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Abstract

Existing software implementations for solving Linear Programming (LP) models are all

based on full matrix inversion operations involving every constraint in the model in every

step. This linear algebra component in these systems makes it difficult to solve dense

models even with moderate size, and it is also the source of accumulating roundoff errors

affecting the accuracy of the output.

We present a new version of the Sphere method, SM- 7-6, for LP not using any pivot

steps.

Key words: Linear Programming (LP), solving LPs by descent feasible methods without

using matrix inversions.

1 Sphere Method, SM-7-6, for LP

In 2006, Sphere methods for LP, IPMs based on the properties of spheres (instead of ellipsoids

like in other IPMs) were introduced in Murty [2006a, b]. The initial version of the sphere

method also needed pivot steps for matrix inversions, but these pivot steps only involve a subset
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of constraints in the original LP. After some other versions, in this paper we describe SM-7-6,

not involving any pivot steps.

SMs consider LPs in the form:

min z = cx (1)

subject to Ax ≥ b

where A is an m × n data matrix; with a known interior feasible solution x (i.e., satisfying

Ax > b). LPs in any other form can be directly transformed into this form, see [Murty 2009a,

b], Murty, Oskoorouchi [2010]. Here is some basic notation that we will use.

� Notation for rows and columns of A: Ai., A.j denote the ith row, and jth column of

A. The index i has range 1 ≤ i ≤ m, and j ranges in 1 ≤ j ≤ n.

� Feasible region and its interior: K denotes the set of feasible solutions of (1), and

K0 = {x : Ax > b} is its interior.

� Facetal hyperplanes, and their half-spaces containing K: FHi = {x : Ai.x = bi},
the i-th facetal hyperplance of K for i = 1 to m. Also, FH+

i = {x : Ai.x ≥ bi} is the

half-space of FHi containing K.

� IFS: Interior feasible solution, a point x ∈ K0

� δ(x) : Defined for x ∈ K, it is the radius of the largest ball inside K with x as center.

From Murty [2006a, b], we know that δ(x) = minimum{Ai.x−bi
||Ai.|| : i = 1, ...,m}. For any

point x on the boundary of K , i.e., satisfying at least one of the constraints in (1) as an

equation, δ(x) = 0 by this definition.

� Largest ball inscribed in K with a given IFS x as center: B(x) = {y : ||y − x|| ≤
δ(x)} is that largest inscribed ball in K with x as its center.

� Touching constraint index set at a given IFS: T (x) defined for x ∈ K0, is the set

of all indices i satisfying: Ai.x−bi
||Ai.|| = Minimum{Ap.x−bp

||Ap.|| : p = 1 to m} = δ(x). The facetal
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hyperplane FHi = {x : Ai.x = bi} is a tangent plane to B(x) for each i ∈ T (x), that’s why

T (x) is called the index set of touching constraints in (1) defining K, at x.

� Touching point xi : Defined for x ∈ K0 and i ∈ T (x), it is the nearest point on FHi to

x, it is the orthogonal projection x − AT
i. (Ai.x − bi)/||Ai.||2 of x on FHi. It is the point

where the ball B(x) touches FHi for i ∈ T (x).

� H(x̂) : Defined for any feasible solution x̂ ∈ K, H(x̂) = {x : cx = cx̂} is the objective

plane through x̂

�
¯̂x : Defined for any IFS x̂ ∈ K0, it is = x̂− δ(x̂)cT /||c|| = the bottom point of B(x̂) in the

direction −cT , the point where the objective plane touches B(x̂) when it is moved down

from its present position H(x̂), in the direction −cT until it becomes a tangent plane to

B(x̂)

�
¯̂ix : Defined for any IFS x̂ ∈ K0 and i ∈ T (x̂), it is = x̂i − cT [(cx̂i − c¯̂x)/ccT ] = the

orthogonal projection of x̂i on H(¯̂x).
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Figure 1: x̂ is an IFS of K, B(x̂) is the largest sphere with center x̂ as center inside K. ¯̂x is

the point in B(x̂) with the smallest value for cx, and H(¯̂x) is the objective plane through ¯̂x, it is

the tangent plane to B(x̂) at ¯̂x. Facets 1, 2 of K are tangent planes to B(x̂) with touching points

x̂1, x̂2 respectively, so T (x̂) = {1, 2}. ¯̂1x is the orthogonal projection of x̂1 on H(¯̂x). Thanks to

Madhusri Katta, Vijaya Katta for Figures 1, 3.

