
Fast Descent Methods for LPs With Minimal or No Matrix

Inversions

Katta G. Murty

Department of Industrial and Operations Engineering,

University of Michigan,

Ann Arbor, MI 48109-2117, USA

Phone: 734-763-3513,

Fax: 734-764-3451

murty@umich.edu

www-personal.umich.edu/˜ murty/

Mohammad R. Oskoorouchi

Department of Information Systems and Operations Management,

College of Business Administration,

California State University San Marcos,

San Marcos, CA 92096-0001, USA,

moskooro@csusm.edu

www.csusm.edu/oskoorouchi

June 2010

Abstract

Existing software implementations for solving large scale Linear Programming (LP) mod-

els are all based on full matrix inversion operations involving every constraint in the model in

every step. This linear algebra component in these systems makes it difficult to solve large
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scale dense models using these systems, and it is also the source of accumulating roundoff

errors affecting the accuracy of the output. We present new methods for LP that help reduce

the need for this linear algebra component significantly, or even eliminate it altogether, and

still get comparable or better results.

Key words: Linear Programming (LP), Interior point methods (IPMs) , ball centers of

a polytope, solving LPs using matrix inversions sparingly, Sphere methods-1, 2, 2.1, 3, 4 for

large scale LPs.

1 Introduction

For modeling decision making applications, LP is the most commonly used mathematical model.

Software systems for solving LP models are based on either the simplex method, or interior point

methods (IPMs, in particular the primal-dual IPM) developed during the second half of the

20th century (Dantzig and Thappa [1997], Kojima, Mizuno, Yoshishe [1989], Megiddo [1989],

Mehrotra [1992], Monteiro and Adler [1989], Sonnevend, Stoer and Zhao [1989], and the books

Saigal [1995], Wright [1997], and Ye [1997])) and are able to solve large scale sparse models

(those involving thousands of constraints) within reasonable times by exploiting the sparcity of

the models. As several real world applications lead to sparse models, these systems are very

popular in practice.

But the simplex method, and these IPMs are based on matrix inversion operations involving

every constraint in the model in every step. In large scale applications, these matrix inversion

operations limit the ability of these algorithms to only those with very sparse coefficient matrices.

Typically, the effectiveness of these algorithms fades as the density of the coefficient matrix

increases.

Many application areas (e.g., models in AHP (analytic heirarchy process), and supply chain

problems etc.) do lead to large scale models that are dense (sometimes 100% dense). Sphere

methods (SMs) have the goal of solving LPs using matrix inversion operations sparingly, or not

at all; to handle all such models and also the others.

SMs consider LPs in the form:
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Minimize z = cx (1)

subject to Ax ≥ b

where A is an m × n data matrix; with a known interior feasible solution x0 (i.e., satisfying

Ax0 > b). Strategies for modifying any given LP into this form are discussed in (Murty[2009-2,

3]). We assume that c, and each row vector of A is normalized so that ||c|| = ||Ai.|| = 1 for all

i = 1 to m, here Ai. denotes the i-th row vector of A. Here is the notation we will use in this

paper.

K, K0: K denotes the set of feasible solutions of (1), and K0 = {x : Ax > b} its

interior.

FHi: = {x : Ai.x = bi}, the i-th facetal hyperplance of K for i = 1 to m.

δ(x), B(x, δ(x)): defined for x ∈ K0, δ(x) = minimum{Ai.x − bi : i = 1, ...,m}
is the radius of the largest ball that can be inscribed in K with x as its center.

B(x, δ(x)) = {y : ||y − x|| ≤ δ(x)} is that largest inscribed ball in K with x as its

center.

T (x): Defined for x ∈ K0, it is the set of all indices i satisfying: Ai.x − bi =

Minimum{Ap.x − bp : p = 1 to m} = δ(x). The facetal hyperplane FHi = {x :

Ai.x = bi} is a tangent plane to B(x, δ(x)) for each i ∈ T (x), that’s why T (x) is

called the index set of touching constraints in (1) at x.

