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Abstract

In K(n, n) with edges colored either red or blue, we show that the problem of
finding a solution matching, a perfect matching consisting of exactly r red edges,
and (n− r) blue edges for specified 0 ≤ r ≤ n, is a nontrivial integer program. We
present an alternative, logically simpler proof of a theorem in [3] which establishes
necessary and sufficient conditions for the existance of a solution matching and a
new O(n2.5) algorithm. This shows that the problem of finding an assignment of
specified cost r in an assignment problem on the complete bipartite graph with a
0−1 cost matrix is efficiently solvable.

Key words assignment problem, 0−1 cost matrix, extreme point with spec-
ified objective value.
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1 Introduction

A problem of interest in core management of pressurized water nuclear reactors is [2]:
given an n × n cost matrix c = (cij) and the desired objective value r, find x = (xij)
satisfying

∑n
j=1 xij = 1, i = 1 to n

∑n
i=1 xij = 1, j = 1 to n − 1


 (1)

n∑
i=1

n∑
j=1

cijxij = r (2)

xij = 0 or 1 for all i, j (3)

We assume that the rank of the coefficient matrix of (1), (2) is 2n. Problem (1)−(3)
has been shown to be NP-hard in [1]. Papadimitriou [6] posed the question whether
(1)−(3) can be solved efficiently when c is a 0−1 matrix, calling it a mysterious problem.
This is the problem we consider in this paper, i.e., where c is a 0 − 1 matrix.

Karzanov in [4] studied the problem in general graphs and derived necessary and
sufficient conditions for the existence (or nonexistence) of a solution for this special
problem (Theorem 3 in the following). A solution algorithm, although not given, may
be derived from the proof in [4], and its polynomiality is quite transparent. In this
paper we provide a simpler proof of these conditions using an analysis based on 2 × 2
subgraphs, and a new O(n2.5) algorithm, which arises from these conditions.

In general, this problem is stated on an incomplete bipartite graph, i.e., we are given
a subset F ⊂ {1, . . . , n} × {1, . . . , n} and are required to also satisfy the additional
conditions xij = 0 for all (i, j) ∈ F . This problem on the incomplete bipartite graph is
perhaps harder, so far no efficient algorithm is known for finding a solution matching
in an incomplete bipartite graph. Karzanov [4] considered only the complete bipartite
graph case, and we will do the same.

2 Some Preliminaries

Let G = K(n, n), the n × n complete bipartite graph. Associate the variable xij in
(1) with the edge (i, j) in G. In the sequel c will always be a 0−1 matrix, and r will
be an integer satisfying 0 ≤ r ≤ n. Color the edge (i, j) in G blue if cij = 0, red if
cij = 1. GR, GB denote the subgraphs with red and blue edges respectively. With this
representation, (1)−(3) is the following problem.

PROBLEM 1 Input: GR, GB, the partition of G into the red and blue subgraphs, and
the requirement vector [r, n − r] where 0 ≤ r ≤ n. Output needed: A solution matching
which is a perfect matching in G with exactly r red and n − r blue edges.
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The following lemma, whose proof is easily obtained by standard arguments [4],
shows that this problem is nontrivial.

LEMMA 1 If c is a 0−1 matrix, the determinant of a basis for (1), (2) may not be
±1, but it is always between −(n + 1) to +(n + 1).

As an example, when n = 2 and c =

(
1 0
0 1

)
the graph is in Figure 2. System (1),

(2) for this example is a square nonsingular system of equations with the determinant
of the coefficient matrix equal to 2. For r = 0, 2, the solution of this system is integral,
but for r = 1 its only solution is (x11, x12, x21, x22)

T = (1/2, 1/2, 1/2, 1/2)T . So there is
no solution matching when r = 1 in this example.

So, the LP relaxation of (1)−(3) may have basic feasible solutions which are not
integral, and hence solving (1)−(3) is a nontrivial integer program.

3 Some Procedures

Let MR be a matching of cardinality r in GR, and MB a matching of cardinality n − r
in GB. With respect to Mr ∪MB a node in G is said to be a good node if it has exactly
one edge of MR∪MB incident at it, exposed node if it has no edges of MR∪MB incident
at it, and a bad node if it has both a red and a blue edge of MR ∪ MB incident at it.
Now we try to convert all the bad and exposed nodes into good nodes using procedures
1, 2, 3 described below, while keeping the cardinalities of the red and blue matchings at
r, n − r respectively throughout.

