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Abstract

Material imbalances at some companies have been traced to the pro-
cedures they use for forecasting demand based on the usual normality
assumption. In this paper we discuss a simple and easy to implent non-
parametric technique to forcast the demand distribution based on statisti-
cal learning, and ordering policies based on it, that are giving satisfactory
results at these companies. We also discuss an application of this non-
parametric forecasting method to portfolio management.

Key words: Forecasting demand, updating demand distribution,
nonparametric method, overage and underage costs, order quantity deter-
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1 Introduction

In production planning projects at computer companies (Dell, Sun), filter mak-
ing companies (Pall), automobile component suppliers (Borg Warner, Federal
Mogul), and others, we found that high inventories for some items, and expe-
dited shipments to cover shortages for some others, are common occurrences
at some of them. Examination of the materials requirement planning (MRP)
systems used for making production and order quantity decisions at these com-
panies has shown that a common cause for these occurrences are the procedures
they use for forcasting demand based on the usual normality assumption. This
paper discusses the features of a new, simpler nonparametric forecasting method
based on statistical learning, and ordering and lot sizing policies based on it,
implented and working satisfactorily at these companies.
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We also discuss an application of this nonparametric forecasting method to
portfolio management. We then develop a model based on the principles of
statistical learning to determine an optimum portfolio WRT (with respect to)
a measure of risk that is closer to the common investors perception of risk.

2 Costs of High Inventories and Shortages

Models for controlling and replenishing of inventories have the aim of deter-
mining order quantities to minimize the sum of total overage costs (Costs of
excess inventory remaining at the end of the planning period), and underage
costs (shortage costs, or costs of having less than the desired amount of stock
at the end of the planning period).
In inventory control literature, the total overage (underage) cost is usually

assumed to be proportaional to the overage (shortage) amount or quantity, to
make the analysis easier. But in some of the companies we were told that a
piecewise linear (PL) function provides a much closer representation of the true
overage and underage costs. In these companies there is a buffer with limited
space in which excess inventory at the end of the planning period can be stored
and retrieved later at a low cost (i.e., with minimum requirements of manhours
needed) per unit. Once this buffer is filled up, any remaining excess quantity has
to be held at a location farther away that requires greater number of manhours
for storing or retrieval/unit. Similar situation exists for underage cost as a func-
tion of the shortage amount. This clearly implies that the overage and underage
costs are PL functions of the excess, shortage quantities. Determining optimum
order quantities to minimize such unusual overage, underage cost functions is
much harder with existing inventory control models using forecasting techniques
in current literature.
An advantage of the new foecasting system discussed in this paper is that

such unusual overage, underage cost functions can easily be accommodated un-
der it.

3 Commonly Used Techniques for Forcasting De-
mand

In almost all inventory management problems in practice the demand during a
future planning period is a random variable with an unknown probability distri-
bution, and the models for these problems have the objective of minimizing the
sum of expected overage and underage costs. Successful inventory management
systems depend heavily on good demand forecasts to provide data for inventory
replenishment decisions.
The output of forecasting is usually presented in the literature as the for-

casted demand quantity, in reality it is an estimate of the expected demand
during the planning period. Because of this, the purpose of forecasting is often
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misunderstood to be that of generating this single number, even though some-
times the standard deviation of demand is also estimated. All commonly used
forecasting methods are parametric methods, they usually assume that demand
is normally distributed, and update its distribution by updating the parameters
of the distribution, the mean µ, and the standard deviation σ. The most com-
monly used methods for updating the values of the parameters are the method
of moving averages, and the exponential smoothing method.
The method of moving averages uses the average of n most recent observa-

tions on demand as the forecast for the expected demand for the next period.
n is a parameter known as the order of the moving average method being used,
typically it is between 3 to 6 or larger.
The exponential smoothing method introduced and popularized by Brown

[2], is perhaps the most popular method in practice. It takes D̂t+1, the forecast
of expected demand during next period t+ 1, to be αxt + (1− α)D̂t, where xt
is the observed demand during current period t, D̂t is the forecasted expected
demand for current period t, and 0 < α ≤ 1 is a smoothing constant which is
the relative weight placed on the current observed demand. Typically values
of α between 0.1 and 0.4 are used, and the value of α is increased whenever
the absolute value of the deviation between the forecast and observed demand
exceeds a tolerance times the standard deviation. Smaller values of α (like
0.1) yield predicted values of expected demand that have a relatively smooth
pattern, whereas higher values of α (like 0.4) lead to predicted values exhibiting
significantly greater variation, but doing a better job of tracking the demand
series. Thus using larger α makes forcasts more responsive to changes in the
demand process, but will result in forecast errors with higher variance.
One disadvantage of both the method of moving averages and the exponen-

tial smoothing method is that when there is a definite trend in the demand
process (either growing, or falling), the forecasts obtained by them lag behind
the trend. Variations of the exponential smoothing method to track trend linear
in time in the demand process have been proposed (see Holt [4]), but these have
not proved very popular.
There are many more sophisticated methods for forecasting the expected

values of random variables, for example the Box-Jenkins ARIMA models [1,
6], but these methods are not popular for production applications, in which
forecasts for many items are required.

