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Abstract

Existing software implementations for solving Linear Programming (LP) models are all

based on full matrix inversion operations involving every constraint in the model in every

step. This linear algebra component in these systems makes it difficult to solve dense

models even with moderate size, and it is also the source of accumulating roundoff errors

affecting the accuracy of the output.

We present a new version of the Sphere method, SM- 7, for LP not using any pivot steps;

and computational results on it.

Key words: Linear Programming (LP), Interior point methods (IPMs) , solving LPs by

descent feasible methods without using matrix inversions.

1 Sphere Method, SM-7, for LP

In 2006, Sphere methods for LP, IPMs based on the properties of spheres (instead of ellipsoids

like in other IPMs) were introduced in Murty [2006a, b]. The initial version of the sphere

method also needed pivot steps for matrix inversions, but these pivot steps only involve a subset
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of constraints in the original LP. After some other versions, in this paper we describe SM-7, not

involving any pivot steps.

SMs consider LPs in the form:

min z = cx (1)

subject to Ax ≥ b

where A is an m × n data matrix; with a known interior feasible solution x (i.e., satisfying

Ax > b). LPs in any other form can be directly transformed into this form, see [Murty 2009a,

b], Murty, Oskoorouchi [2010]. Here is some basic notation that we will use.

• Notation for rows and columns of A: Ai., A.j denote the ith row, and jth column of

A. The index i has range 1 ≤ i ≤ m, and j ranges in 1 ≤ j ≤ n.

• Feasible region and its interior: K denotes the set of feasible solutions of (1), and

K0 = {x : Ax > b} is its interior.

• Facetal hyperplanes, and their half-spaces containing K: FHi = {x : Ai.x = bi},
the i-th facetal hyperplance of K for i = 1 to m. Also, FH+

i = {x : Ai.x ≥ bi} is the

half-space of FHi containing K.

• IFS: Interior feasible solution, a point x ∈ K0

• δ(x) : Defined for x ∈ K, it is the radius of the largest ball inside K with x as center.

From Murty [2006a, b], we know that δ(x) = minimum{Ai.x−bi
||Ai.|| : i = 1, ...,m}. For any

point x on the boundary of K , i.e., satisfying at least one of the constraints in (1) as an

equation, δ(x) = 0 by this definition.

• Largest ball inscribed in K with a given IFS x as center: B(x) = {y : ||y − x|| ≤
δ(x)} is that largest inscribed ball in K with x as its center.

• Touching constraint index set at a given IFS: T (x) defined for x ∈ K0, is the set

of all indices i satisfying: Ai.x−bi
||Ai.|| = Minimum{Ap.x−bp

||Ap.|| : p = 1 to m} = δ(x). The facetal
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hyperplane FHi = {x : Ai.x = bi} is a tangent plane to B(x) for each i ∈ T (x), that’s why

T (x) is called the index set of touching constraints in (1) defining K, at x.

• Touching point xi : Defined for x ∈ K0 and i ∈ T (x), it is the nearest point on FHi to

x, it is the orthogonal projection x − AT
i. (Ai.x − bi)/||Ai.||2 of x on FHi. It is the point

where the ball B(x) touches FHi for i ∈ T (x).

• NTP (Near Touching Point) corresponding to i ∈ T (x) : Defined for x ∈ K0 and

i ∈ T (x), it is the point (1− ε)xi + εx; ε distance away from the touching point xi on the

line segment joining xi to x, where ε is a small positive tolerance.

• H(x̂) : Defined for any IFS x̂ ∈ K0, H(x̂) = {x : cx = cx̂} is the objective plane through

x̂

• ¯̂x : Defined for any IFS x̂ ∈ K0, it is = x̂− δ(x̂)cT /||c|| = the bottom point of B(x̂) in the

direction −cT , the point where the objective plane touches B(x̂) when it is moved down

from its present position H(x̂), in the direction −cT until it becomes a tangent plane to

B(x̂)

• ¯̂ix : Defined for any IFS x̂ ∈ K0 and i ∈ T (x̂), it is = x̂i − cT [(cx̂i − c¯̂x)/ccT ] = the

orthogonal projection of x̂i on H(¯̂x).

• ci : For i = 1 to m, ci = cT − AT
i. [(Ai.c

T )/(Ai.A
T
i. )], the orthogonal projection of cT on

{x : Ai.x = 0}.

• The set Γ : This set is used to store the output points along with the value for the

objective function cx at them, from various descent steps in each iteration; with Γ = ∅
at the beginning of the iteration. At the end of the descent cycle, the best point in Γ by

objective value is taken as the output point in the iteration.

• α, γ: The parameter α with some subscripts, or superscripts, or both, is used to denote

various points along selected straight lines in the algorithm. The parameter γ with some

subscripts is used to denote the step lengths in descent steps in the algorithm.
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Figure 1: x̂ is an IFS of K, B(x̂) is the largest sphere with center x̂ as center inside K. ¯̂x is

the point in B(x̂) with the smallest value for cx, and H(¯̂x) is the objective plane through ¯̂x, it is

the tangent plane to B(x̂) at ¯̂x. Facets 1, 2 of K are tangent planes to B(x̂) with touching points

x̂1, x̂2 respectively, so T (x̂) = {1, 2}. ¯̂1x is the orthogonal projection of x̂1 on H(¯̂x). Thanks to

Madhusri Katta, Vijaya Katta for Figures 1, 2, 4.

