier periods of excess supply. We
now discuss an approach for utilizing this buffer to reduce the total cost.

In this case, in each period, we may buy material not only to meet demand
in that period, but also to build up stock in the buffer for use in later periods
when the supply may be short. The algorithm for this case will consist of three
steps. In Step 0, we determine how much to buy in each period to make the
shortage cost component of the total cost as small as possible. Then in Steps 1,
2 (which are similar to Steps 1, 2 of Section 3) we minimize the purchase cost
component of the total cost.

Step 0: Finding how much to buy in each period

For j = 1 to n, let

kj =
∑m

I=1 kij = total amount of material available from all sup-
pliers in period j.

The decision variables in the model for this step are
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ξj = amount of material purchased in period j from all suppliers
to meet demand in period j

ηj = amount of material withdrawn from buffer in period j to
meet the demand in period j

sj = amount of shortage (unfulfilled demand) in period j (same
variable as in eq. (5))

uj = amount of material purchased in period j from all suppliers
for storing in buffer

vj = amount of material in storage in the buffer at the end of
period j.

Then the model for minimizing the shortage cost component of the total
cost is

Minimize
n∑

j=1

sj

subject to η1 = 0
ξj + ηj + sj = Dj j = 1, . . . , n

ξj + uj ≤ kj j = 1, . . . , n

vj−1 − ηj ≥ 0 j = 2, . . . , n

v1 − u1 = 0 (10)
vj − (vj−1 + uj − ηj) = 0 j = 2, . . . , n

vj ≤ B j = 1, . . . , n − 1
vn = 0

ξj , ηj , sj, uj , vj ≥ 0 for all j.

The reason for each of the constraints in this model can easily be understood.
This is a linear program (LP) with an optimum solution which can be found

by solving it with any LP software. Let

(ξ̃ = (ξ̃j), η̃ = (η̃j), s̃ = (s̃j), ũ = (ũj), ṽ = (ṽj))

be an optimum solution of this LP. For j = 1 to n, let

D̃ = ξ̃j + ũj .

Then D̃j is the amount to be purchased from all suppliers put together in
period j, j = 1 to n; and we know that it is feasible to purchase these quantities
without encountering any shortages.

Step 1: Finding a good initial feasible solution

In this step, which is similar to Step 1 in the approach discussed in Section
3, we find an initial feasible solution for determining how to allocate the amount
D̃j to be purchased in period j, j = 1 to n, among the various suppliers.

8



Determine the constants ci and rearrange them so that c1 ≤ c2 ≤ . . . ≤ cm

as in Step 1 of Section 3.

Table 3: Array for finding an initial feasible solution. Rows rearranged so
that c1 ≤ . . . ≤ cm. For j = 1 to n, in column j, make xij as large as possible in
the order i = 1 to m (top to bottom) noting xij ≤ kij until their total reaches
purchase quantity D̃j .

Period → j = 1 2 . . . n
Supplier i = 1 x11 x12 . . . x1n

c1 c1 . . . c1

2 x21 x22 . . . x2n

c2 c2 . . . c2

...
m xm1 xm2 . . . xmn

cm cm . . . cm

Quantity to be D1 D2 . . . Dn

purchased

In each column of this array separately, start giving the variables the largest
possible values subject to their upper bound, in the order top to bottom, until
their total reaches the purchase quantity in that period. Let x̄ = (x̄ij) denote the
solution obtained, the initial feasible solution. Let ȳ = (ȳi) where ȳi =

∑n
j=1 x̄ij .

Then

∑m
i=1 ciȳi + α

∑n
j=1 s̃j where s̃j comes from Step 0, is a lower bound

for the optimum total cost.

g(x̄, s̃, ȳ) is an upper bound for the optimum total cost.

If the difference between the two bounds is small, accept (x∗ = x̄, s̃, y∗ = ȳ)
as the approximate optimum solution with its interpretation given at the end
of Step 2, and terminate. Otherwise go to Step 2.

Step 2: Local search to move to a better solution

Starting with (x̄, ȳ) obtained at the end of Step 1, apply Step 2 as described
in Section 3 until an (x∗, y∗) that is a local optimum is obtained. Then accept
(x∗, y∗, D̃, ũ, η̃, s̃) as an approximate optimum with the following interpretations.
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x∗ = (x∗
ij) gives amounts to purchase from various suppliers in various

periods
y∗ = (y∗

i ) total amounts over all periods purchased from the various
suppliers

D̃ = (D̃j) from Step 0, gives total quantities purchased from all sup-
pliers in various periods

ũ = (ũj) from Step 0, gives the quantities to be sent to the buffer
from storage in he various periods

η̃ = (η̃j) from Step 0, gives the quantities to be withdrawn from the
buffer towards the demand in the various periods

s̃ = (s̃j) from Step 0, gives the unfulfilled demand in the various
periods.
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