4 Parametric Methods for Forecasting Demand
Distribution

4.1 Using Normal DistributionWith Updating of Expected
Value and standard Deviation in Each Period

As discussed in the previous section, all forcasting methods in the literature
only provide an estimate of the expected demand during the planning period.
The optimum order quantity to be computed depends of course on the entire
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probability distribution of demand, not just its expected value. So, almost
everyone assumes that the distribution of demand is the normal distribution
because of its convenience. One of the advantages that the normality assumption
confers is that the distribution is fully characterized by only two parameters,
the mean and the standard deviation, both of whom can be very conveniently
updated by the exponential smoothing or the moving average methods.
Let t be the current period; xr the observed demand, and D̂r, σ̂r the for-

casts (i.e., estimates by whichever method is being used for forecasting) of the
expected demand, standard deviation of demand respectively in period r; for
r ≤ t. Then these forecasts for the next period t+ 1 are:

D̂t+1 (by method of moving aver-
ages of order n)

= 1
n

t
r=t−n+1 xr

D̂t+1 (by exponential smoothing
method with smoothing constant
α)

= αxt + (1− α)D̂t

σ̂t+1 (by method of moving aver-
ages of order n)

= + (
t
r=t−n+1(xr − D̂t+1)2)/n

To get σ̂t+1 by the exponential smoothing method, it is convenient to use
the mean absolute deviation (MAD), and use the formula: standard deviation
σ ≈ (1.25)MAD when the distribution is the normal distribution. Let MADt
denote the estimate of MAD for current perior t. Then the forecasts obtained
by the exponential smoothing method with smoothing parameter α for the next
period t+ 1 are:

MADt+1 = α|xt − D̂t|+ (1− α)MADt
σ̂t+1 = (1.25)MADt+1

Usually α = 0.1 is used to ensure stability of the estimates. And the normal
distribution with mean D̂t+1, and standard deviation σ̂t+1 is taken as the fore-
cast for the distribution of demand during the next period t+1 for making any
planning decisions under this procedure.

4.2 Using Normal DistributionWith Updating of Expected
Value and Standard Deviation Only When There Is
Evidence Of Change

In some applications, the distribution of demand is assumed to be the normal
distribution, but estimates of its expected value and standard deviation are left
unchanged until there is evidence that their values have changed. Foote [3]
discusses several statistical control tests on demand data being generated over
time to decide when to reestimate these parameters. Under this scheme, the
method of moving averages is commonly used to estimate the expected value
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and the standard deviation from recent data whenever the control tests indicate
that a change may have occurred.

4.3 Using Distributions Other Than Normal

In a few special applications in which the expected demand is low (i.e., the
item is a slow-moving item) other distributions like the poisson distribution are
sometimes used, but by far the most popular distribution for making inventory
manegement decisions is the normal distribution because of its convenience, and
because using it has become a common practice historically.
For the normal distribution the mean is the mode (i.e., the value associated

with the highest probability), and the distribution is symmetric around this
value. If histograms of observed demand data of an item do not share these
properties, it may indicate that the normal distribution is a poor approximation
for the actual distribution of demand, in this case order quantities determined
using the normality assumption may be far from being optimal.
These days industrial environment is very competitive with new products

replacing the old periodically due to rapid advancements in technology. In
this dynamic environment, the life cycles of components and end products are
becoming shorter. Beginning with the introduction of the product, its life cycle
starts with a growth period due to gradual market penetration of the product.
This is followed by a stable period of steady demand. It is then followed by a
final decline period of steadily declining demand, at the end of which the item
disappears from the market. Also, the middle stable period seems to be getting
shorter for many major components. Because of this constant rapid change, it
is necessary to periodically update demand distributions based on recent data.
The distributions of demand for some components are far from being sym-

metric around the mean, and the skewness and shapes of their distributions
also seem to be changing over time. Using a probability distribution like the
normal defined by a mathematical formula involving only a few parameters, it
is not possible to capture changes taking place in the shapes of distributions of
demand for such components. This is the disadvantage of existing forecasting
methods based on an assumed probability distribution. Our conclusions can be
erroneous if the true probability distribution of demand is very different from
the assumed distribution.
Nonparametric methods use statistical learning, and base their conclusions

on knowledge derived directly from data without any unwarranted assumptions.
In the next section we discuss a nonparametric method for forecasting the entire
demand distribution that uses the classical empirical probability distribution de-
rived from the relative frequency histogram of time series data on demand. It
has the advantage of being capable of updating all changes occurring in the
probability distribution of demand, including those in the shape of this distrib-
ution.
Then in the following section we illustrate how optimal order quantities that

optimize piecewise linear and other unusual cost functions discussed in Section
2 can be easily computed using these empirical distribution.
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5 A Nonparametric Method for Updating and
Forecasting the Entire Demand Distribution

In supply chain manegement, the important random variables are daily or
weekly (or whatever planning period is being used) demands of various items
(raw materials, components, sub-assemblies, finished goods, spare parts, etc.)
that companies either buy from suppliers, or sell to their customers. Observed
values of these random variables in each period are generated automatically as
a time series in the production process, and are usually available in the produc-
tion data bases of companies. In this section we discuss a simple nonparametric
method for updating changes in the probability distributions of these random
variables using this data directly.