SM-7 is based on feasible descent steps (starting with a feasible solution, maintaining fea-

sibility throughout, with objective value improving monotonically), but not using any pivot

steps at all. The 1st iteration begins with the given IFS x̂, all subsequent iterations begin with

the best solution (by objective value) obtained in the descent steps in the previous iteration.

Each iteration of this method consists of 2 steps, a Centering step, followed by a descent cycle

consisting of several descent steps.
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2 A General Iteration in the Sphere Method, SM-7, for the LP

(1)

In every iteration of SM- 7, we face a problem of finding the interval of values of a real parameter ν

say, satisfying a given system of linear inequalities in the parameter. Now we give the procedure,

we will call it Subroutine 1 for computing this interval.

Subroutine 1: Let the system of inequalities in ν be

at + gtν ≥ 0, t = 1, ..., ` (2)

In systems like this that we encounter in SM- 7; for any t if gt = 0, at will be ≥ 0, and hence

that constraint is a redundant constraint in the system. Let

ν1 = maximum{(−at/gt) : over all t satisfying gt > 0}
ν2 = minimum{(−at/gt) : over all t satisfying gt < 0}

Here define the maximum [minimum] in the empty set to be −∞[+∞] respectively. If

ν1 > ν2 system (2) has no solution. Otherwise the required interval for ν feasible to this system

is ν1 ≤ ν ≤ ν2.

Now we will describe the general iteration in this method beginning with an initial IFS x̂.

2.1 Centering step

The centering step beginning with the initial IFS x̂ consists of 2, 3 repitions of the following

substep:

Substep: Find δ(x̂), T (x̂). If δ(x̂) is too small, in implementing this algorithm go to 1.

Implementation detail below. Otherwise go to 2 below.
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1. Implementation detail: Llet H(x̂) = {x : cx = cx̂} , the objective plane through x̂.

Find

d0 = (
∑

i∈T (x̂)A
T
i )/||T (x̂|| = direction given by average of directions orthogonal to the facetal

hyperplane {x : Ai.x = bi} towards the feasible region, for i ∈ T (x̂).

Let d00 be the orthogonl projection of d0 on the plane {x : cx = 0}. So d00 = d0 −
cT (cd0)/||c||2, therefore cd00 = 0. In x̂ + αd00, increasing the value of α from 0 typically helps

increase δ(x̂ + αd00) while keeping c(x̂ + αd00) = cx̂. Now find the value of α maximizing

δ(x̂+αd00) subject to α ≥ 0 , and satisfying feasibility of x̂+αd00 to (1). This is the 2-variable

LP:

max δ

subject to δ||Ap.|| − α[Ap.d
00] ≤ Ap.x̂− bp p = 1, ...,m

and δ ≥ 0, α ≥ 0

For (δ, α) feasible to this system, the constraint δ ≥ 0 in the system implies that x̂+αd00 will

be feasible to (1). If the optimum solution of this 2-variable LP is (δ0, α0) then with (x̂+ α0d
00

as the initial IFS continue. For ease of notation, let us discuss the rest of this Substep with x̂

denoting this initial IFS.

2. Substep Continued: Find δ(x̂), T (x̂), ¯̂x, and ¯̂ix for each i ∈ T (x̂).

If ¯̂x is a boundary point of K, i.e. satifies Ai.
¯̂x = bi for some i = 1 to m, then H(¯̂x) must

be the same as {x : Ai.x = bi}, so ¯̂x is an optimum solution of the origional LP, terminate the

algorithm with this conclusion. Otherwise ¯̂x is an IFS of K, continue.

For each i ∈ T (x̂) find using Subroutine 1, the interval of values of the parameter α satisfying

Ap.(α¯̂x+ (1− α)x̂i) ≥ bp for p = 1 to m.
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This interval includes 0 ≤ α ≤ 1 since for these values of α the point α¯̂x + (1 − α)x̂i is on

the line segment joining x̂i to ¯̂x. Suppose this interval is 0 ≤ α ≤ αi2.

If αi2 =∞ for any i ∈ T (x̂), then the objective function in the original LP (1) divergs to −∞
along the half-line {(α¯̂x+ (1− α)x̂i) : α ≥ 0}, terminate the algorithm with this conclusion.

Otherwise continue.

For each i ∈ T (x̂), x̂i2 = αi2 ¯̂x+ (1−αi2)x̂i is the other boundary point of K on the straight

line joining x̂i to ¯̂x.

If c¯̂x - minimum{cx̂i2: i ∈ T (x̂)} is > some tolerance for decrease in objective value in

an iteration, then in this case let r be a value of i attaining the minimum above; terminate this

iteration and with x̃ = ¯̂x+ (1− ε0)(x̂r2 − ¯̂x) as the new initial IFS, where ε0 is a small positive

tolerance, go to the next iteration.

Otherwise define x̃, r as in the previous line and continue.
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Figure 2: x̂ is an IFS of K, B(x̂) is the largest sphere with center x̂ as center inside K. ¯̂x

is the point in B(x̂) with the smallest value for cx, and H(¯̂x) is the objective plane through ¯̂x,

it is the tangent plane to B(x̂) at ¯̂x. Facets 1, 2 of K are tangent planes to B(x̂) with touching

points x̂1, x̂2 respectively, so T (x̂) = {1, 2}. The lines joining x̂1, x̂2 to ¯̂x intersect the boundary

of K again at x̂12, x̂22 respectively. cx̂12 = minimum{cx̂12, cx̂22}. So the index r defined above is
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1 in this example. The point x̃ on the line joining x̂12, x̂1 is shown in the figure, and B(x̃) is the

largest sphere with center x̃ inside K. ỹ is the boudary point of B(x̃) with the smallest value for

the objective function cx inside B(x̃). y1, y2 are orthogonal projections of x̂1, x̂12 respectively

on H(ỹ), the objective plane through ỹ. In this example both y1, y2 are outside K. L is the

straight line joining y1, y2, in this 2-dimensional example L is the same as H(ỹ). L ∩K is the

line segment joining xC(α1), xC(α2).

