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Abstract

(Murty and Oskoorouchi [6]) discussed a new sphere method for solving LPs based on

earlier work of (Murty [7, 8]), and showed computational results on it which are very en-

couraging. In this paper we discuss some enhancements to that method and show that

they improve its performance. We also discuss an improved version of that method, Sphere

method-2 which improves the performance by 20% to 40%.
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1 Introduction

Among mathematical models, Linear Programming (LP) is the most commonly used in decision

making applications. The simplex method (Dantzig and Thappa [1]) developed in mid-20th

century, and Interior Point Methods (IPMs) developed in the last quarter of the 20th century

(among them in particular the primal-dual path following IPMs, [2 to 5, 10 to 13]) are currently

the commonly used algorithms for solving LP models in software systems. These software

implementations are able to solve large scale models (those involving thousands of constraints)

within reasonable times, which has made them very popular in practice.

While solving large scale LP models, typically the simplex method takes many steps, however

each of these involves much less work than a step in an IPM. IPMs have been observed to take

much smaller number of steps, and this number grows very slowly with the size of the LP model

being solved; with the result that IPMs have gained the reputation of taking almost a constant

number of steps even as the size of the LP grows.

Both these existing classes of algorithms for LP are based on full matrix inversion operations,

with every constraint in the model appearing in the computational process in every step. In

large scale applications these matrix inversion operations limit the ability of these algorithms to

only those in which the coefficient matrix is very sparse. As the density of the coefficient matrix

increases, typically the effectiveness of these algorithms fades.

LP models which do not have the property of being very sparse do arise in many application

areas, and in some areas the models may be 100% dense. The sphere method for LP developed

in [6] is an IPM that can handle all such models along with the others, without any problems,

because it uses matrix inversion operations very sparingly. In any step of the sphere method only

a small subset of constraints (called the touching set of constraints) appear in the matrix

inversion operations, And redundant constraints, if any in the original model, are automatically

guaranteed never to appear in the touching set. And in our computational experiments, we

observed that the number of iterations taken by the sphere method to solve large scale models

is also very small, and grows very slowly with the size of the model, like in other IPMs.
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The sphere method needs an initial interior feasible solution. Each iteration of the method

begins with the best interior feasible solution obtained at the end of the previous iteration; and

consists of two steps: a centering step, and a descent step.

In concept, the aim of the centering step is to find a ball center, which is an interior feasible

solution with objective value equal to or better than that of the current interior feasible solution,

and is the center of a largest radius ball inside the feasible region of the original LP subject to

the constraint on its center. This centering step takes up most of the computational effort in

the iteration. Once the ball center is obtained, the descent step which is computationally cheap

carries out several descent steps from it, and the iteration stops with the best point obtained in

all these descent steps.

The sphere method [6] considers LPs in the form:

Minimize z = cx (1)

subject to Ax ≥ b

where A is an m × n data matrix; with a known interior feasible solution x0 (i.e., satisfying

Ax0 > b). Strategies for modifying any given LP into this form are discussed in [6]. Let K

denote its set of feasible solutions, and K0 its interior. We assume that c, and each row vector

of A is normalized so that ||c|| = ||Ai.|| = 1 for all i = 1 to m. In [6] the following concepts used

in the sphere method are defined.

Largest inscribed ball B(x, δ(x)) inside K with x as center, for x ∈ K0: It is

the largest ball with x as center that can be inscribed in K, and δ(x) = min{Ai.x−bi :

i = 1 to m} is its radius. So, B(x, δ(x)) = {y : ||y − x|| ≤ δ(x)}.

A ball center of K: It is a point x ∈ K0 such that B(x, δ(x)) is a largest ball that

can be inscribed in K, i.e., x maximizes δ(y) over y ∈ K0.

A ball center of K on the objective plane H = {x : cx = t}: It is a point

x ∈ H ∩ K that maximizes δ(y) over y ∈ H ∩ K.
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The index set of touching constraints in (1), T (x): Defined for x ∈ K0, it

is the set of all indices i satisfying: Ai.x − bi = Minimum{Ap.x − bp : p = 1 to

m} = δ(x). The facetal hyperplane {x : Ai.x = bi} is a tangent plane to B(x, δ(x))

for each i ∈ T (x).