Empirical Distributions and Probability Density Func-
tions

The concept of the probability distribution of a random variable evolved
from the ancient practice of drawing histograms for the observed values of the
random variable. The observed range of variation of the random variable is
usually divided into a convenient number of value intervals (in practice about
10 to 25) of equal length, and the relative frequency of each interval is defined
to be the proportion of observed values of the random variable that lie in that
interval. The chart obtained by marking the value intervals on the horizontal
axis, and erecting a rectangle on each interval with its height along the vertical
axis equal to the relative frequency is known as the relative frequency histogram
of the random variable, or its discretized probability distribution. The relative
frequency in each value interval Ii is the estimate of the probability pi that the
random variable lies in that interval, see Figure 1 for an example.
Let I1, . . . , In be the value intervals with u1, . . . , un as their midpoints, and

p = (p1, . . . , pn), the probability vector in the discretized probability distribution
of the random variable. Let µ̄ =

n
i=1 uipi, σ̄ =

n
i=1 pi(ui − µ̄)2.

Then µ̄, σ̄ are estimates of the expected value µ, standard deviation σ of the
random variable respectively.
We will use the phrase empirical distribution to denote such a discretized

probability distribution of a random variable, obtained either through drawing
the histogram, or by updating a previously known discretized probability dis-
tribution based on recent data.
When mathematicians began studying random variables from the 16th cen-

tury onwards, they found it convenient to represent the probability distribution
of the random variable by the probability density function which is the
mathematical formula for the curve defined by the upper boundary of the rel-
ative frequency histogram in the limit as the value interval length is made to
approach 0, and the number of observed values of the random variable goes to
infinity. So the probability density function provides a mathmatical formula for
the height along the vertical axis of this curve as a function of the variable rep-
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Figure 1: Relative frequency histogram for daily demand for a major component
at a PC assembling plant in California.

resented on the horizontal axis. Because it is a mathematically stated function,
the probability density function lends itself much more nicely into mathematical
derivations than the somewhat crude relative frequency histogram.
It is rare to see empirical distributions used in decision making models these

days. Almost everyone uses mathematically defined density functions charac-
terized by a small number of parameters (typically two or less) to represent
probability distributions. In these decision making models, the only freedom we
have in incorporating changes is to change the values of those parameters. This
may be inadequate to capture all dynamic changes occurring in the shapes of
probability distributions from time to time.

Extending the Exponential Smoothing Method to Up-
date the Empirical Probability Distribution of a Random
Variable

We will now see that representing the probability distributions of random
variables by their empirical distributions gives us unlimited freedom in capturing
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any type of change including changes in shape, Murty [7].
Let I1, . . . , In be the value intervals, and p1, . . . , pn the probabilities associ-

ated with them in the present empirical distribution of a random variable. In
updating this distribution, we have the freedom to change the values of all the
pi, this makes it possible to capture any change in the shape of the distribution.
Changes, if any, will reflect in recent observations on the random variable.

Following table gives the present empirical distribution, histogram based on
most recent observations on the random variable (for example most recent k
observations where k could be about 30), and xi to denote the probabilities in
the updated empirical distribution to be determined.

Value Probability vector in the
interval Present empirical Recent Updated empirical

distribution histogram distribution (to be
estimated)

I1 p1 f1 x1
...

...
...

...
In pn fn xn

f = (f1, . . . , fn) represents the estimate of the probability vector in the re-
cent histogram, but it is based on too few observations. p = (p1, . . . , pn) is
the probability vector in the empirical distribution at the previous updating.
x = (x1, . . . , xn), the updated probability vector, should be obtained by incor-
porating the changing trend reflected in f into p. In the theory of statistics the
most commonly used method for this incorporation is the weighted least squares
method ([7]), which provides the following model (1) to compute x from p and
f . In it, β is a weight between 0 and 1, similar to the smoothing constant α in
the exponential smoothing method for updating the expected value (like that
α there, here β is the relative weight placed on the probability vector from the
histogram composed from recent observations).

minimize(1− β)
n

i=1

(pi − xi)2 +β
n

i=1

(fi − xi)2

subject to

n

i=1

xi = 1 (1)

xi ≥ 0, i = 1, . . . , n

x is taken as the optimum solution of this convex quadratic program. β = 0.1
to 0.4 works well, the reason for choosing this weight for the second term in the
objective function to be small is because the vector f is based on only a small
number of observations. Since the quadratic model minimizes the weighted sum
of squared forecast errors over all value intervals, when used periodically, it
has the effect of tracking gradual changes in the probability distribution of the
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random variable.
The above quadratic program has a unique optimum solution given by the

following explicit formula.