SM-7-6 is based on feasible descent steps (starting with a feasible solution, maintaining

feasibility throughout, with objective value improving monotonically), but not using any pivot

steps at all. The 1st iteration begins with the given IFS x̂, all subsequent iterations begin with

the best solution (by objective value) obtained in the descent steps in the previous iteration.

We discuss a simplified version of the algorithm discussed in SM-7-3. Also, to keep the

discussion simple, we first restrict the discussion to the case in which K is a polytope, i.e., it is
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bounded.

2 A General Iteration in the Sphere Method, SM-7-6, for the

LP (1)

In every iteration of SM- 7-6, we face a problem of finding the interval of values of a real

parameter ν say, satisfying a given system of linear inequalities in the parameter. Now we give

the procedure, we will call it Subroutine 1 for computing this interval.

Subroutine 1: Let the system of inequalities in ν be

at + gtν ≥ 0, t = 1, ..., ` (2)

In systems like this that we encounter in SM- 7-6; for any t if gt = 0, at will be ≥ 0, and hence

that constraint is a redundant constraint in the system. Let

ν1 = maximum{(−at/gt) : over all t satisfying gt > 0}
ν2 = minimum{(−at/gt) : over all t satisfying gt < 0}

Here define the maximum [minimum] in the empty set to be −∞[+∞] respectively. If

ν1 > ν2 system (2) has no solution. Otherwise the required interval for ν feasible to this system

is ν1 ≤ ν ≤ ν2.

Also in every iteration of this algorithm, we encounter the problem of solving a 2-variable

LP in the variables α, λ of the following form:

Maximize λ

Subject to cpα+ dpλ ≥ gp, p = 1 to m, (3)

α real, and λ ≥ 0
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starting with a given feasible solution (α1, λ1). Now we give the procedure, we will call it

Subroutine 2, for solving this 2-variable LP. Here we discuss the version of Subroutine 2 in

the case where the set of feasible solutions of (3) is bounded. The version of Subroutine 2 when

the set of feasible solutions of (3) may be unbounded is discussed later in Section 3.

Subroutine 2: Each step in this algorithm to solve the 2-variable LP (3) consists of three

substeps. We will describe the general r-th step in this algorithm beginning with the feasible

solution (αr, λr).

Substep 1: Fix λ = λr , find the interval of feasibility for α with it. Let (αr1, λr) be its

midpoint. If this interval of feasibility consists of the single point (αr1, λr) , then this point

(αr1, λr) is the optimum solution of (3), terminate. Otherwise continue.

Now fix α = αr1 , find λr1 the maximum value of λ feasible to (3) with it using Subroutine

1. With the feasible solution (αr1, λr1) go to Substep 2.

Substep 2: Fix λ = λr1, and find the midpoint (αr2, λr1) of the interval of feasibility to (3)

with it. If this point is the only point in this interval, then it is the optimum solution of (3),

terminate. Otherwise, continue.

Now fix α = αr2, find λr2 , the maximum value of λ feasible to (3) with it, using Subroutine

1. With he feasible solution (αr2, λr2) go to Sustep 3.

Substep 3: The half-line joining the point (αr1, λr) to (αr2, λr1) and continuing in the same

direction has the general point (αr1+γ(αr2−αr1), λr+γ(λr1−λr)) , where γ ≥ 0 is a nonnegative

parameter. The last point on this half-line feasible to (3) is this general point corresponding to

γ = γ∗, where this γ∗ is the maximum value of γ for which this general point is feasible to (3).

Among the pair of points (αr2, λr2), (αr1 + γ∗(αr2 − αr1), λr + γ∗(λr1 − λr)) denote the one

corresponding to the maximum value for the λ-coordinate in it by (αr+1, λr+1).

If the difference λr+1−λr is smaller than some small tolerance, terminate the algorithm with

(αr+1, λr+1) as a near optimum solution of the 2-variable LP (3). Otherwise, with (αr+1, λr+1)

as the initial feasible solution go to the next step in the algorithm.

Terminate this process when the diffference between the values of λ in consecutive points in

the sequence becomes ≤ ε, where ε is a small positive tolerance value. If (αs, λs) is the final
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point in the sequence generated, choose the feasible point among (αs ± ε, λs − ε) as the near

optimum solution of (3).