Kr+1: When xr is the current interior feasible solution in the algorithm, the set

Kr+1 = {x : Ax ≥ b, Am+1.x ≥ bm+1} (2)

where Am+1. = −c, bm+1 = −Am+1.x
r − ε, and ε is a small positive tolerance.

Kr+1 is the set of feasible solutions of (1) updated by the current objective value in
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the algorithm. The current objective value is strictly monotonic decreasing in the

algorithm, and hence this updated set of feasible solutions keeps getting smaller

during the algorithm.

GPTC (gradient projection on touching constraint) directions: Let ci de-

note the orthogonal projection of cT on {x : Ai.x = 0}, i.e., ci = (I −AT
i. (Ai.))cT for

i = 1 to m. When the ball B(x, δ(x)) is under consideration, the diections −ci for

i ∈ T (x) are called the GPTC directions at the current center x.

Ball center of K: It is the center of a largest ball in K, it maximizes δ(x) over K.

Ball center of Kr+1: When xr is the current interior feasible solution in the al-

gorithm, this is the ball center of the updated set of feasible solutions defined by

(2).

We will now describe the main strategy used by the SMs to solve (1). Each iteration of

the method begins with the best interior feasible solution obtained at the end of the previous

iteration; and consists of two cycles; a centering cycle, and a descent cycle consisting of

several descent steps. Details of both these steps are discussed next.

1.1 The Centering Cycle in Sphere Method 1 (SM-1)

SM-1, the first sphere method for LP, was developed in (Murty [2006-1, 2006-2], Murty and

Oskoorouchi [2008]). In SM-1, the set of feasible solutions considered remains the original K

throught the algorithm, it remains unchanged. But the current objective plane {x : cx = cxr}
where xr is the current interior feasible solution, keeps sliding parallelly towards decreasing

values of the RHS constant in the equation defining it, from one iteration to the next. Consider

the general iteration r + 1 with xr as the initial interior feasible solution.

The centering cycle in this iteration has the aim of computing a center for this iteration

which maximizes δ(x) subject to the constraint: cx ≤ cxr. So, it is the center of a largest

ball inside K subject to this constraint on its center. In each iteration, this centering cycle is

computationally the most expensive step in the algorithm. But it is not necessary to compute
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this center exactly; in fact for computational efficiency in SMs we only compute this center

approximately by using a series of line search steps. One of the great advantages of SMs

over other IPMs for LP for practical implementation, is the flexibility that they offer in

implementing them.

In SM-1, in the centering cycle when the current interior feasible solution is x̄, the algorithm

selects a direction y which is called a profitable direction to move at x̄ for K, i.e., one

satisfying the property that δ(x̄ + αy) strictly increases as α increases from 0; and determines

the optimum step length to maximize δ(x̄ + αy) over α ≥ 0.

A direction y has been shown to be a profitable direction at x̄ for K iff Ai.y > 0 for

all i ∈ T (x̄) [8, 9, 14], so checking a given direction for profitability is easy. Two procedures

for generating profitable directions are discussed in [9, 11, 14], one is LSFN which selects a

direction among those in Γ1 = {±Ai. : i = 1, ...,m}. The other is LSCPD which obtains

profitable directions by solving a system of linear equations with coefficient matrix consisting of

only rows Ai. for i ∈ T (x̄) at the current point x̄, for details see (Murty and Oskoorouchi [2008,

2010]).

Once a profitable direction y at the current point x̄ has been determined, the optimum step

length that maximizes δ(x̄ + αy) is ᾱ , where (δ̄, ᾱ) is the optimum solution in the following

2-variable LP:

Maximize δ

subject to δ − αAi.y ≤ Ai.x̄− bi for all i (3)

δ, α ≥ 0

and δ̄ = δ(x̄+ ᾱy), the optimum objective value in this 2-variable LP. We will discuss an efficient

algorithm to solve this 2-variable LP later on.