Find δ(x̃), ỹ = x̃− δ(x̃)cT /||c|| = the point where the objective plane touches B(x̃) when

it is moved down in the direction −cT to become a tangent plane to B(x̃). Let y1, y2 be the

orthogonal projections of x̂r, x̂r2 on the objective plane H(ỹ). Let

xC(α) = y1 + α(y2 − y1) and L = {xC(α): α real parameter}

L is the straight line joining y1, y2 on the objective plane H(ỹ). Find L ∩ K = {xC(α):

α1 ≤ α ≤ α2}, where α1, α2 are the minimum and maximum values of the parameter α feasible

to the system of linear inequalities

Ap.xC(α) ≥ bp, p = 1 to m

which can be calculated using Subroutine 1. Clearly α2 − α1 > 0. Now we solve the line

search problem: maximize δ(xC(α)) over the interval α1 ≤ α ≤ α2.

There are two different approaches for solving it, which we will discuss below.

Approach 1: By solving a 2-variable LP: We verify that Ap.xC(α) = Ap.y
1 +αAp.(y

2−
y1), and from the definition of δ(x) for x ∈ K, we can see that this problem is the same as the

2-variable LP in the variables δ, α:
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max δ

subject to δ||Ap.|| − α[Ap.(y
2 − y1)] ≤ Ap.y

1 − bp p = 1, ...,m (3)

and δ ≥ 0, α1 ≤ α ≤ α2

The maximum value of the variable δ in this 2-variable LP is the maximum value of δ(xC(α))

over the interval α1 ≤ α ≤ α2.

Approach 2: Using a Line Search algorithm: Using the formula δ(xC(α)) = Minimum

{(Ap.xC(α) − bp)/||Ap.|| : p = 1 to m} to compute δ(xC(α)) for any value of α in the interval

α1 ≤ α ≤ α2, we can use a popular line search algorithm like “Quadratic interpolation” (also

known as“Quadratic fit line search method” ) in Nonlinear Programming for solving this problem

of maximizing δ(xC(α)) over the interval α1 ≤ α ≤ α2 (for example see Pages 558-560 in [1]).

Let ᾱ be the optimum value for α obtained for this problem. Then the output point of this

substep is ¯̂xC = xC(ᾱ).

If the maximum value of δ in this problem is +∞, then clearly cx is unbounded below on

K, terminate the algorithm with this conclusion. Otherwise the maximum value of δ is finite,

continue.

Now repeat this substep with ¯̂xC as the initial IFS instead of x̂. It can be repeated a few

more times like this, as long as the δ-value at the output point keeps increasing or if the objective

value decreases at a good rate. The output point at the end of the final repetition of this substep,

denoted by ¯̂̄xC , is called the Center in this iteration in SM-7. With it go to the Descent Steps.

2.2 Descent Steps:

For simplicity, in this step we will denote the center obtained in this iteration by the symbol

x̄. In keeping with the notation developed in Section 1, x̄i denotes the orthogonal projection

of x̄ on FHi for i ∈ T (x̄), ¯̄x the bottom point of B(x̄) in the direction −cT , ¯̄ix the orthogonal

projection of x̄i on H(¯̄x). If ¯̄x is a boundary point of K, i.e. satifies Ai. ¯̄x = bi for some i =
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1 to m, then H(¯̄x) must be the same as {x : Ai.x = bi}, so ¯̄x is an optimum solution of the

origional LP, terminate the algorithm with this conclusion. Otherwise ¯̄x is an IFS of K, continue.

A General Descent Step

In this method, descent steps are taken both from IFSs of K, and also from some points

outside of K; and the output point of each descent step will be an IFS of K. Consider a descent

step from a point x in a descent direction d, i.e., a direction satisfying cd < 0.

If x is an IFS of K, the maximum possible step length γ2 from x in the direction d inside K is

the maximum value of γ satisfying Ai.(x+γd) ≥ bi for all i = 1 to m; which is minimum{(bi−
Ai.x)/(Ai.d) : over all i = 1 to m satisfying Ai.d < 0}.

If {i : 1 ≤ i ≤ m : Ai.d < 0} = ∅, then this step length γ2 = +∞; we terminate the

algorithm with the conclusion that the objective function cx in (1) is unbounded below on

K, with {x + γd : γ ≥ 0} providing a feasible half-line along which cx diverges to −∞. If

{i : 1 ≤ i ≤ m : Ai.d < 0} 6= ∅, Then the maximum step length is γ2 defined above. We take

the actual step length to be γ2 − ε, where ε is a small positive tolerance, to make sure that the

output point of this step is an IFS; leading to the output point x + (γ2 − ε)d, with its objective

value of c(x + (γ2 − ε)d).

Now consider the case in which x is not an IFS of K, and may be even a point outside of K.

Let M = the half-line {x + γd : γ ≥ 0}. In this case we need to make sure that M intersects K

in its interior, as otherwise this descent step cannot produce a desired output point no matter

what the step length is. For this the following conditions must hold.

Condition 1: If there is an 1 ≤ i ≤ m satisfying Ai.d = 0, we must have Ai.x− bi > 0.