Figure 2: An illustration of the feasible region of (3). Here α is plotted on the horizontal

axis, and λ is plotted along the vertical axis. Starting with the feasible solution (αr, λr), the

output points in Substeps 2, 3 respectively in this Step of the algorithm are p = (αr2, λr2), q =

(αr1 + γ∗(αr2 − αr1), λr + γ∗(λr1 − λr)). Among these two points, the one with a higher value

for λ, here q = (αr1 + γ∗(αr2−αr1), λr + γ∗(λr1−λr)) denoted by (αr+1, λr+1) is the beginning
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point for the next step in the algorithm. Thanks to Olof Minto for his help on Figures 2, 3.

Now we will describe the general iteration in SM-7-6 in the case when K is bounded.

General iteration beginning with the initial IFS x̂

Find δ(x̂), T (x̂), ¯̂x. If ¯̂x is a boundary point of K, i.e. satifies Ai.
¯̂x = bi for some i = 1 to

m, then H(¯̂x) must be the same as {x : Ai.x = bi}, so ¯̂x is an optimum solution of the origional

LP, terminate the algorithm with this conclusion.

Otherwise ¯̂x is an IFS of K, continue.

For each i ∈ T (x̂) find using Subroutine 1, the interval of values of the parameter α satisfying

Ap.(α¯̂x+ (1− α)x̂i) ≥ bp for p = 1 to m.

This interval includes 0 ≤ α ≤ 1 since for these values of α the point α¯̂x + (1 − α)x̂i is on

the line segment joining x̂i to ¯̂x. Suppose this interval is 0 ≤ α ≤ αi2. For each i ∈ T (x̂),

x̂i2 = αi2 ¯̂x+ (1− αi2)x̂i is the other boundary point of K on the straight line joining x̂i to ¯̂x.

Let r be the value of i attaining the minimum in minimum {cx̂i2 : i ∈ T (x̂)}
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Figure 3: x̂ is an IFS of K, B(x̂) is the largest sphere with center x̂ as center inside K. ¯̂x

is the point in B(x̂) with the smallest value for cx, and H(¯̂x) is the objective plane through ¯̂x,

it is the tangent plane to B(x̂) at ¯̂x. Facets 1, 2 of K are tangent planes to B(x̂) with touching

points x̂1, x̂2 respectively, so T (x̂) = {1, 2}. The lines joining x̂1, x̂2 to ¯̂x intersect the boundary

of K again at x̂12, x̂22 respectively. cx̂12 = minimum{cx̂12, cx̂22}. So the index r defined above
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is 1 in this example.

The objective plane through the point x̂r2 is

H(x̂r2) = {x : cx = cx̂r2}.
The orthogonal projection from x̂r on H(x̂r2) is y1 = x̂r−αrc

T where αr is determined from

the equation c(x̂r − αrc
T ) = cx̂r2, and hence αr = (cx̂r − cx̂r2)/ccT .

The half-line {x : x = x̂r−λcT , λ ≥ 0} intersects the objective plane H(x̂r2) at the point y1.

Let L22 = {βx̂r2 + (1− β)y1− λcT : β real, λ ≥ 0}, the 2-dimensional half-space determined

by the line joining x̂r2 and y1, and the direction −cT .

In L22 ∩K, since cy1 = cx̂r2, minimizing cx on it is the same as minimizing (cx̂r2 − λccT ),

and hence this problem is equivalent to the following problem:

Maximize λ

Subject to A[βx̂r2 + (1− β)y1 − λcT )] ≥ b
λ ≥ 0, β real

which can be solved by applying Subroutine 2. If (β̂, λ̂) is the solution of this 2-variable LP,

then in terms of the original variables x2 = β̂x̂r + (1− β̂)x̂r2− λ̂cT is the final solution obtained

in this iteration. This may not be an IFS.

Let L be the straight lie through ¯̂x parallel to the straight line joining x̂r2 and y1; and

suppose L1 and L2 are the end points of L in K.

We now have two choices to determine a point ˆ̂x on L ; the best among them has to be

determined by computational tests to find out which one gives better results:

CHOICE 1: ˆ̂x is the point on L intersected with K which has the maximum value of δ(x)

CHOICE 2: ˆ̂x is (L1 + L2)/2

Take (x2 + ˆ̂x)/2, the midpoint joining x2 and ˆ̂x, this will be an IFS of K; and H((x2 + ˆ̂x)/2)

is the objective plane through that point. Add the constraint cx ≤ c((x2 + ˆ̂x)/2) as the (m+1)th

constraint to the original LP. This gives the problem
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min z = cx (3)

subject to Ax ≥ b (4)

and cx ≤ c((x2 + ˆ̂x)/2)

The objective plane H((x2 + ˆ̂x)/2) divides Rn into two half-spaces, of which H↓(x
2 + ˆ̂x)/2)

is the half-space in the direction −cT . K↓ = K ∩H↓(x2 + ˆ̂x)/2) is the set of feasible slutions of

(4); and hence the set of optimum solutions of (1) and (4) are the same.