1.2 The Centering cycle in Sphere Method 2 (SM-2)

Sphere method 2 (SM-2) discussed in [15] consists of several improvements over SM-1. As men-

tioned above, in SM-1 the set of feasible solutions considered, remains the original K throughout

the algorithm. In contrast, in SM-2, in iteration r + 1 with xr as the initial interior feasible
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solution, K is replaced by Kr+1, the set of feasible solutions updated by the current objective

value cxr (defined in (2)) that keeps getting smaller as r increases.

The center, the output of the centering cycle in this iteration in SM-2, is the ball center of

Kr+1, computed approximately by the corresponding line search steps discussed above, applied

to Kr+1 and not K. Also, in SM-2 in this iteration r + 1, the touching set of constraints T (x)

at an interior feasible solution x of Kr+1 refers to those in (2) which are touching.

1.3 The Various Descent Steps Used in SMs

Considering the genral iteration r + 1, suppose the center obtained in the centering step in this

iteration is x̄r. From this center, the descent cycle in this iteration carries out various descent

steps. In this section we describe all the descent steps used in various SMs.

In a general descent step from an interior feasible solution x∗ in descent direction d (i.e., d

satisfying cd < 0), we move from x∗ in this direction, the maximum distance possible while still

remaining at a distance ε from the boundary. This gives the step length to be γ, where

γ = Minimum{(−Ai.x
∗ + bi + ε)/(Ai.d) : over i satisfying Ai.d < 0} (4)

and the output of this descent step is x∗ + γd. Here are the various descent steps used in SM-1

in the descent cycle when the center is x̄r.

D1.1: Descent step from x̄r in the direction d1 = −cT .

D1.2: Let S = {(Ai.)T : i ∈ T (x̄r) such that c(Ai.)T < 0}∪{(−Ai.)T : i ∈ T (x̄r) such

that c(Ai.)T > 0}. Take a descent step from the center x̄r in the direction which is

the average of all the directions in S.

D2: Descent step from x̄r in the direction d2 = x̄r − x̄r−1, direction of the path of

centers being generated, here x̄r−1 is the center obtained in the previous iteration.

D3: Descent step from x̄r in each of the directions −ci for i ∈ T (x̄r).

D4: Descent step from x̄r in the average of the directions in D3.
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D5.1 For each i ∈ T (x̄r), let xir be the orthogonal projection of x̄r on FHi. It is

x̄r + (Ai.)T (bi −Ai.x̄
r).

Let x̂ir = (1 − ε)xir + εx̄r, the point on the line segment joining xir and x̄r at a

distance of ε from xir. x̂ir is called the NTP (near touching point) of B(x̄r, δ(x̄r))

with its tangent plane FHi.

For each i ∈ T (x̄r), take a descent step from the NTP x̂ir in the direction −ci.

Now we describe additional descent steps D5.2, D5.3 used in this general iteration r + 1 in

SM-2 [15].

D5.2, Descent Step 5.2: Let x̃r1 denote the best point (by objective value) ob-

tained in descent steps D1 to D5.1 in this iteration. This x̃r1 is the initial interior

feasible solution for Descent Step 5.2 (D5.2).

For each i ∈ T (x̃r1), from x̃r1 take a descent step in the GPTC direction −ci. Also,

from x̃r1 take a descent step in the direction which is the average of−ci for i ∈ T (x̃r1).

Let x̃r2 denote the best point obtained in all these descent steps, by objective value.

If cx̃r1 − cx̃r2 is:

> the selected tolerance ε for objective value reduction, with x̃r2 as the

initial interior feasible solution repeat this Descent Step 5.2; and continue

the same way.

≤ ε, take x̃r2 as the output of this D5.2, with this point go to D5.3.

D5.3, Descent Step 5.3: We come to this step from the output point of D5.2, let

us denote it by xs. Clearly δ(xs) ≤ ε from the manner it is obtained.