GPTC (gradient projection on touching constraint) directions: Let ci de-

note the orthogonal projection of cT on {x : Ai.x = 0}, i.e., ci = (I − Ai.(Ai.)
T )cT

for i = 1 to m. When the ball B(x, δ(x)) is under consideration, the diections −ci

for i ∈ T (x) are called the GPTC directions at the current center x.

In practice, a ball center of K may not be unique; and in case it is not unique, [6] discusses a

conceptual definition of identifying a specific one among them to be called “the ball center of

K”. This theoretical definition guarantees that for every polytope the ball center is well defined

and unique; and correspondingly the ball center of K on the objective plane H = {x : cx = t}

is well defined and unique for all values of t satisfying H ∩ K0 6= ∅.

[6] also discusses techniques for computing a ball center of K, or a ball center of K on a given

objective plane H, approximately, using a series of line search steps. In each of these steps, at

the current point x̄, the algorithm in [6] selects a direction y which is a profitable direction to

move at x̄, i.e., δ(x̄ + αy) strictly increases as α increases from 0; and determines the optimum

step length to maximize δ(x̄ + αy) over α ≥ 0 (this optimum step length is obtained by solving

a 2-variable LP).

A direction y has been shown in [6] to be a profitable direction at x̄ ∈ K0 iff Ai.y > 0 for

all i ∈ T (x̄), so it easy to check whether any given direction y is a profitable direction at the

current point.

Once a profitable direction y at the current point x̄ has been determined, the optimum step

length α in this direction that maximizes δ(x̄+αy) over α ≥ 0 is ᾱ, where (δ̄, ᾱ) is the optimum

solution of the following 2-variable LP.

Maximize δ

subject to δ − αAi.y ≤ Ai.x̄ − bi i = 1, . . . , m (2)

δ, α ≥ 0
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and δ̄ is the optimum objective value δ(x̄ + ᾱy). So, the line search for the maximum value of δ

in the direction y involves solving this 2-variable LP, which can be carried out efficiently (e.g.,

by the simplex algorithm).

Two procedures for generating profitable directions are discussed in [6], one is LSFN which

selects a direction among those in Γ1 = {±AT
i. : i = 1 to m}. The other is LSCPD which obtains

profitable directions by solving a system of linear equations. For computing a ball center of K

on the objective plane through the current point x̄, only profitable directions y satisfying cy = 0

are considered.

2 Sphere Method 1

We will call the method discussed in [6] as ”Sphere method 1”. In concept, the centering

step in this method has the aim of finding a ball center of K on the objective plane through

the current point. So, the LSFN sequence of steps in it use profitable directions from the set

Γ2 = {±P.i: i = 1 to m}, where P.i is the orthogonal projection of AT
i. on {y : cy = 0}. But

the LSCPD steps in it generate and use profitable directions y which satisfy cy ≤ 0, so some

of them may also decrease the objective value cy. Here is a summary of the centering step in

Sphere Method 1 in general iteration r + 1.

The centering Step in Iteration r+1 in Sphere method 1: Let xr be the initial interior

feasible solution for this iteration. This step consists of a series of line searches in profitable

directions with the aim of finding an x that maximizes δ(x) subject to the constraint cx ≤ cxr.

In each of these line searches, given the search direction, the optimum step length to take in

that direction is determined by solving a 2-variable LP of the form (2) as described above. First

it carries out the LSFN sequence of line searches selecting profitable search directions from the

set of facetal normal directions (the name LSFN comes from this). After the LSFN sequence, it

carries out a LSCPD sequence of line searches using computed profitable directions (the name

LSCPD comes from this). We describe each of these sequences briefly.

The LSFN sequence of line searches: Beginning with the initial point xr, this generates

a sequence of points xr,k, k = 1, 2, ... along which the radius of the ball δ is strictly increasing.
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At the current point xr,k, it selects a profitable directions from the set Γ2 = {±P.1, ...,±P.m},

where P.i = (I−cT c)AT
i. , the orthogonal projection of AT

i. (the direction normal to the facet of K

defined by the i-th constraint in (1)) on the hyperplane {x : cx = 0}, for i = 1 to m, instead of

the set Γ1 as discussed above. So any step length from a point in the current objective plane, in

a direction from Γ2, will keep the point on the current objective plane. The procedure continues

as long as profitable directions for line search are found in Γ2, and this sequence terminates with

the final point which we denote by x̃r.

The LSCPD sequence of line searches: Beginning with the initial point x̃r obtained at

the end of the LSFN sequence, this generates a sequence of points x̃r,k, k = 1, 2, ... along which

the radius of the ball δ is strictly increasing.