Condition 2: Min{(bi − Ai.x)/(Ai.d) : over all i satisfying Ai.d < 0} > Max{(bi −
Ai.x)/(Ai.d): over all i satisfying Ai.d > 0}. This can be seen as a requirement from Subrou-

tine 1.
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In SM- 7, the point x from which the descent steps is taken, and the descent direction d will

both be selected so that both these conditions will hold.

In this case if {i : 1 ≤ i ≤ m and Ai.d < 0} = ∅, the maximum step length in this descent

step is +∞, and hence the original objective function cx in (1) is unbounded below on its set of

feasible solutions; and x + γd : γ ≥ max{0, (bi−Ai.x)/(Ai.d) : over all i satisfying Ai.d > 0}
provides a feasible half-line along which cx divereges to −∞ in K, terminate the algorithm with

this conclusion.

Otherwise, take the step length to be γ2 − ε = min{(bi − Ai.x)/(Ai.d) : over all i satisfying

Ai.d < 0} − ε. So, the output point of this descent step in this case is x + (γ2 − ε)d with the

objective value at it = c(x + (γ2 − ε)d).

Descent Steps in SM-7

From the center x̄ obtained in this iteration, several descent steps are carried out, and the

output point in each of these descent steps is stored along with the objective value at it in a set

Γ (which is initially ∅ ) set up to collect all the output points of descent steps carried out in this

iteration. Here are some of the possible descent steps, the most productive among them need

to be determined through computational tests.

(a). From the center x̄ take descent steps in the directions −cT , average of −ci for i ∈ T (x̄),

avearge of vectors in the set {AT
i. : i ∈ T (x̄) and satisfying cAT

i. < 0} ∪ {−AT
i. : i ∈ T (x̄) and

satisfying cAT
i. > 0}, and (current center x̄) −(center obtained in the previous iteration) [this

direction called the direction of the path of centers being generated, is only used from iteration

2 onwards].

(b). Descent Steps D5.1: For each i ∈ T (x̄) the point (1−ε)x̄i+εx̄ , ε distance away from

the touching point x̄i on the line segment joining it to x̄, is known as the NTP (Near Touching

Point) corresponding to that index i ∈ T (x̄). For each i ∈ T (x̄), take a descent step from the

NTP corresponding to it in the direction −ci.
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(c). Descent steps D5.7: For this step in this iteration define for each i ∈ T (x̄), and for

parameter α ∈ R1

xi(α) = ¯̄ix+ α(¯̄x− ¯̄ix) (4)

For each i ∈ T (x̄), let us, as in the Substep discussed in Section 2.1, denote the line segment

joining ¯̄x and ¯̄ix contained on the objective plane H(¯̄x) by Li = {xi(α) : α ∈ R1}, in parametric

representation with parameter α.

Since xi(α = 1) = ¯̄x , an interior point of K, Li passes through the interior of K, it must

intersect K at two boundary points of K if Li ∩K is a line segment. To find those boundary

points of Li ∩K we need to solve the following system of linear inequalities in the parameter α:

Ap.x
i(α)− bp = Ap.

¯̄ix− bp + αAp.(¯̄x− ¯̄ix) ≥ 0 for p = 1 to m.

This system can be solved using Subroutine 1. Let αi1 ≤ α ≤ αi2 be the values of the

parameter α feasible to this system. There are two cases to consider here.

Case 1: Either αi1 = −∞, or αi2 = +∞: αi1 will be −∞ [ αi2 will be +∞ ] if Ap.(¯̄x− ¯̄ix) ≤ 0

[ Ap.(¯̄x − ¯̄ix) ≥ 0 ] for all p = 1 to m. In both instances consider the case in which all the

inequalities hold as strict inequalities.

If Ap.(¯̄x− ¯̄ix) < 0 for all p = 1 to m, then from the definition of δ(xi(α)), it can be verified

that it diverges to +∞ as α → −∞. And then the point xi(α)− δ(xi(α))cT /||c|| is feasible for

all α→ −∞ and the objective value at it diverges to −∞. In fact if β is a small positive number

< min{−Ap.(¯̄x − ¯̄ix) : p = 1 to m}, then the growth rate in δ(xi(α)) as α decreases is going

to be larger than β; and the half-line {¯̄xi + [(¯̄x − ¯̄xi) + β(−cT )]α : α ≤ αi2} is feasible and the

objective value diverges to −∞ along it.

If αi2 = +∞ and Ap.(¯̄x − ¯̄ix) > 0 for all p = 1 to m; using the same argument with the

change of “α negative” by “α positive”, it can be verified that the same conclusion holds. So,

we terminate the algorithm with this conclusion in this case.
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If there is a p between 1 to m satisfying Ap.(¯̄x− ¯̄ix) = 0, when αi1 = −∞ [ αi2 = +∞ ], for

some α < 0 [ α > 1 ] carry out the descent steps in (a), (b) from xi(α), store the output points

in the set Γ. Terminate this iteration, and with the best point in Γ by objective value at this

stage, as the initial IFS, go to the next iteration.

Case 2: Suppose αi1 < αi2 are both finite. For simplicity let us denote xi(αi1), x
i(αi2) by

xi1, xi2 respectively. So in this case Li ∩K is the line segment [xi1, xi2] joining xi1, xi2. Define

x0i(α) = xi1 + α(xi2 − xi1)

Therefore Li = {x0i(α) : α ∈ R1} and Li ∩ K = {x0i(α) : 0 ≤ α ≤ 1}. When α 6∈ [0, 1],

even though the point x0i(α) is outside of K, it is possible that a descent step taken from that

x0i(α) in the direction −cT leads to an output point in K. The condition to be satisfied for this

is that x0i(α) +λ(−cT ) is in K for some λ ≥ 0. Denote the interval of values of α satisfying this

property by ᾱi1 ≤ α ≤ ᾱi2. We know that this interval includes [0, 1] , so ᾱi1 ≤ 0, ᾱi2 ≥ 1.