For each i ∈ T (xs), define xis = xs + (Ai.)T (bi − Ai.x
s), the orthogonal projection

of xs on facetal hyperplane FHi . Define x̄ = [
∑

i∈T (xs) xsi]/|T (xs)|. Typically, a

move from xs in the direction xs − x̄ goes through the central portion of Kr+1, so a

step in this direction at this stage can be expected to lead to good improvement in

objective value. We have 2 cases to consider.
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Case 1: If c(xs − x̄) < 0 carry out a descent step at xs in the descent direction

(xs − x̄), and make the output of this descent step the new current point (new xs)

and repeat this step with it, as long as the improvement in objective value is greater

than the selected tolerance.

Case 2: If c(xs − x̄) ≥ 0, let y be the orthogonal projection of (xs − x̄) on the

hyperplane {x : cx = 0}, y = (I − cT c)(xs − x̄).

Solve the 2-variable LP: max δ subject to δ − αAi.y ≤ Ai.x
s − bi for all i, and

δ, α ≥ 0. Let δ̄, ᾱ be the optimum solution of this 2-variable LP. The point xs + ᾱy

has objective value = cxs because cy = 0, from this point take all descent steps D1

up to D5.2. Call the final output point of these descent steps as the new current

point (new xs), and with it repeat this D5.3 until the improvement in objective value

becomes less than the selected tolerance.

Next we will describe a new descent steps D5.4, D5.5 that can be used in the descent cycle

in every iteration of SM-2 , and also in improved versions Sphere methods 3, 4 (SM-3, 4) to be

discussed later in this paper.

D5.4, Descent Step 5.4: This descent step is carried out in the descent cycle after all

the descent steps D1 to D5.3 have been carried out in this cycle. . Let K̄ denote the current

updated set of feasible solutions.

Let x1, ..., xs be all the points obtained at the end of all the descent steps carried out in the

latest D5.1 above in this iteration; and suppose xs is the best among all these by objective value.

Let H = {x : cx = cxs}, the objective plane through xs, called the current objective plane.

Let ε1 be a small positive number, e.g. ε1 = 0.1 or smaller. Here s = the number of touching

constraints at the center using which this D5.1 was carried out.

For each t ∈ {1, ..., s− 1}, let x̃t be the orthogonal projection of xs + ε1(xt − xs) on H. For

all t such that x̃t ∈ K, leave x̃t as it is.

For any t ∈ {1, ..., s−1} such that x̃t 6∈ K̄, do the following: Compute θ = Maximum{(−(Ai.x̃
t−

bi)/(Ai.x
s − Ai.x̃

t)): over all constraints i defining K̄ and satisfying Ai.x̃
t − bi < 0}; and then

replace x̃t by (θ)xs + (1− θ)x̃t. It can be verified that after this change all x̃t ∈ K̄ for t = 1 to
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s− 1.

Now define the direction y as the average of {(x̃t − xs)/||x̃t − xs|| : t = 1 to s− 1}. All the

x̃t for t = 1 to s − 1, are spread out in different directions all around K̄ ∩H. So the half-line

from xs in the direction y will be in the central portion of K̄ ∩ H, and hence the point which

maximizes δ(xs + αy) over α ≥ 0 for the current set of feasible solutions K̄ may be a reasonable

approximation to the ball center of K̄ on H.

Solve the 2-variable LP (of the form (3)) to find the point xs + αy, α ≥ 0 which maximizes

δ = the radius of the largest ball inscribed inside K̄ with xs + αy as center, for the current set

of feasible solutions K̄. Let ¯̄x2 be the resulting point.

Let S(¯̄x2) = {(Ai.)T : i ∈ T (¯̄x2) such that c(Ai.)T < 0}∪{(−Ai.)T : i ∈ T (¯̄x2) such that

c(Ai.)T > 0}, and let y be the average of all the directions in S(¯̄x2). Redefine K̄ = {x : Ax ≥ b

and Am+1.x ≥ bm+1} where Am+1. = −c as defined earlier, and bm+1 = −c¯̄x2 − ε (here ε is

a small positive number), as the current set of feasible solutions. Solve the 2-variable LPs to

maximize the radius of the largest ball inscribed inside the current set of feasible solutions with

its center on each of the half-lines {¯̄x2 + α(−cT ) : α ≥ 0} and {¯̄x2 + βy : β ≥ 0}; and let ¯̄x3 be

the point among the outputs which corresponds to the maximum radius of the inscribed ball.