When x̃r,k is the current solution, it selects the profitable direction to move to be a solution

of the system of linear equations:

Ai.y = 1 for all i ∈ T (x̃r,k). (3)

satisfying cy ≤ 0. If a solution to this system satisfying cy ≤ 0 is obtained (for details see

Section 4.1 in [6]), the line search is carried out with that solution as the search direction, and

determining the optimum step length to move as in (2); and the procedure continues the same

way with the point obtained at the end of this line search. It can be verified that the index set

of touching constraints T (x̃r,k) grows with k, so the system of linear equations (3) grows by at

least one more constraint after each line search in this sequence. The sequence stops when either

(3) has no solution satisfying cy ≤ 0, or when the set of coefficient vectors of the constraints in

it becomes linearly dependent. That’s why the number of steps in this sequence is at most n.

It is shown in [6] that this entire sequence needs a single matrix inversion, carried out in stages

adding one row and column to the basis matrix at a time. Formulas for efficiently updating the

basis inverse for (3) along this sequence are given in [6]. Let x̄r denote the final point obtained

at the end of the LSCPD sequence, it is the approximate ball center obtained in this centering

step, the iteration moves to the descent step with it.

The descent step in this iteration actually carries out several descent steps labeled D1,

D2, D3, D4, D5.1, and selects the best point obtained from all of them as the output of this
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iteration. Here is a summary of all the descent steps in each iteration of Sphere Method 1 in

general iteration r + 1.

Descent Steps in Iteration r + 1 in Sphere Method 1: Let x̄r denote the approximate

ball center obtained in the centering step of this iteration.

Each descent step carried out in this iteration requires one minimum ratio computation.

For example, consider a descent step from the current center x̄r in the descent direction y (i.e.,

satisfying cy < 0). If the step length is λ, the move leads to the point x̄r + λy. Select a small

positive number ǫ1 as the tolerance for minimum {Ai.x − bi : i = 1 to m} for the point x to be

in the interior of K. Then we will take the step length from x̄r in the direction y to be: (−ǫ1)

+ (the maximum step length possible while remaining inside K), which is

γ = minimum{−Ai.x̄
r+bi+ǫ1

Ai.y
: i such that Ai.y < 0}

and then the point obtained at the end of this descent step will be x̄r + γy if γ is finite.

If γ = ∞, the objective function z(x) is unbounded below in (1), and {x̄r + λy : λ ≥ 0} is a

feasible half-line along which z(x) diverges to −∞ on K. Terminate the method if this occurs.

We now list the various descent steps carried out in this iteration. After each descent step,

include the point obtained at the end of it, along with its objective value, in a List.

D1, Descent Step 1: From the ball center x̄r take a descent step in the direction d1 = −cT .

D2, Descent Step 2: From the ball center x̄r take a descent step in the direction d2 =

x̄r − x̄r−1, where x̄r−1 denotes the ball center computed in the previous iteration r. So, this

direction is the direction of the path of ball centers generated in the algorithm.

D3, Descent Steps 3: Carry out descent steps from the ball center x̄r in each of the GPTC

directions at x̄r. After these descent steps are carried out, define

d3 = direction among the GPTC directions that gives maximum reduction in objec-

tive value when the descent step is taken from the center x̄r.

D4, Descent Step 4: From the ball center x̄r take a descent step in the direction d4 =

(
∑

(−ci : for i ∈ T (x̄r))/|T (x̄r)|, the average direction of all the GPTC directions at x̄r.
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D5.1, Descent Steps 5.1: For i ∈ T (x̄r), let xir denote the orthogonal projection of the

center x̄r on the touching facetal hyperplane {x : Ai.x = bi}; it is the point where this facetal

hyperplane touches the ball B(x̄r, δ(x̄
r)). The points xir for i ∈ T (x̄r) are called the touching

points (TPs) of the ball B(x̄r, δ(x̄
r)) with its touching facetal hyperplanes of K. See Figure 1

1

2

K

P

r
x

ˆ irx

Q

-c
T -c

1

Figure 1: Figure 1: Descent steps in a GPTC direction. Here x̄r is the current center, T (x̄r) =

{1, 2}. Directions −cT pointing down south, −c1 = orthogonal projection of −cT on facetal

hyperplane of constraint 1, are shown. x1r = TP of constraint 1, x̂1r = NTP corresponding to

constraint 1. Descent step from x̄r [x̂1r] in direction −c1 are shown, leading to points P [Q]

respectively. Here Q is a much better point than P .