There are three subcases to consider here. Here the subscripts p, t are both ≥ 1, and ≤ m.

Subcase 1: I1 = {p : Ap.(−cT ) > 0} = ∅. So Ap.(−cT ) ≤ 0 for all 1 ≤ p ≤ m. In this sub-

case for each p, the quantity Ap.(x
0i(α)+λ(−cT )) keeps decreasing as λ increases from 0. So, for

this quantity to be ≥ bi for some λ ≥ 0, it must be ≥ bi for λ = 0. So we need Ap.x
0i(α)−bp ≥ 0

for all 1 ≤ p ≤ m. So in this case the interval is ᾱi1 = 0 ≤ α ≤ ᾱi2 = 1. Go to the next i ∈ T (x̄)

beginning with equation (4). If this work has been completed for all i ∈ T (x̄), go to Section 2.2.1.

Subcase 2: I2 = {p : Ap.(−cT ) < 0} = ∅. So, Ap.(−cT ) ≥ 0 for 1 ≤ p ≤ m. For any

0 ≤ α ≤ 1 the descent step from x0i(α) ∈ K in the direction −cT has step length = +∞ in this

case, since Ap.(x
0i(α)− bp + λAp.(−cT ) ≥ 0 for all λ ≥ 0, 1 ≤ p ≤ m in this case.

So for any 0 ≤ α ≤ 1, {x0i(α) + λ(−cT ) : λ ≥ 0} is a feasible half-line along which the ob-

jective function cx in (1) diverges to −∞. So, we terminate the algorithm with this conclusion

in this subcase.
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Subcase 3: Both I1, I2 are nonempty. In this Subcase it can be seen that both αi1 ≤ 0,

αi2 ≥ 1 are finite, and from Subroutine 1, for a fixed value of α, for the system of inequalities

Ap.(x
0i(α) + λ(−cT ))− bp = [Ap.x

i1 − bp + α(Ap.(x
i2 − xi1))] + λ(Ap.(−cT )) ≥ 0,

for all 1 ≤ p ≤ m; to have a solution in λ for λ real; the condition to be satisfied is

Max{−[Ap.x
i1 − bp + α(Ap.(x

i2 − xi1))]/(Ap.(−cT )) : over all p ∈ I1} ≤
Min{−[At.x

i1 − bt + α(At.(x
i2 − xi1))]/(At.(−cT )) : over all t ∈ I2}.

Further since we need this system to have a solution in λ ≥ 0, we need in addition to the

above, the following condition also to hold

Min{−[At.x
i1 − bt + α(At.(x

i2 − xi1))]/(At.(−cT )) : over all t ∈ I2} ≥ 0.

Therefore {x0i(α) + λ(−cT ) : λ ≥ 0} ∩K 6= ∅, iff α satisfies the following system of inequal-

ities (5):

−[Ap.x
i1−bp+α(Ap.(x

i2−xi1)]/(Ap.(−cT ))+[At.x
i1−bt+α(At.(x

i2−xi1)]/(At.(−cT )) ≤ 0

for all p ∈ I1, t ∈ I2, and (5)

−[At.x
i1 − bt + α(At.(x

i2 − xi1))]/(At.(−cT )) ≥ 0 for all t ∈ I2.

This is a system of linear inequalities in the parameter α, and we know that this system

is feasible for all 0 ≤ α ≤ 1; using Subroutine 1 find the complete interval of values of α ;

ᾱi1 ≤ α ≤ ᾱi2 feasible to this system. We know that ᾱi1 ≤ 0, and ᾱi2 ≥ 1; and both are finite.

Discussion on Descent Steps Taken From Points Along a Segment of One of the

Selected Li for i ∈ T (x̄): For α in this interval ᾱi1 ≤ α ≤ ᾱi2, when a descent step is taken

from x0i(α) in the direction −cT in K, the maximum possible step length is
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λ(α) = min{(bp −Ap.x
0i(α))/(Ap.(−cT )): over 1 ≤ p ≤ m satisfying Ap.(−cT ) < 0}.

and the output point from this descent step is x0i(α) + λ(α)(−cT ). The objective value at

this output point is: f i(α) = c[x0i(α) + λ(α)(−cT )]. Clearly this f i(α) defined over the interval

αi1 ≤ α ≤ αi2 is piecewise linear convex.

Figure 3: The Ball B with center x̄, the largest ball inside K with this center, has 3 touch-

ing facets numbered i = 1, 2, 3 with touching points x̄1, x̄2, x̄3 respectively. The dotted line

beginning with the NTP corresponding to i = 1, is the descent step D5.1 from it, and the point

at the other end of this line is the output point from this step. For descent steps D5.7, The

objective plane H(x̄) is moved parallel to itself in the direction −cT until it becomes a tangent

plane to B with its touching point ¯̄x. Corresponding to i = 1, ¯̄1x is the orthogonal projection
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of x̄1 on H(¯̄x), and the straight line joining ¯̄x , ¯̄1x is L1. In this 2-dimensional figure L1 is the

same as H(¯̄x); but in higher dimensions H(¯̄x) will be a hyperplane and L1 will be a straight line

on it. x11, x12 are the two boundary point of K where L1 interesects K, they are the end points

of L1 ∩K. All points x on L1 satisfying the property that the descent line from it in the direc-

tion −cT intersects K are those x01(α), ᾱ11 ≤ α ≤ ᾱ12; i.e., those on the line segment joining

x01(ᾱ11), x
01(ᾱ12). It can be verified that the half-line from any point on L1 outside the inter-

val [x01(ᾱ11), x
01(ᾱ12)] in the direction −cT does not intersect K at all. Minimizing f1(α) over

ᾱ11 ≤ α ≤ ᾱ12 yields the point x01(ᾱ) in K. My thanks to Kayse Maass for drawing this figure.