With ¯̄x3 as the center carry out the descent cycle with all descent steps D1 to D5.3, and

after these repeat D5.4 again with the points obtained at the end of this recent descent cycle.

Continue this way repeating D5.4 as long as good reductions in objective value are obtained

If the reduction in objective value in two successive applications of D5.4 is less than the

selected tolerance, the best point among the outputs of all the descent steps carried out in this

iteration is the output of this iteration. With that point the method goes to D5.5.

Descent step 5.4 (D5.4) can also be used in SM-1, where it will be the same as the above

with the exception that K̄ = K in all the iterations, and only the first of the 2-variable LPs is

solved, and the center to begin the Descent Cycle is taken as ¯̄x2 defined above.

D5.5: Let x1, ..., xs be all the points obtained at the end of all the descent steps carried out

in the latest D5.1 above in this iteration; and suppose xs is the best among all these by objective

value. For i = 1 to s− 1, define xi(α) = xs + α(xi − xs).
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For i = 1 to s− 1, carry out the following step.

Step: Take α = 2−p, start with p = 1. Take a descent step from xi(α) in the direction −cT .

If the output point corresponds to an objective value < cxs, call this point x̃i, then go to

the next value of i. If the output point corresponds to an objective value > cxs, keep the value

of i the same but increment p by 1 and repeat the above step.

Let x̃ denote the best by objective value among the x̃i. Take x̃ as the initial interior feasible

solution for carrying out D5.2 followed by D5.3.

2 Method Used for Solving 2-variable LPs of the Form (3)

In SMs, we solve 2-variable LPs in variables (δ, α) of the form (3) in various stages. All these

problems arise in finding the optimum step length (value of α that maximizes δ) from an interior

feasible solution x̄ of the current set of feasible solutions, with δ(x̄) = δ̄, in a profitable direction

y. So in all such instances we have an initial feasible solution (δ, α) = (δ̄, 0) for the instance of

(3) being solved. We use the following method to solve this instance.

Let Γ denote the set of feasible solutions of the instance of (3) in the 2-dimensional space

of (δ, α) with α plotted on the horizontal axis, and δ plotted on the vertical axis. The method

performs a series of iterations. The first iteration begins with (δ̄, 0) on the boundary of Γ. Each

iteration begins with a feasible solution on the boundary of Γ, performs a ( horizontal move

+ a vertical move) twice, and finally a diagonal move. We will now discuss a general iteration

beginning with the intial solution (δ0, α0).

The first horizontal move: Keeping δ = δ0, find α1 = the value of α at the mid-point

of the line segment {(δ0, α) ∈ Γ}. Given δ = δ0, we know from the constraints in (3) that

θ1(δ0) ≤ α ≤ θ2(δ0) where

θ1(δ0) = Maximum{0, (Ai.x̄− bi − δ0)/(−Ai.y) : over i such that Ai.y > 0}
θ2(δ0) = Minimum{(Ai.x̄− bi − δ0)/(−Ai.y) : over i such that Ai.y < 0}.

So we know that the α1 mentioned above is (θ1(δ0)+θ2(δ0))/2. We will call the corresponding

point (δ0, α1) in Γ as the Center of Γ on δ = δ0.
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The vertical move: In this move α is held constant at present value α1, and the maximum

value of δ subject to the constraint that (δ, α1) ∈ Γ is computed. This is equal to:

δ1 = γ(α1) = Minimum{Ai.x̄− bi + α1Ai.y : i = 1 to m}.

and the point in Γ achieving this value of δ is (δ1, α1).