The point (1/2)(x2 + (x2 + ˆ̂x)/2) is an IFS of K↓. With that as the initial IFS, repeat

the application of this algorithm to solve the LP (4). Continue this way. When you repeat

this process, the problem corresponding to (4) is just (4) with a smaller RHS constant in the

(m+ 1)th constraint of it.

The repetition process is continued until the difference between objective valus 0f cx2 in

consecutive iterations of the algorithm becomes smaller than a small ε. The final point cor-

responding to x2 in the final repetition is taken as an approximate optimum solution of the

original problem (1).

3 Changes for the General Case When an Initial IFS in K Is

Not Given, and When K is Not Known to be Bounded

We now consider the general LP model in nonnegative variables. If the model being solved

includes “≤ ” inequality constraints, Di.y ≤ di, replace each of them with the equivalent

−Di.y ≥ −di.

Also, suppose the model being solved has r equality constraints

Di.y = di, i = 1, ..., r

Then replace these r equations in the model by r inequalities

Di.y ≥ di, i = 1, ..., r
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and then include ȳ =
∑r

i=1(Di.y − di) to the objective function being minimized, with a

large positive cost coefficient. In the optimum solution of the resulting model if ȳ has a positive

value, it is an indication that the original model with the equatity constrints in infeasible.

So, with these modifications we can transform the general LP model into the form (1).

1. So let us now consider the LP (1), but suppose an initial IFS for it is not available. Then

we consider the modified problem:

Minimize z = c1x1 + ...+ cnxn + cn+1xn+1 (5)

subject to Ax+ exn+1 ≥ b
and xn+1 ≥ 0, −xn+1 ≥ bm+1,

where xn+1 is a nonnegative artificial variable, and e is the column vector in Rm with all

entries = 1. Let x̄n+1 = δ1+ maximum{0, bi : i = 1, ...,m}, and bm+1 = −x̄n+1 − δ2, where

δ1, δ2 are strictly positive numbers. cn+1 is a large positive cost coefficient of xn+1 in (5).

We will now consider (5) as the problem to solve, and continue to denote the new column

vector of decision variables x1, ..., xn, xn+1 by the same symbol x; its cost vector (c1, ..., cn, cn+1)

by the same symbol c. The column vector x̄ with x1 = ... = xn = 0 and xn+1 = x̄n+1 is an IFS

for (5). We can solve (5) beginning with this initial IFS by the algorithm discussed earlier, and

since cn+1 is a large positive cost coefficient , xn+1 will have value 0 in its optimum solution, if

the original LP (1) has an optimum solution.

2. Now consider the case in which K, the set of feasible solutions of the original LP, is not

known to be bounded. In this case, since the feasibility set of the 2-variable LP of the form (3)

encountered in iterations of the algorithm may be unbounded, some changes have to be made

in Subroutine 2 used to solve it. Below, we discuss the modified Subroutine 2 used to solve it .

Subroutine 2 for the case when the set of feasible solutions of (3) is not known

to be bounded

Let (α1, λ
s
1) be the initial feasible solution of (3) available. Go to the new Sustep 0.

Substep 0: Fixing α = α1 find the maximum value of λ in the set of feasible solutions for

(3). If it is ∞ , then the maximum value of λ in (3) is +∞, and {(α1, λ) : λ ≥ λs1} is a feasible
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half-line for (3) along which λ diverges to ∞, terminate.

Otherwise, let λ1 be the maximum value of λ in (3) when α is fixed at α1. With the feasible

solution (α1, λ1) as the initial feasible solution go to Substep 1. Considering the general r-th

step, let (αr, λr) be the initial feasible solution.

Substep 1: When we fix λ = λr in (3), suppose the interval of feasibility for α is αr ≤ α ≤
∞. Now check how the maximum value of λ varies as a function of α as it varies from αr to ∞.

If after some value of α in this interval, say α = ᾱr, λ remains constant at λ̄r, then (ᾱr, λ̄r) is

an optimum solution of (3). On the other hand, if the maximum value of λ in (3) keeps going

up as α varies from αr to ∞ , then λ is unbounded in (3), and you can get a half-line along

which it diverges to ∞ from this.