2.2.1 Selecting One of the Lines Li Among Those for i ∈ T (x̄) and Carrying Out

the Descent Step D5.7 Along it

Since the symbol r was already used in Section 2.1 to denote something else, we will use the

symbol r̃ here to denote the index i ∈ T (x̄) corresponding to the maximum value for the number

of inequalities in (1) satisfied as equations by either xi1 or xi2, and in case of a tie the one with

maximum value for ||x0i(ᾱi1)− x0i(ᾱi2)|| among those tied (i.e., those which correspond to the

maximum numer of inequalities in (1) satisfied as equations by either xi1 or xi2).

If this selection criterion gives good results in computational tests, then we need to determine

ᾱi1, ᾱi2 by solving (5) only for those i ∈ T (x̄) which tie for the maximum value for the number

of inequalities in (1) satisfied as equations in (1) by either xi1 or xi2.

Now we will minimize f r̃(α) over the interval ᾱr̃1 ≤ α ≤ ᾱr̃2 . There are two approaches for

carrying this out, one using a 2-variable LP formulation of this problem, and the other using a

line search algorithm, which we discuss below.

Approach 1: By solving a 2-variable LP: The problem of minimizing f r̃(α) subject

to ᾱr̃1 ≤ α ≤ ᾱr̃2 is clearly the same as the 2-variable LP with variables α, λ of minimizing

c(xr̃1 + α(xr̃2 − xr̃1) + λ(−cT )) = cxr̃1 − λccT , because both xr̃2, xr̃1 are contained on the

objective plane H(¯̄x).
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min c[xr̃1 + λ(−cT )]

subject to Ai.[x
r̃1 + α(xr̃2 − xr̃1) + λ(−cT )] ≥ bi i = 1, ...,m (6)

and λ ≥ 0, ᾱr̃1 ≤ α ≤ ᾱr̃2

Approach 2: Using a Line Search algorithm: Using the procedure described above for

computing f r̃(α) for any given value of α in the interval ᾱr̃1 ≤ α ≤ ᾱr̃2 we can use a popular

line search algorithm like “Quadratic interpolation” (also known as“Quadratic fit line search

method” ) in Nonlinear Programming for solving this problem of minimizing f r̃(α) subject to

ᾱr̃1 ≤ α ≤ ᾱr̃2 (for example see Pages 558-560 in [1]).

Let ᾱF be the optimum value for α obtained for this problem by either approach. Then the

output point of this descent step is x0r̃(ᾱF ). See Figure 3. x0r̃(ᾱF ) will be a boundary point of K.

If ᾱr̃1 < ᾱF < ᾱr̃2, we take the output point of this descent step as x0r̃(ᾱF ) + (λ(ᾱF )− ε)(−cT )

, where ε is a small positive tolerance as defined earlier, verify that this output point is an IFS

of K .

In cases when ᾱF = ᾱr̃1, ᾱr̃2, let α̃ = ᾱr̃1 + ε, ᾱr̃2 − ε respectively, and take the output

point in this descent step as x0r̃(α̃) + (λ(α̃)− ε)(−cT ), verify that it is an IFS of K.

We store the output point of this descent step along with the objective value at it in the set

Γ.

When these line search steps are completed, this iteration is completed. The output point in

this iteration is the point in the set Γ associated with the smallest objective value at this stage.

Suppose it is ˆ̂x, with objective value cˆ̂x. With ˆ̂x as the initial IFS the algorithm now moves to

the next iteration. The decrease in the objective value in this iteration that started with the

IFS x̂ is the difference in the objective values at the initial IFS and the final output point in this

iteration, i.e., cx̂ - cˆ̂x. The algorithm is terminated in an iteration if the decrease in objective

value attained in that iteration is ≤ ε, with the final output point in that iteration taken as the

approximate optimum solution of the original LP.

18



3 Efficient Methods for Soving the 2-Variable LPs in the Cen-

tering Steps, and In Descent Steps 5.7

Here we describe methods for solving the 2-variable LPs in the centering steps (Section 2.1) and

in the Descent Steps D5.7 (Section 2.2) during the algorithm for the case when K is bounded,

assuming that Approach 1 is being used in both sections.

3.1 Solving the 2-Variable LPs (3) Under Approach 1 in the Centering Steps

in Section 2.1

The 2-variable LP to be solved is (3), with α1, α2, y
1, y2, xC(α), defined in Section 2.1 and

available already. Let ∆1 denote the set of feasible solutions (α, δ) of (3) in the 2-dimensional

space (α, δ) with α plotted on the horizontal axis and δ plotted on the vertical axis.

Each iteration in this method begins with an initial feasible solution (α, δ) of (3) on the

boundary of ∆1. We have the initial feasible solution for (3), (α, δ) = (α1, 0) as δ(xC(α1)) = 0

since xC(α1) is a boundary point of K. Since xC(α2) is also a boundary point of K, we also

have δ(xC(α2)) = 0 , so (α2, 0) is another boundary point of ∆1 in the (α, δ)-space on the line

δ = 0.