The 2nd (horizontal + vertical) moves: Find the center (δ1, α2) of Γ on δ = δ1 as

described above. Then the 2nd vertical move on α = α2 finds the maximum value δ2 of δ

keeping α = α2, attained at the point (δ2, α2) ∈ Γ.

The diagonal move: This move involves finding the maximum value of δ for points along

the line joining the two centers of Γ obtained in the two horizontal moves in this iteration. The

two centers are (δ0, α1), (δ1, α2) where δ1 > δ0. Let L denote the line joining these two centers.

From the coordianates of these two centers we know that that L is defined by the equation

δ = δ0 + s(α− α1)

where s = (δ1 − δ0)/(α2 − α1). Let

β1 = minimum value of α in L ∩ Γ is = maximum{(0, Ai.x̄− bi − δ0 + sα1)/(s−Ai.y) : over

i such that s−Ai.y < 0}.

β2 = maximum value of α in L ∩ Γ is = minimum{(Ai.x̄− bi − δ0 + sα1)/(s−Ai.y) : over i

such that s−Ai.y > 0}.

So, the maximum value of δ on L ∩ Γ is δ3, where

δ3 = δ0 + (β2 − α1)s attained at the point (δ3, β2) if α2 > α1, or

δ3 = δ0 + (β1 − α1)s attained at the point (δ3, β1) if α2 < α1.

Let δ4 = maximum{δ2, δ3}; and denote the associated value of α for it given above by α4.

Then (δ4, α4) is the output of this iteration. With this point go to the next iteration.

Terminate the method with the output in an iteration when the improvement in the value

of δ becomes small.
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3 Sphere methods 1, 2, 2.1

In SM-1 , in each iteration the centering cycle is carried out for the original set of feasible

solutions K as discussed above (also, see [14] for additional details), and uses descent steps D1

to D5.1 in the descent cycle in each iteration.

In SM-2, in each iteration the set of feasible solutions is updated by the current objective

value as described above (also see [15] for details), and uses descent steps D1 to D5.3 in the

descent cycle in each iteration.

Sphere method 2.1 (SM-2.1) is a modidfied version of SM-2 with the centering cycle replaced

by a light centering cycle (the same centering cycle, but with the number of line search steps in

profitable directions is limited to a preselected upper bound), for details see [15]).

Denoting the output of the general iteration r +1 by x̄r+1,1 in any of these SMs, the method

is terminated with the conclusion that x̄r+1,1 is a near optimum solution of (1), if ||x̄r+1,1 −
x̄r,1||/||x̄r+1,1|| < ε.

4 Sphere Methods 3, 4 (SM-3, 4)

These are versions of sphere methods using no matrix inversions.

Sphere Method −3 (SM-3)

SM-3 is a version of SM-1 to solve the LP (1) beginning with an initial interior feasible

solution x0 for it, in which the Centering Cycle is replaced by a new routine not using any

matrix inversions. We now describe the General iteration in SM-3. Let xr denote the initial

interior feasible solution for this iteration.

GENERAL ITERATION IN SM-3:

Centering Cycle: This step selects the center for carrying out the Descent cycle in this

iteration in SM-3

There are two cases to consider.
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Case 1: There is at least one i ∈ T (xr) satisfying cAT
i. < 0.

For each i ∈ T (xr) satisfying cAT
i. < 0, solve the 2-variable LP to maximize δ(xr +λAT

i. ) over

λ ≥ 0, and let x(i) be an optimum solution obtained.

Also solve another 2-variable LP to maximize δ(xr + λy) over λ ≥ 0, where y = average of

(Ai.)T over i satisfying c(Ai.)T < 0.

Among the optimum solutions of all these 2-variable LPs, take the one corresponding to the

least value of cx as the initial center in the algorithm in this iteration.

CASE 2: For all i ∈ T (xr), cAT
i. ≥ 0.

For each i ∈ T (xr), find the orthogonal projection yi of AT
i. on the hyperplane {x : cx = cxr}.