Let 0 < ǫ < 1 be a small positive tolerance (ǫ = 0.1 works well). Then for i ∈ T (x̄r), the

point on the line segment joining x̄r and xir close to the TP xir,

x̂ir = ǫx̄r + (1 − ǫ)xir

is called the near touching point (NTP) corresponding to the tangent plane {x : Ai.x = bi}

8



of the ball B(x̄r, δ(x̄
r)).

D5.1 consists of |T (x̄r)| descent steps: for each i ∈ T (x̄r), it carries out a descent step in the

GPTC direction −ci from the NTP x̂ir. The output of D5.1, denoted by x̃r1 is the best point

obtained in it.

When all these descent steps are carried out, the best point among the output points of all

the descent steps is the output of this iteration, with that point the method goes to the next

iteration. Just as other IPMs, this method also terminates when the change in the final points

obtained in successive iterations is smaller than some tolerance (i.e., it terminates at the end of

Iteration r + 1 if ||xr+1 − xr||/||xr|| < ǫ, concluding that xr+1 is an optimum solution of (1)).

In Section 3, we will discuss the improved version called Sphere method 2; and in Section 4

we provide our computational results comparing the two methods.

3 Sphere Method 2

In Sphere method 1 the set of feasible solutions considered remains unchanged (i.e., remains the

original K) throughout the algorithm; but the current objective plane {x : cx = t} keeps on

sliding parallely towards decreasing values of t from one iteration to the next. The centering

step in this method in each iteration, has the aim of finding a ball center on the current objective

plane, at least in principle. Even though line search directions y used in LSCPD in the Centering

Step in Sphere method 1 may satisfy cy < 0; all the search directions used in LSFN satisfy cy = 0,

and hence leave the objective value unchanged.

In Sphere method 2, in contrast, the set of feasible solutions K considered is updated by the

current objective value after each iteration, and hence gets smaller. So, to distinguish, we will

denote by Kr, the set of feasible solutions considered in Step r, and we will have Kr ⊂ Kr−1 ⊂ K

for all r. And in the centering step of Sphere method 2, all line search directions used (in both

the LSFN and LSCPD sequences) will both be profitable and strict descent directions for the

original objective function z = cx.

Also, in [9] two additional descent steps, D5.2, D6 to be used in every iteration of the sphere

method have been proposed. Of these D6 performed poorly in comparison with other descent
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steps in preliminary steps, hence we will ignore it. But we will include D5.2 as an additional

descent step in every iteration of Sphere method 2.

The first iteration of Sphere method 2 begins with the initial interior feasible solution x0.

We will now describe the general iteration, Iteration r + 1, in this method.

General Iteration r + 1

The initial point for this iteration is xr, the interior feasible solution obtained at the end of

the previous iteration. Define the set of feasible solutions to be considered for this iteration to

be Kr+1, where

Kr+1 = {x : Ax ≥ b, and cx ≤ cxr + ǫ}

where ǫ is a small positive tolerance parameter. Go to the centering step in this iteration.

Centering Step: The aim of this step is to find a ball center of Kr+1 approximately, as

described earlier (also in Section 2.1 of [6]).

LSFN: The set of facetal normal directions of Kr+1 is Γr+1
1 = {±cT ,±AT

i. : i = 1 to m}.

Apply the LSFN sequence to find a ball center for Kr+1 as described above using profitable

directions for Kr+1 from Γr+1
1 .

LSCPD: This sequence begins with the interior feasible solution obtained at the end of

LSFN.

Let x̂ denote the interior feasible solution in a step of this sequence. The touching constraint

set at x̂ for Kr+1 will typically include the objective constraint in the definition of Kr+1. If it

does not, then apply this sequence as discussed earlier (also described in detail in Section 2.1 of

[6]).

On the other hand, if the touching constraint set includes the objective constraint, let T r+1(x̂)

denote the touching constraint index set for Kr+1. Solve the system
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Ai.y = 1 for all i ∈ T r+1(x̂) (4)

−cy = β

where β is a positive parameter. Earlier (and in Section 2.1 of [6]) we used only β = 1. But

here we will leave it as a parameter which is restricted to take positive values only; and obtain

a solution of (4) as a function of this parameter β. Let this solution be denoted by p + βq.