x = (1− β)p+ βf (2)

So we take the updated empirical distribution to be the one with the prob-
ability vector given by (2).
The formula (2) for updating the probability vector in the above formula is

exactly analogous to the formula for forcasting the expected value of a random
variable using the latest observation in exponential smoothing. Hence the above
formula can be thought of as the extension of the exponential smoothing method
to update the probability vector in the empirical distribution of the random
variable .
When there is a significant increase or decrease in the mean value of the

random variable, new value intervals may have to be opened up at the left
or right end. In this case the probabilities associated with value intervals at
the other end may become very close to 0, and these intervals may have to be
dropped from further consideration at that time.
This procedure can be used to update the discretized demand distribution

either at every ordering point, or periodically at every rth ordering point for
some convenient r, using the most recent observations on demand.

6 An Application of the Forecasting Method of
Section 5 for Computing Optimal Order Quan-
tities

Given the empirical distribution of demand for the next period, the well known
newsvendor model [5, 8, 9] can be used to determine the optimal order quantity

Ii = interval Probability ui = mid-point
for demand pi of interval
100 − 120 0.03 110
120 − 140 0.10 130
140 − 160 0.15 150
160 − 180 0.20 170
180 − 200 0.11 190
200 − 220 0.07 210
220 − 240 0.20 230
240 − 260 0.06 250
260 − 280 0.02 270
280 − 300 0.04 290
300 − 320 0.02 310
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for that period that minimizes the sum of expected overage and underage costs
very efficiently, numerically. We will illustrate with a numerical example. Let
the empirical distribution of demand (in units) for next period be the one given
above. The expected value of this distribution µ̄ = i uipi = 192.6 units, and

its standard deviation σ̄ = i(ui − µ̄)2pi = 47.4 units.
Let us denote the ordering quantity for that period, to be determined, by

Q, and let d denote the random variable that is the demand during that period.
Then

y = overage quantity in this period = amount remaining after the
demand is completely fulfilled = (Q− d)+ = maximum{0, Q− d}
z = underage quantity during this period = unfulfilled demand dur-
ing this period = (Q− d)− = maximum{0, d−Q}.

Suppose the overage cost f(y), is the following piecewise linear function of y

Overage amount = y Overage cost f(y) in $ Slope
0 ≤ y ≤ 30 3y 3
30 ≤ y 90 + 10(y − 30) 10.

Suppose the underage cost g(z) in $, is the fixed cost depending on the
amount given below

Underage amount = y Underage cost g(z) in $
0 ≤ z ≤ 10 50
10 < z 150.

To compute E(Q) = the expected sum of overage and underage costs when
the order quantity is Q, we assume that the demand value d is equally likely to
be anywhere in the interval Ii with probability pi. This implies for example that
the probability that the demand d is in the interval 120 − 125 is = (probability
that d lies in the interval 120 − 140)/4 = (0.10)/4 = 0.025.
Let Q = 185. When the demand d lies in the interval 120 − 140, the overage

amount varies from 65 to 45 and the overage cost varies from $440 to 240 linearly.
So the contribution to the expected overage cost from this interval is 0.10(440
+ 240)/2.
Demand lies in the interval 140 − 160 with probability 0.15. In this interval

the overage cost is not linear, but it can be partitioned into two intervals 140 −
155 (with probability 0.1125), and 155 − 160 (with probability 0.0375) in each
of which the overage cost is linear. In the interval 140 ≤ d ≤ 155 the overage
cost varies linearly from $240 to $90; and in 155 ≤ d ≤ 160 the overage cost
varies linearly from $90 to $75. So, the contribution to the expected overage
cost from this interval is $(0.115 (240 + 90)/2) + (0.0375(90 + 75)/2).
Proceeding this way we see that E(Q) for Q = 185 is: $(0.03 (640+440)/2)+

(0.10(440 + 240)/2) + [(0.115 (240 + 90)/2) + (0.0375(90 + 75)/2)] + (0.20(75
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+ 15)/2) + [0.0275(15 +0)/2) + 0.055(50) + 0.0275 (150)] + (0.07 + 0.20 +
0.06 + 0.02 + 0.04 + 0.02)150 = $ 140.87.
In the same way we computed the values of E(Q) for different values of Q

spaced 5 units apart, given below.

Q E(Q)
195 178.00
190 162-27
185 143.82
180 139.15
175 130.11
170 124.20
165 120.40
160 121.95
155 122.60
150 124.40
145 139.70

145 150 155 160 165 170 175 180 185 190 195
120

130

140

150

160

170

180

Q

E
(Q

)

Figure 2: Plot of E(Q) for various values of Q.