On the other hand, with λ fixed at λr in (3), if the interval of feasibility for α is bounded,

let (αr1, λr) be its midpoint. If this interval of feasibilty consists of the single point (αr1, λr),

then this point (αr1, λr) is the optimum solution of (3), terminate. Otherwise, fix α = αr1, and

find λr1, the maximum value of λ feasible to (3) with it, using Subroutine 1. With the feasible

solution (αr1, λr1) go to Substep 2.

Substep 2: Fix λ = λr1. With it, if the interval of feasibility for α in (3) is (αr1,∞) ; check

how the maximum value of λ in the feasibility interval of (3) varies as α varies in this interval.

If after some value of α, say α2
r1, in this interval, it remains constant at λ2r1, then (α2

r1, λ
2
r1) is

an optimum solution of (3).

On the other hand, if the maximum value of λ in (3) keeps going up as α varies from αr1 to

∞ , then λ is unbounded in (3), and you can get a half-line along which it diverges to ∞ from

this.

With λ fixed at λr1 in (3) if the interval of feasbility for α is bounded, let (αr2, λr1) be

its midpoint. If this interval of feasibilty consists of the single point (αr2, λr1), then this point

(αr2, λr1) is the optimum solution of (3), terminate. Otherwise, fix α = αr2 in (3), and let λr2

the maximum value of λ in it. With the feasible solution (αr2, λr2) go to Substep 3.

Substep 3: The half-line joining the point (αr1, λr) to (αr2, λr1) and continuing in the

same direction has the general point (αr1 + β(αr2 − αr1), λr + β(λr1 − λr)) , where β ≥ 0 is

a nonnegative parameter. The last point on this half-line feasible to (3) is this general point
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corresponding to β = β∗, where this β∗ is the maximum value of β for which this general point

is feasible to (3).

If β∗ =∞, then the half-line {(αr1 +β(αr2−αr1), β(λr1−λr)) : β ≥ 0} is a feasible half-line

along which λ diverges to ∞.

If β∗ is finite, among the pair of points (αr2, λr2), (αr1 + β∗(αr2 − αr1), λr + β∗(λr1 − λr))
denote the one corresponding to the maximum value for the λ-coordinate in it by (αr+1, λr+1).

If the difference λr+1−λr is smaller than some small tolerance, terminate the algorithm with

(αr+1, λr+1) as a near optimum solution of the 2-variable LP (3). Otherwise, with (αr+1, λr+1)

as the initial feasible solution go to the next step in the algorithm.

Terminate this process when the diffference between the values of λ in consecutive points in

the sequence becomes ≤ ε, where ε is a small positive tolerance value. If (αs, λs) is the final

point in the sequence generated, choose the feasible point among (αs ± ε, λs − ε) as the near

optimum solution of (3).

Changes in the General Iteration Beginning with the Initial IFS x̂

The work here is carried out as described earlier.

For each i ∈ T (x̂) find using Subroutine 1, the interval of values of the parameter α satisfying

Ap.(α¯̂x+ (1− α)x̂i) ≥ bp for p = 1 to m.

This interval includes 0 ≤ α ≤ 1 since for these values of α the point α¯̂x + (1 − α)x̂i is on

the line segment joining x̂i to ¯̂x. Suppose this interval is 0 ≤ α ≤ αi2. If for some i ∈ T (x̂), this

αi2 = ∞, then for that i, {x̂i + α(¯̂x − x̂i), α ≥ 0} is a half-line in K along which the objective

function cx diverges to −∞, we terminate the algorithm with this conclusion.

Otherwise, for each i ∈ T (x̂), x̂i2 = αi2 ¯̂x+ (1− αi2)x̂i is the other boundary point of K on

the straight line joining x̂i to ¯̂x.

Let r be the value of i attaining the minimum in minimum {cx̂i2 : i ∈ T (x̂)}
Now continue as before.

Summary
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In each step the Classical Simplex Method for linear programming minimizes the objective

function across a 1- dimensional boundary face of K, and for this work it needs to carry out a

pivot step for changing the basis matrix by one column.

In this algoithm, in each step we minimize the objective function on a 2- dimensional polyhe-

dron in the interior of K, that is the intersection of K with a 2- dimensional hyperplane; and all

this work is carried out using no pivot steps at all. I believe that ths new method will produce

results which are much better that those obtained under the simplex method.

Computational results
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