As in Section 2.1 of [6], if B is a basis associated with the basic vector yB obtained for (4),

let yD denote the vector of remaining nonbasic variables in (4) associated with the basic vector

yB. Let p = (pB, pD), q = (qB, qD) be the partition of the vectors p, q corresponding to the

partition of y into basic, nonbasic parts (yB, yD). Then qD = pD = 0, and qB is the last column

of B−1, and pB is the sum of the remaining columns of B−1.

So, for all β > 0, p + βq is a profitable direction at x̂ for Kr+1. With p + βq as line search

direction, the optimum step length α (maximizing δ(x̂+α(p+βq)), the radius of the maximum

radius ball inscribed in Kr+1 with x̂+α(p+βq) as center) is determined by solving the 3 variable

LP in variables δ, α, γ

Maximize δ subject to

δ − αAi.p − γAi.q ≤ Ai.x̂ − bi, i = 1, ..., m

δ − α(−c)p − γ(−c)q ≤ (−c)x̂ − ((−c)x̂ − ǫ)

δ, α, γ ≥ 0.

Here α, γ will both be > 0 at optimum. Actually this γ is (α)(β).

If (δ̄, ᾱ, γ̄) is an optimum solution of this 3-variable LP, then the point obtained at the end

of this step is x̂ + ᾱp + γ̄q. With that the next LSCPD step is applied again as here, and so on

until the LSCPD sequence is completed,

Let x̄ denote the point obtained at the end of LSCPD, it is the approximate ball center of

Kr+1 obtained in this iteration. See Figure 2.
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Figure 2: Figure 2: K is the original set of feasible solutions of the LP being solved. The current

set of feasible solutions in an iteration when xr is the initial interior feasible solution, is Kr+1.

The ball shown is the largest ball inside Kr+1, and its center x̄ is a ball center obtained in the

centering step in this iteration.

The Descent Steps: With the point x̄ obtained at the end of the centering step, the

iteration moves to the Descent steps in this iteration for the current set of feasible solutions

Kr+1.

It first applies descent steps D1 to D5.1 as described in Sphere method 1 in the current set of

feasible solutions Kr+1. Let x̃r1 denote the best point (by objective value) obtained in descent

steps D1 to D5.1. This x̃r1 is the initial interior feasible solution for Descent Step 5.2 (D5.2).

D5.2, Descent Step 5.2: By the way the descent steps are carried out, it is clear that

x̃r1 is close to the boundary of Kr+1, and δ(x̃r1) ≤ ǫ1. Find the touching set T (x̃r1) = set

of all constraint indices for the current set of feasible solutions that tie for the minimum in

{Ai.x̃
r1 − bi : i = 1 to m; −cx̃r1 + cxr + ǫ }.

For each i ∈ T (x̃r1), from x̃r1 take a descent step in the GPTC direction −ci and include

the resulting point along with its objective value in a new List 5.2.
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At the end, let x̃r2 denote the best point in List 5.2 by objective value. If cx̃r1 − cx̃r2 is:

≤ some selected tolerance for objective value reduction, take x̃r2 as the output of

this Descent Step 5.2, put x̃r2 along with its objective value in the List.

> the selected tolerance for objective value reduction, with x̃r2 as the initial interior

feasible solution repeat this Descent Step 5.2; and continue the same way.

When all these descent steps are carried out, the best point among the outputs of all the

descent steps carried out in this iteration, is the output of this iteration. With that point the

method goes to the next iteration. Termination criteria are the same as in Sphere method 1, as

described in [6].

Instead of giving β the specific value 1 as in earlier methods, leaving it as a positive parameter

in (2), improves the performance of the centering step in Sphere method 2.

4 Preliminary Computational Results on Sphere Methods 1 and

2

In this section we discuss the results of our computational tests on sphere methods 1 and 2.

Broadly these results indicate that Sphere method 2 is up to 40% better than Sphere method 1.

We use MATLAB 7.0 routines to implement various steps of Sphere methods 1, 2, and

test their performance on some randomly generated problems. We use the MATLAB function

“randn” that generates random numbers from the Standard Normal distribution to generate

entries of the coefficient matrix, and vector c. To ensure feasibility of the LP generated, we use

the function “−rand” that generates random numbers from the Uniform distribution in (−1, 0)

for the vector b. To ensure boundedness we include box constraints l ≤ x ≤ u, where l and u

are n-vectors with negative and positive random entries respectively.