Figure 2 is a plot of these values of E(Q). Here we computed E(Q) at values
of Q which are multiples of 5 units, and it can be seen that Q = 165 is the
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optimum order quantity correct to the nearest multiple of 5. If the optimum is
required to greater precision, the above calculation can be carried out for values
of Q at integer (or closer) values between 150 to 170 and the best value of Q
there chosen as the optimum order quantity.
The optimum value ofQ can then be translated into the actual order quantity

for the next period by subtracting the expected on-hand inventory at the end
of the present period from it.
For each i assuming that demand d is equally likely to be anywhere in the

interval Ii with probability pi, makes the value of E(Q) computed accurate for
each Q, However, in many applications people make the simpler assumption that
pi is the probability of demand being equal to ui, the midpoint of the interval
Ii. The values of E(Q) obtained with this assumption will be approximate,
particularly when the overage and underage costs are not linear (i.e., when they
are piecewise linear etc.); but this assumption makes the computation of E(Q)
much simpler, that’s why people use this simpler assumption.

7 How to Incorporate Seasonality in Demand
Into the Model

The discussion so far dealt with the case when the values of demand in the
various periods form a stationary time series. In some applications this series
may be seasonal, i.e., it has a pattern that repeats every N periods for some
known value of N . The number of periods N , before the pattern begins to
repeat is known as the length of the season. In order to use seasonal models,
the length of the season must be known.
For example, in the computer industry majority of sales are arranged by

sales agents who operate on quarterly sales goals. That’s why demand for
components in the computer industry, and demand for their own products tends
to be seasonal with the quarter of the year as the season. The sales agents usually
work much harder in the last month of the quarter to meet their quarterly goals,
so demand for products in the computer industry tends to be higher in the
third month of each quarter than in the beginning two months. As most of
the companies are building to order now-a-days, weekly production levels and
demands for components inherit the same kind of seasonality.
At one company in this industry each quarter is divided into three homo-

geneous intervals. Weeks 1 to 4 of the quarter are slack periods, each of these
weeks accounts a fraction of about 0.045 of the total demand in the quarter.
Weeks 5 to 8 are medium periods, each of these weeks accounts for a fraction of
about 0.074 of the total demand in the quarter. Weeks 9 to 13 are peak periods,
each of these weeks accounts for a fraction of about 0.105 of the total demand
in the quarter. This fraction of demand in each week of the season is called the
seasonal factor of that week.
In the same way in the paper industry demand for products exhibits sea-

sonality with each month of the year as the season. Demand for their products
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in the 2nd fortnight in each month tends to be much higher than in the 1st
fortnight.
There are several ways of handling seasonality. One way is for each i = 1

to N (= length of the season), consider demand data for the ith period in each
season as a time series by itself, and make the decisions for this period in each
season using this series based on methods discussed in earlier sections.
Another method that is more popular is based on the assumption that there

exists a set of indices ci, i = 1 to N called seasonal factors or seasonal indices
(see [8, 9]), where ci represents the demand in the ith period of the season as a
fraction of the demand during the whole season (as an example see the seasonal
factors given for the computer company described above). Once these seasonal
factors are estimated, we divide each observation of demand in the original de-
mand time series by the appropriate seasonal factor to obtain the deseasonalized
demand series. The time series of deseasonalized demand amounts still contains
all components of information of the original series except for seasonality. Fore-
casting is carried out using the methods discussed in the earlier sections, on the
deseasonalized demand series. Then estimates of the expected demand, stan-
dard deviation, and the optimal order quantities obtained for each period must
be reseasonalized by multiplying by the appropriate seasonal factor before being
used.

8 Portfolio Management

One of the most important and very widely studied problems in finance is that
of optimizing the return from investments. Everyone in this world from little
individual investors to Presidents and CEOs of very large corporations with
annual incomes ranging to hundreds of millions of dollars; all the banks, mutual
funds, and other financial institutions have great interest in this problem.
There are many different investment opportunities, but the return (also

called yield, which may be positive, 0, or negative) from each varies from period
to period as a random variable. The area is “data rich” in the sense that the
return per unit investment in each investment opportunity in each period in the
past is freely available as a time series and can be accessed by anyone.
One important problem in the area is: given a budget B (amount of money

available to invest) and a list of investment opportunities 1, . . ., n to invest it in;
how to optimally divide the budget among the various investment opportunities.
Once invested, that investment may be kept for several periods, and the returns
from it keep accumulating period to period as long as the investment is kept.
So, the important feature is that the return from investment is not in a single
installment, but paid out in each period over the life of the investment. In
applications, n, the number of investment opportunities under consideration,
tends to be large.
Denoting by the decision variable xi the amount of the budget allocated to

investment opportunity i, for i = 1, to n; the vector x = (x1, . . . , xn)
T , called a

portfolio, is a solution for the problem. The goal of portfolio optimization, is
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to characterize and find an optimum portfolio.
Let the random variable P (x) denote the total return from portfolio x in

a period. For each period in the past we can compute P (x) using x and the
available data on returns from individual investment opportunities. So, for any
x, P (x) can be generated as a time series. Let µ(x) = the expected value of the
return P (x) in a period from portfolio x.
P (x) varies randomly, this variation is perceived as the risk (or volatility of

returns) associated with portfolio x. Everyone agrees with treating variation
in returns from period to period as a risk, but there is not a universal agreement
on how to measure this risk. We will use the symbol r(x) to denote this risk
as a function of x. The two most important parameters for characterizing an
optimum portfolio are:

µ(x) = E(P (x)), the expected value of the return P (x) in a period,
it is a measure of the long term average return per period from
portfolio x,

r(x) = a measure of risk associated with portfolio x, a suitable mea-
sure is to be selected.

There is universal agreement that an optimum portfolio should maximize
µ(x). In fact some investors select a portfolio x and keep it for a long time.
For such investors the period to period variation in the return P (x) may not be
that critical, they mainly want to see µ(x) maximized.
But the majority of investors (particularly large investors like banks, mutual

funds etc.) change their portfolio periodically by selling some investments made
in earlier periods at current prices, or by investing additional amounts. For
these investors the period to period variation in the return is also an important
factor to take into consideration. These investors not only want to maximize the
long term average return, but would also like to keep the return in every period
as high as possible. So, from their perspective, an optimum portfolio should
maximize the expected return µ(x), and minimize the risk r(x); i.e., it should
achieve both these objectives simultaneously. So finding an optimum portfolio
here is a multi-objective optimization problem.
But in multi-objective optimization, there is no concept of “optimality” that

has universal acceptance. Also, the two objectives typically conflict with each
other; i.e., portfolios that maximize expected return µ(x) are usually associated
with high values for what ever measure r(x) is chosen to represent risk.
Usually the various investment opportunities are partitioned into various

sectors by their type (for example utility opportunities, banking opportunities,
etc.). Then the decision makers usually impose lower and upper bounds on the
amount of the budget that can be invested among investment opportunities in
each sector, and may be some other linear constraints also. Suppose the system
of all these constraints including the budget constraint is (here e is the column
vector of all 1s in Rn)
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Ax ≤ b

eTx ≤ B (3)

x ≥ 0

A portfolio x is said to be a feasible portfolio if it satisfies all the constraints
in (3). Once a measure r(x) for risk is selected, if x, x̄ are two feasible portfolios
satisfying: either µ(x) > µ(x̄) and r(x) ≤ r(x̄), or µ(x) ≥ µ(x̄) and r(x) < r(x̄);
then x is said to dominate x̄, because it is better or the same as x̄ WRT (with
respect to) both the objective functions in the problem, and strictly better on
at least one of the two objectives.
A feasible portfolio x̄ is said to be a nondominated portfolio or efficient

portfolio or pareto optimum portfolio if there is no other feasible portfolio that
dominates it. In multi-objective optimization problems like this one, there is no
concept of “optimality” that has universal acceptance, but clearly no investor
would like a portfolio that is dominated by another one. So, we should look
among efficient Portfolios for a solution to the problem. But usually there are
many efficient portfolios, the set of all of them is called the efficient frontier.
Mathematicians would consider a multi-objective problem well solved if an

algorithm is developed to enumerate the efficient frontier in a computationally
efficient way. Here I can mention the entertaining Hollywood movie A Beautiful
Mind based on the life of John Nash who received the Nobel Prize in economics
in 1994 for proving that a certain type of two-objective optimization problems
always have at least one efficient solution.
In a pair of efficient portfolios, if the 1st is better than the 2nd WRT the

average return µ(x), then the 2nd will be better than the 1st WRT the risk
function r(x), so the best portfolio among these two is not defined. Given a
feasible portfolio that is not efficient, an efficient portfolio better than it can
be found; but there is no universally acceptable criterion for selecting the best
among efficient portfolios. The challenge in portfolio optimization is to select
a good measure for “risk”, and obtain a good portfolio that has satisfactory
values for both the objective functions.
Besides portfolio optimization, portfolio management deals with the issues

of determining how long an optimum portfolio determined should be kept, and
the appropriate tools for tracking its performance while it is kept. Changing the
current portfolio and adopting a new one in every period is a very labor-intensive
and expensive process, that’s why once an optimum portfolio is determined in
some period, most investors do not like to change it as long as it is performing
upto expectations.
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9 Variance as a Measure of Risk, And the Markovitz
Model for Portfolio Optimization

Most of the work in finance is based on the assumption that the yields in a
period from unit investments in the various investment opportunities follow
a multivariate normal distribution. Let the vector of expected values in this
distribution be µ = (µ1, . . . , µn)

T , and let the variance-covariance matrix in it
be the symmetric positive definite matrix Σ = (σij) of order n.
Then µ(x) = the expected return from portfolio x in a period is µTx, and

the variance of this return is xTΣx.
In statistical theory, the variance of a random variable is a well accepted mea-

sure of variation of this random variable. Since the “risk” of a portfolio stems
from the variation in the returns from it from period to period, Harry Markovitz
proposed in 1952 using the variance xTΣx of returns from the portfolio x as the
measure r(x) of risk associated with it under the normality assumption. He sug-
gested the approach of minimizing this risk function subject to the constraint
that the expected fractional return per period must be ≥ some specified lower
bound δ, to define an “optimum portfolio”. This leads to the following classical
Markovitz portfolio model for which he won the 1989 Von Neumann theory prize
for contributions to OR of INFORMS, and the 1990 Nobel Prize in economics.