Solve the 2-variable LP to maximize δ(xr + λyi) over λ ≥ 0, and let x(i) be the resulting

point obtained. Notice that cx(i) = cxr for all i ∈ T (xr). Among these x(i), take the one

corresponding to the highest value for δ(x(i)) = the radius of the largest inscribed ball inside

K with x(i) as center, as the initial center in the algorithm in this Iteration.

Descent Cycle: Descent steps in this iteration in SM-3

Let x̄ be the center for initiating these steps.

Perform Descent cycle (descent steps D1 to D5.5) and with the best point obtained from

these descent steps, keep repeating D5.5 as long as improvement in objective value is being

realized. When improvement becomes less than the tolerance, with the best point obtained at

that stage as the initial interior feasible solution go to the next iteration.

Sphere Method 4 (SM-4)

SM-4 provides a way of improving performance even further by using SM-3 for carrying out

the centering cycle in SM-2 without using any matrix inversions.

This method is exactly Sphere Method 2 (SM-2) that we discussed earlier, with the centering

routine replaced by a new one based on SM-3. It uses no matrix inversion operations like SM-3.
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Each iteration in this method consists of two cycles. In this method, the set of feasible

solutions considered keeps getting smaller after each iteration like in SM-2. Iteration 1 begins

with the initial interior feasible solution x0 given in the input.

General iteration r + 1

Let xr be the initial interior feasible solution to start this iteration. This iteration consists

of the Centering cycle, and the Descent cycle.

Centering cycle: Kr, the set of feasible solutions considered in this iteration is the set of

feasible solutions of: Ax ≥ b, and the additional constraint Am+1.x ≥ bm+1 where Am+1. = −c

and bm+1 = −cxr − ε, here ε is a small positive tolerance.. The LP formulation of the problem

of finding the “ball center” of Kr is:

Maximize δ

subject to δ ≤ Ai.x− bi i = 1, . . . ,m + 1 (5)

Since xr is an interior feasible solution for the original LP (1), we know that Ai.x
r − bi > 0

for all i = 1 to m+1. Select δr satisfying 0 < δr < Minimum{Ai.x
r− bi : i = 1 to m+1}. Then

(δr, xr) is an interior feasible solution of (5). Using this as the initial interior feasible solution,

apply SM-3 to find an optimum solution this LP (5). Let (x̄r, δ̄r), be the optimum solution for

(5) obtained by SM-3. Go to the Descent cycle with x̄r as the center.

Descent Cycle: With x̄r as the center apply descent steps D1 to D5.4. Repeat D5.4 as

long as improvement is being obtained. Let xr+1 be the best point obtained (least objective

value) from all these descent steps.

Go to the next iteration with xr+1 as the initial interior feasible solution.

Computational results with SM-3, 4
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Advantages of SM-3, 4

Since both SM-3, 4 do not need any matrix inversion operations, these algorithms are easier

to implement than existing methods, and implementing these new methods does not need any

complicated roundoff error precautions, and other linear algebra routines. Also these methods

are directly amenable to parallel implementations, which makes it possible to solve large models

easily.

5 Conclusion

We presented some preliminary computational results on implementing sphere Methods 3, 4 by

solving each step in these methods using MATLAB 7.0 routines separately; and compared this

performance with that of MATLABs finished LP code “linprog” based on the simplex method.

The results show that even this implementation of the sphere methods performs much better

than “linprog”.

To compare the sphere methods with existing IPMs will require developing a low-level pro-

gramming language code for them using advanced techniques of numerical linear algebra and

updating the basis inverse in LSCPD steps as the matrix grows by a row and column as de-

scribed above (for SM-1, 2, 2.1); and parallel implementations of SM-3, 4; which we have not

done in these preliminary experiments. But these preliminary results, and the fact that the

work in each iteration of SM-2, 2.1, and particularly SM-3, 4 is much simpler than an iteration

of other existing IPMs indicates that these sphere methods will have advantage over them for

solving large scale models, in particular when the models may have redundant constraints, or a

coefficient matrix that is not very sparse.
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