Note that in the interval α1 ≤ α ≤ α2 in the (α, δ)-space, α corresponds to the point xC(α)

in K. In this interval, only α1, α2 correspond to boundary points of K, all other values of α in

this interval correspond to IFSs xC(α) of K on the line segment joining xC(α1), xC(α2).

The first iteration in this method begins with the initial feasible solution (α1, 0) of (3) on

the boundary of ∆1, and performs a (horizontal move + vertical move) twice and finally a

diagonal move in ∆1; and the current value of δ increases in each iteration. For any given value

α satisfying α1 ≤ α ≤ α2, define δ[α] = maximum value of δ such that (α, δ) is feasible to (3).

δ[α] = Minimum {[Ai.xC(α) − bi]/||Ai.||: i = 1 to m}, and the point (α, δ[α]) is contained on

the boundary of ∆1.

From well known results in LP theory we know that δ[α] is piece-wise linear concave over

the interval α1 ≤ α ≤ α2, and we have seen already that both δ[α1], δ[α2] are 0.

We will now discuss a general iteration, the uth, in this method beginning with the initial

feasible solution (αu0, δu0) on the boundary of ∆1. In this Section the index u denotes the
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number of the iteration in this method for solving the 2-variable LP (3).

The First Horizontal Move: Fixing δ = δu0, the system of constraints in (3) becomes:

δu0||Ai.|| − α[Ai.(y
2 − y1)] ≤ Ai.y

1 − bi, i = 1...m (7)

(5)

Find the interval of values of α feasible to this system (7) using Subroutine 1. Since (αu0, δu0)

is a boundary point of ∆1, αu0 will be one of the bounds on this interval. If αu0 is the unique

solution of (7), then (αu0, δu0) is an optimum solution of (7), terminate. Otherwise let αu1 be

the other boundary point of this interval. This is the interval of values of α in the (α, δ)-space,

in ∆1, on the horizontal line δ = δu0. All values of α in this interval satisfy δ(xC(α)) ≥ δu0.

αC
u1 = (αu0 + αu1)/2, is the mid-point of this interval. The point (αC

u1, δu0) is called the center

of ∆1 on the horizontal line δ = δu0 in the (α, δ)-space.

The First Vertical Move: In this move, fix α = αC
u1 in (3). Then the maximum value of

δ subject to (αC
u1, δ) ∈ ∆1 is

δu1 = Minimum {[Ai.(y
1 + αC

u1(y
2 − y1))− bi]/||Ai.|| : i = 1 to m}.

and the point in ∆1 achieving this value is the boundary point (αC
u1, δu1).

The Second (Horizontal + Vertical) Moves: Starting with (αC
u1, δu1) for (3) apply the

second horizontal move as described under the first horizontal move. When δ is fixed at δu1, if

αC
u1 is the unique value of α such that (α, δu1) is feasible to (3); then (αC

u1, δu1) is the optimum

solution for (3), terminate.

Otherwise let αu2, αu3 be the boundary points of the interval of values of α in ∆1 on the

horizontal line δ = δu1 in the (α, δ)-space. One of these boundary values will be will be equal

to αC
u1. Let αC

u2 = (αu2 + αu3)/2. Then (αC
u2, δu1) is called the center of ∆1 on the horizontal

line δ = δu1 in the (α, δ)-space.

Now carry out the second vertical move keeping α fixed at αC
u2 to find the maximum value

δu2 of δ in ∆1 , as in the first vertical move, it is attained at (αC
u2, δu2) on the boundary of ∆1.
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The Diagonal Move: This move involves finding the maximum value of δ in ∆1 for points

along the line joining the two centers of ∆1 obtained in the two horizontal moves in this iteration,

(αC
u1, δu0), (α

C
u2, δu1), with δu1 > δu0. The equation for the line joining (αC

u1, δu0), (α
C
u2, δu1) in

the (α, δ) space is:

α = αC
r1 + (δ − δr0)s, where s = (αC

u2 − αC
u1)/(δu1 − δu0).

Substituting this expression for α in (3) leads to the following syatem of linear inequalities

in δ.

δ||Ai.|| ≤ ((αC
u1 + (δ − δu0)s)Ai.(y

2 − y1) +Ai.y
1 − bi , i = 1 to m

Find the maximum value of δ, δu3, feasible to this system of inequalities in δ using Subroutine

1. So, δu3 is the maximum value of δ in ∆1 on the straight line joining (αC
u1, δu0), (α

C
u2, δu1). Let

αu3 = αC
u1 + (δu3 − δu0)s, (αu3, δu3) is the point of intersection of this straight line with ∆1.

Let δu4 = maximum {δu2, δu3}, and let (αu4, δu4) be the point among (αC
u2, δu2), (αu3, δu3)

associated with it; i.e., αu4 = αC
u2 if δu4 = δu2, or αu4 = αu3 if δu4 = δu3. Then (αu4, δu4) is the

output of this iteration in this method, with this point go to the next iteration.

When the improvement in the value of δ becomes small in an iteration, terminate the method

with the output in that iteration as an approximate optimum for (3).
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Figure 4: We illstrate iteration u = 1 in this algorithm. ∆1 is the feasible region of (3) in

the (α, δ)-space; we plot δ(xC(α)) = maximum value of δ in (3) for given value of α. Vertical

moves in this iteration are marked with dashed lines; and the diagonal move with a dotted line.