We run our test problems on a laptop computer with Intel(R) Pentium(R) M processor

2.00GHz and 2.00 GB of RAM.
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Sphere Method 1 Sphere Method 2

r nfn npd δ cxr+1 tr nfn npd δ cxr+1 tr

1 72 49 2.1251 -0.4107e+3 7.2 13 25 2.1265 -0.6612e+3 2.4

2 61 50 1.9469 -0.7898e+3 6.7 19 39 1.7077 -0.9782e+3 2.9

3 34 50 1.3899 -1.0505e+3 5.3 3 41 1.0402 -1.1650e+3 2.6

4 28 39 0.8184 -1.2056e+3 4.1 1 40 0.5175 -1.2576e+3 2.2

5 17 42 0.3751 -1.2783e+3 4.7 1 42 0.2274 -1.2985e+3 2.3

6 10 34 0.1500 -1.3077e+3 3.5 1 39 0.0925 -1.3152e+3 2.1

7 10 34 0.0594 -1.3194e+3 3.5 1 31 0.0386 -1.3225e+3 1.6

8 0 26 0.0231 -1.3249e+3 2.5 0 14 0.0139 -1.3255e+3 0.8

9 0 4 0.0028 -1.3256e+3 0.9 0 9 0.0045 -1.3266e+3 0.5

10 0 4 0.0009 -1.3259e+3 0.9 0 3 0.0009 -1.3268e+3 0.2

11 0 1 0.0005 -1.3261e+3 0.2 0 2 0.0003 -1.3270e+3 0.1

12 0 1 0.0004 -1.3262e+3 0.2 0 1 0.0000 -1.3271e+3 0.0

Table 1: Comparison of Sphere methods 1 and 2 on a random problem with m = 150 and n = 50

Table 1 compares the results of implementing Sphere methods 1 and 2 on a randomly gener-

ated problem with 50 variables and 150 constraints. In this table nfn and npd show the number

of calls to LSFN and LSCPD respectively, δ is the final value of the radius of the largest sphere

inscribed in the feasible region, cxr+1 is the objective value at the end of iteration r, and tr is

the cpu time (in seconds) of iteration r.

The results of this table clearly show the superiority of Sphere method 2. The most expensive

step in sphere methods is the centering procedure. Table 1 shows that the number of calls to

LSFN and LSCPD is substantially reduced in Sphere method 2. Moreover, the new centering

strategies discussed in Sphere method 2 make LSFN and LSCPD more efficient which is the

reason that the cpu time of each iteration of Sphere Method 2 is significantly lower than that

of Sphere Method 1.

Furthermore, the new centering strategies along with the new descent step D5.2 result in

higher reduction in objective value in each iteration, especially in early iterations. This can be

seen by comparing the objective values at the end of the first iteration. Both methods start
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r cxr cxr+1
d1 cxr+1

d2 cxr+1
d3 cxr+1

d4 cxr+1
d5.1 d cxr+1

1 0 -33.0105 -3.4812 -37.4422 -33.8997 -36.5396 D3 -38.6064

2 -38.6064 -65.3938 -62.4668 -66.4183 -65.5638 -67.0769 D5.1 -67.5056

3 -67.5056 -74.6753 -76.8942 -75.4481 -74.7344 -75.8154 D2 -77.7214

4 -77.7214 -87.1767 -79.4884 -88.4101 -87.4187 -87.7793 D3 -88.6782

5 -88.6782 -93.8010 -90.2221 -94.0660 -93.8170 -94.6348 D5.1 -94.6580

6 -94.6580 -97.2274 -96.0250 -97.5224 -97.2404 -97.5320 D5.1 -97.5517

7 -97.5517 -98.9134 -97.8257 -99.0256 -98.9192 -99.2543 D5.1 -99.3225

8 -99.3225 -99.6955 -99.4039 -99.7263 -99.6970 -99.8143 D5.1 -99.8180

9 -99.8180 -100.0458 -99.8597 -100.1033 -100.0468 -100.0808 D3 -100.1229

10 -100.1229 -100.2347 -100.1355 -100.2496 -100.2368 -100.2770 D5.1 -100.3031

11 -100.3031 -100.3269 -100.3046 -100.3324 -100.3271 -100.3346 D5.1 -100.3376

12 -100.3376 -100.3376 -100.3376 -100.3376 -100.3376 -100.3378 D5.1 -100.3378

Table 2: Descent steps in Sphere method 2 based on D1 to D5.2 on a random problem with

m = 500 and n = 50

from zero as an initial objective value. At the end of iteration 1, Sphere method 2 reduces

the objective value 60% more than that of Sphere method 1. Although such superiority is not

observed subsequently, but the objective value of Sphere method 2 is better throughout the

algorithm.