Minimize xTΣx

subject to the feasibility conditions in (3), and µTx ≥ δB (4)

where e is a column vector of all 1’s in Rn, and eT is its transpose. This is a
quadratic programming problem, its optimum solution is known as a minimum
variance portfolio
The minimum variance portfolio does not have universal acceptance as the

best portfolio to adopt, since it may not have good practical features. For
example, suppose δ = 0.07, and the minimum variance portfolio is a portfolio G
with expected return fraction per period of 0.07 and variance of 0.0016. There
may be another feasible portfolio H with expected return fraction per period of
0.25 and variance of 0.0018. Portfolio H which is not optimum for this model,
yields a higher return than portfolio G with very high probability in every period
and is definitely more desirable. Also, as pointed out in Papahristodoulou and
Dotzauer [19], many investors and traders as well question whether the variance
of the return xTΣx is an appropriate measure of risk; and many researchers
question whether the assumption that the returns from individual investment
opportunities follow a multivariate normal distribution is reasonable.
Another problem with this model deals with the computational difficulties in

solving it. The distribution of returns may be changing with time, and updating
the distribution requires re-computation of the variance-covariance matrix using
recent data at frequent intervals, an expensive operation when n is large. Also,
the variance-covariance matrix will be fully dense, this makes the model (4)
computationally difficult to handle if n is large.
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10 Other Measures of Risk for Portfolio Opti-
mization

While everyone perceives variation in the returns as an element of risk, no one
complains if the variation is taking the returns higher; but they will definitely
complain when they begin to decrease. That is, investor’s reaction to the two
types of variation are highly asymmetric. For this reason the variance of the
return used as the measure of risk in the classical Markovitz model is not a fully
appropriate measure of risk.
Several other measures of risk of a portfolio have been proposed in the lit-

erature [10 to 16, 19, 21 to 25]. We will use as a measure of risk of a portfolio
x, the

probability d(x, δ) that the return P (x) from it in a period is ≤
δeTx, where δ is a minimum return per unit investment per period
demanded by the investor.

A good portfolio should either have as one of its objectives minimizing this
risk measure d(x, δ), or keeping it ≤ some specified upper limit γ for it. This
measure is closely related to the Value-at-Risk (VaR)measure, and other down-
side risk measures and the safety-first conditions studied in [10, 12, 13, 15, 21,
22].
The expected return per period µ(x) of a portfolio x is a measure of the long

term benefit of adopting it; because it measures the average return per period
one can expect to get from it if the present distribution of returns continues
unchanged. One model that we will consider later in Section 12 for defining an
optimum portfolio is to maximize µ(x) subject to the constraint that d(x, δ) ≤ γ.

11 Portfolio Managament: Tracking the Distri-
bution of Return From a Portfolio That is
Kept for a Long Time

The literature in finance has many research publications dealing with models
for portfolio optimization, and we will discuss one such model based on statis-
tical learning in the next section. But very few research publications deal with
portfolio management, which also deals with tracking the performance of the
optimum portfolio determined to check whether it is performing to expectation,
and deciding when to change the portfolio. In this section we discuss an ap-
plication of the simple forecasting method discussed in Section 5 to track the
performance of the portfolio in current use.
For this, the most important random variables are the per unit return in a pe-

riod from various investment opportunities. The distributions of these random
variables may be changing over time, and unless these changes are incorporated
into the decision making process, the selected portfolio may not be a satisfactory
one for the next or for any future period.
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The distribution of return from a single investment opportunity can be es-
timated from past data by its discretized probability distribution discussed in
Section 5. This discretized probability distribution can be updated over time
based on recent data by the technique discussed in Section 5, we will use the
phrase “empirical distribution” to denote the updated distribution.
The updating technique discussed in Section 5 is quite convenient for updat-

ing the empirical distribution of return from a single investment opportunity,
because in this case the probabilities associated with a small number of intervals
need to be updated at each updating. But for studying the returns from two
or more investment opportunities (2 or more random variables in a dependence
relationship), its direct extension becomes unwieldy due to the curse of dimen-
sionality. In the multivariate context, the discretized distribution breaks up the
space of the vector of variables into a number of rectangles each with its associ-
ated probability. Even when the number of variables in 2, the number of these
rectangles is too large, and updating their probabilities becomes impractical.
However we will see that this one-variable technique is itself a useful tool in