αC
11, α

C
12 are the values of α at the centers in the two horizontal moves in this iteration. In this

iteration, we have δ13 > δ12, so the value of δ goes up from 0 to δ4 = maximum{δ12, δ13}. The

points p, q, s in the figure are (α12, δ12), (α13, δ13), (α
C
12, δ11) respectively.
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3.2 Solving the 2-Variable LPs (6) Under Approach 1 in the Descent Steps

D5.7 in Section 2.2

We will solve the equivalent problem:

max λ

subject to λ(−Ai.c
T ) + α(Ai.(x

r̃2 − xr̃1)) ≥ bi −Ai.x
r̃1, i = 1, ...,m (8)

and λ ≥ 0, ᾱr̃1 ≤ α ≤ ᾱr̃2

where ᾱr̃1 ≤ 0, ᾱr̃2 ≥ 1 are already computed in D5.7. Here r̃ is the index defined in

Section 2.2.1.

When a descent step is taken from the point xr̃1 +α(xr̃2−xr̃1) in the direction −cT for some

ᾱr̃1 ≤ α ≤ ᾱr̃2, the maximum step length possible while keeping the output point inside K is:

λ(α) = minimum{(bp − Ap.(x
r̃1 + α(xr̃2 − xr̃1))/Ap.(−cT ): over 1 ≤ p ≤ m satisfying

Ap.(−cT ) < 0}.

Find λ(ᾱr̃1), λ(ᾱr̃2). and λs = maximum{λ(ᾱr̃1), λ(ᾱr̃2)}.
We will now describe the application of the method described in Section 3.1, to solve the

2-variable LP (7) in the (λ, α) space, with α plotted along the horizontal axis, and λ on the

vertical axis. The first iteration begins with the line λ = maximum{λ(ᾱr̃1), λ(ᾱr̃2)}.
We will now describe the general iteration in this method beginning on the line λ = λ0.

The First Horizontal Move: Fix λ = λ0 in (8), and find the interval of values of α feasible

to it using Subroutine 1. If α = α1 is the unique solution of this system, then (λ0, α1) is the

optimum solution of (8), terminate. Otherwise, let α1 be the midpoint of this interval. Then

(λ0, α1) is called the center of the set of feasible solutions of (8) on the horizontal line λ = λ0

in the (λ, α)-space.

The First Vertical Move: Compute λ(α1) = λ1 say.

The Second Horizontal Move: Fix λ = λ1 in (8), and find the interval of values of

α feasible to it using Subroutine 1. If this solution is α2 which is unique, then (λ1, α2) is an
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optimum solution of (7), terminate. Otherwise, let α2 be the midpoint of this interval. Then

(λ1, α2) is called the center of the set of feasible solutions of (7) on the horizontal line λ = λ1

in the (λ, α)-space.

The Second Vertical Move: Compute λ(α2) = λ2 say. The point corresponding to it

feasible to (8) is (λ2, α2).

The Diagonal Move: This move finds the maximum value of λ in (7) for points along the

straight line joining the two centers (λ0, α1), (λ1, α2). The equation describing this straight

line is:

λ = λ0 + (α− α1)((λ1 − λ0)/(α2 − α1)).

Substitute this expression for λ in (8), and find the maximum value of α feasible to the

resulting system, α3 say, using Subroutine 1. Let λ3 = λ0 + (α3 − α1)((λ1 − λ0)/(α2 − α1)).

If λ3 > λ2, then (λ3, α3) is the output point in this iteration. On the other hand if λ2 > λ3,

then (λ2, α2) is the output point in this iteration. Go to the next iteration beginning with the

horizontal line through the output point.

Terminate the method with the output point in an iteration as an approximate optimum

for (8) when the improvement in the value of λ in the iteration becomes small. If (λ̄, ᾱ) is the

output point in this method, then xr̃1 + ᾱ(xr̃2 − xr̃1) + (λ̄− ε)(−cT ) is the output point of this

method for (6) in the space of the original variables x.

4 How to transform a general LP into the form required to

apply SM-7

Consider the general LP in variables y ∈ Rn : minimize hy subject to Ay = b,

Dy ≥ d with equality and inequality constraints. Any bounds on the variables are included

among inequality constraints. Let A be of order m× n, and D of order p× n. Let ep be the

column vectors in Rp with all entries = 1. Let y0 be an artificial variable.

First make b ≤ 0, by multiplying both sides of the i-th equality constraint by −1 if the

original bi is > 0. After this, let M1 = {i : 1 ≤ i ≤ m, such that bi < 0}, M2 = {i : 1 ≤ i ≤ m,

such that bi = 0}.
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Consider the Phase I problem: minimize hy+αy0+β2
∑

i∈M2
(Ai.y+y0−bi) +β1

∑
i∈M1

(Ai.y−
bi) subject to Ai.y + y0 ≥ bi for i ∈ M2; Ai.y ≥ bi for i ∈ M1, Dy + epy0 ≥ d, y0 ≥ 0,

where α, β1, β2 are large positive penalty coefficients.

For this Phase I problem, (y = 0, y0 = y00) where y00 > maximum{0, dj : j = 1, ..., p}
is an interior feasible solution. With this as the initial IFS, this Phase I problem is in the form

required to apply SM-7 to solve it. Since α, β are large numbers, if the original problem has an

optimum solution, the Phase I problem will output an optimum solution in which y0 will be 0,

and the y satisfies the first set of constraints as equations.

Other Phase I formulations of the original problem may also be considered.

5 Computational Results
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