Notice that at most iterations the value of δ in Sphere method 2 is smaller than that of Sphere

method 1. This is due to the fact that at each iteration the approximate ball center obtained in

Sphere method 2 is closer to the optimum solution of the original LP and its updated feasible

region gets smaller as the algorithm progresses.

Table 2 shows the results of descent steps D1 through D5.2 of Sphere method 2 on a randomly

generated problem with 50 variables and 500 constraints. This instance problem is solved in

12 iteration. In this table cxr is the objective value in the beginning of iterations r, cxr+1
di , for

i = 1, , 2, 3, 4, 5.1, illustrate the result of the objective value at the point obtained from D1 to

D5.1, d is the descent step that produced the best point among D1 to D5.1, and the last column
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Variables Constraints Sphere Method 1 Sphere Method 2 Simplex Method

n m cpu time (sec.) cpu time (sec.) cpu time (sec.)

500 43 27 74

50 1000 40 29 122

1500 42 32 360

700 136 108 241

100 1200 175 133 524

1700 342 256 892

900 1297 973 1587

200 1200 1091 892 3520

2000 1180 923 4921

1800 1721 1237 7590

300 2500 1380 1020 9884

3000 1232 951 9999

Table 3: Comparison of CPU time for randomly generated problems with m >> n for Sphere

methods 1 and 2 and Simplex method.

shows the result of the descent step after implementing D5.2 at the end beginning with the best

point obtained from D1 to D5.1. Since D5.2 can be carried out very cheaply we implement this

step at the end of the descent step. Notice that D5.2 either improves the objective value or

doesn’t change it. Therefore the result of D5.2 is indeed the final value of the objective function

at the end of iteration r, that is cxr+1. Observe that in most of the iterations descent step D5.1

gave the best point among D1 to D5.1, and D5.2 slightly improves the objective value.

In Table 2, observe that at the end of the first iteration, Sphere method 2 improves the

current point by about 40% (from 0 to -38.6064), and by the end of the fifth iteration a 95%

improvement is achieved. We tried several examples and the same behavior was more or less

observed in all instances where there exist too many constraints. This observation suggests that

Sphere method 2 is particularly efficient in problems where m >> n.
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In Tables 1 and 2 we showed that Sphere method 2 has superiority over Sphere method 1

in terms of number of iterations in centering procedure as well as the objective value at each

iteration. We now show that Sphere method 2 also outperforms Sphere method 1 and Simplex

method in terms of overall cpu time.

Table 3 compares the cpu time (in second) of Sphere methods 1 and 2 and the Simplex

method. We tested on random problems with moderate number of variables (up to 300) and

large number of constraints (up to 3000). The first two columns of the table illustrate the number

of variables and the number of constraints respectively, and the last three columns report the

cpu time of Sphere method 1 and 2 and simplex method respectively. The results of the test

problems reported in this table suggest that the improvement of Sphere method 2 over Sphere

method 1 varies between 20% to 40%. This observation is very encouraging and it shows that

the combination our new centering strategy and descent steps discussed in this paper works well

in practice.

5 Conclusion

We presented some preliminary computational results on implementing Sphere Methods 1, 2 by

solving each step in these methods using MATLAB 7.0 routines separately; and compared this

performance with that of MATLABs finished LP code “linprog” based on the simplex method.

The results show that even this implementation of the sphere methods performs much better

than “linprog”.

To compare the sphere methods with existing IPMs will require developing a low-level pro-

gramming language code for them using advanced techniques of numerical linear algebra, and

updating the basis inverse in LSCPD steps as the matrix grows by a row and column as de-

scribed above; which we have not done in these preliminary experiments. But these preliminary

results, and the fact that the work in each iteration of Sphere method 2 is much simpler than

an iteration of other IPMs indicates that Sphere method 2 will have advantage over them for

solving large scale models, in particular when the models may have redundant constraints, or a

coefficient matrix that is not very sparse.
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