keeping track of portfolios that are kept for long periods of time.
Suppose an investor likes to keep her/his portfolio x̄ unchanged as long as

it is performing to his/her expectations. The value of P (x̄) in each period
can be computed directly from x̄ and the available data on the returns from
the various investment opportunities, and generated as a time series. Using
it, the distribution of P (x̄) can be updated over time as explained in Section
5. If the distribution of P (x̄) is estimated and maintained in the form of an
empirical distribution, the expected value of return from the current empirical
distribution, is an estimate of the current expected return from portfolio x̄.
Also, since the empirical distribution is a discretized distribution, an estimate
of the risk measure d(x̄, δ) = probability that the return is ≤ δeT x̄ in it can be
computed very easily. From estimates of expected return, and d(x̄, δ), the two
measures for evaluating a portfolio, the investor can judge whether to continue
to keep the portfolio x̄, or look for a better portfolio to change to.

12 A Model Based on Statistical Learning to
Find An Optimum Portfolio

Let x̄ denote the current portfolio in use.
Under the assumption that the returns from various investment opportuni-

ties follow a multivariate normal distribution, the measure of risk d(x, δ) for any
portfolio x is a nonlinear function, and the problem of maximizing the expected
return µx subject to the constraint that d(x, δ) ≤ γ is a complex problem. Even
if the optimum solution of this problem can be determined, since the actual
distribution of the returns vector is unknown, it is not clear how good the per-
formance of the resulting portfolio derived from the normality assumption will
be in reality.
In statistical learning, instead of making assumptions about the distribution
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of the returns vector, we base our decisions on knowledge derived from actual
data. We now develop an MIP (mixed integer programming) model for finding
an optimum portfolio based on estimates of relevant quantities obtained from
actual data over the most recent m periods, for some selected m. The first
model ignores the transaction costs of moving from the current portfolio x̄ to
the optimum portfolio. Let

eij = actual return from unit investment in the i-th period from the
j-th investment opportunity, i = 1 to m, j = 1 to n

E = (eij), an m× n matrix of data on actual returns
Ei. = (ei1, . . . , ein), the i-th row vector of E.

The risk condition d(x, δ) ≤ γ translates to the requirement that the con-
straint Ei.x ≥ δeTx must hold for at least t periods i, where t = ceiling of
((1 − γ)m), the smallest integer ≥ ((1 − γ)m). Define the binary variables
z1, . . . , zm, where zi = 0 if Ei.x ≥ δeTx, 1 otherwise. In terms of these binary
variables, the model for finding an optimum portfolio is (5) to (10), here L > 0
is a positive number such that −L is a lower bound for each Ei.x− δeTx.

Maximize
1

m

m

i=1

n

j=1

eijxj (5)

subject to

n

j=1

xj ≤ B (6)

Ax ≤ b (7)

Ei.x− δeTx+ Lzi ≥ 0, i = 1, . . . ,m (8)
m

I=1

zi ≤ m− t (9)

xj ≥ 0, zi ∈ {0, 1} for all i (10)

Transaction costs for selling existing investments, or acquiring additional
investments can also be taken into account in the model. Assuming that the
transaction costs are linear, suppose c+j , c

−
j are the costs of acquiring additional

unit investment, selling unit investment respectively in investment opportunity
j, for j = 1 to n. Then the transaction cost for moving from current portfolio
x̄ to portfolio x is

n
j=1[c

+
j (xj − x̄j)+ + c−j (xj − x̄j)−], where (xj − x̄j)+ =

Maximum{xj − x̄j , 0} = additional investment in opportunity j acquired, and
(xj − x̄j)− = Maximum{x̄j − xj , 0} = investment in opportunity j sold.
Assuming that the transaction cost coefficients c+j , c

−
j are all positive, the

model for maximizing average return per period − transaction costs is to: Max-
imize 1

m
m
i=1

n
j=1 eijxj − n

j=1(u
+
j c

+
j + u

−
j c
−
j ) subject to constraints (6) to

(10) and xj − x̄j = u+j − u−j and u+j , u−j ≥ 0 for j = 1 to n.
The number of binary variables in either model is m, the number of re-

cent periods considered in the model. Since the distribution of returns may be
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changing over time, we will not make m too large anyway; so these models can
be solved within reasonable time with existing software systems for MIP. For
example, if the period is a week, and weekly return data over the most recent
6-month (26 week) period is used to construct the model, it will have only 26
binary variables, and so is quite easy to solve with software tools available in
the market.
Solving the same model with different values of δ, γ generates different port-

folios which can be compared with each other and the best among them selected
for implementation.
The matrix E of returns is expected to be fully dense. So, when n, the

number of investment opportunities considered, is large, the LP relaxations of
these models will be dense and may turn out to be hard to solve with existing
methods based on matrix inversion operations. New descent methods for LP
not based on matrix inversion operations discussed in [18] have the potential to
solve such models efficiently when n is large.
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