PROCEDURE 1: To convert a bad and exposed node together into good nodes.

Let i1 be any bad node with (i1, j1), (i1, j2) as the red, blue matching edges incident
at it, see the left side of Figure 1 (in the figures dashed edges are matching edges, solid
edges are nonmatching edges). There must be an exposed node, i0, in the same set of
the bipartition for G as i1. Since G is complete, both the edges (i0, j1) and (i0, j2) exist.
If (i0, j1) is red, rematch the red alternating path PR: i1, (i1, j1), j1, (i0, j1), i0 (i.e., make
(i1, j1) into a nonmatching edge and (i0, j1) into a matching edge). This converts both
i1 and i0 into good nodes (see the right side of Figure 1).

Similarly, if (i0, j1) is blue, and (i0, j2) is also blue, rematch the blue alternating path
PB: i1, (i1, j2), j2, (i0, j2), i0; this now converts i1, i0 into good nodes.

If (i0, j1) is blue and (i0, j2) is red, this procedure is unable to convert the pair (bad
node i1, exposed node i0) into good nodes (see Figure 2).
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Figure 1: A bad, exposed node pair joined by a red alternating path on left (dashed
edges are matching edges, solid edges are nonmatching edges); on right same graph after
rematching this path.
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Figure 2: Failure of Procedure 1 to convert the bad exposed node pair. A 2×2 irreducible
subgraph.

PROCEDURE 2: To convert two bad nodes not joined by a matching edge, into good
nodes.

Let i1, p1 be two bad nodes in the current union MR ∪ MB which could not be
converted into good nodes by applying Procedure 1 with any exposed nodes. Here we
consider the case where either i1, p1 both belong to the same set in the bipartition for G
(so there is no edge joining i1 and p1 in G), or they belong to different sets in the bipar-
tition for G but (i1, p1) is not a matching edge. Let (i1, j1), (p1, q1) be the red matching
edges; and (i1, j2), (p1, q2) the blue matching edges incident at them. There exist dis-
tinct exposed nodes i0 p0 in the same set of the bipartition for G as i1 p1. Subgraphs
induced by {i1, j1, j2, i0}, {p1, q1, q2, p0} are as in Figure 3 since Procedure 1 failed to
convert either of the pairs {i1, i0}, {p1, p0} into a good pair. Make (i1, j1), (p1, q2) into
nonmatching edges, and (i0, j1), (p0, q2) into matching edges. This converts i1, i0, p1, p0

into good nodes; terminate the procedure.
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Figure 3: Subgraph induced by {i1, j1, j2, i0} on the left, and that induced by
{p1, q1, q2, p0} on the right.

PROCEDURE 3: To convert two bad nodes joined by a matching edge into good nodes.

Let i1 be a bad node with red and blue matching edges (i1, j1), (i1, j2) incident at
it. Suppose j1 is also a bad node with (i2, j1) as the blue matching edge incident at it,
but j2 is a good node (Figure 4). There must be an exposed node, i0, in the set of the
bipartition for G as i1. If (i0, j2) is blue, Procedure 1 applies. If (i0, j2) is red, make
(i1, j1) into a nonmatching edge, and (i0, j2) into a matching edge. See Figure 5. This
change converts j2 into a bad node, but i1, j1 both become good nodes, thus reducing
the number of bad nodes by one.

Apply Procedure 1 as often as possible, or Procedures 2 or 3 as appropriate taking the
bad nodes in pairs, reducing the number of bad nodes to either 0 (leading to a solution
matching), or 1. In the latter case there must be exactly one exposed node in the same
set of the bipartition for G as the bad node; and at this stage the bad node, its mates,
and the exposed node form a 2×2 subgraph as in Figure 2, while all the remaining nodes
are well matched by node disjoint matching edges. In this case, this 2×2 subgraph in
Figure 2 is called the 2×2 irreducible subgraph at this stage.

4 Algorithm for a Special case

A 2×2 subgraph of G is said to be a 2×2 odd subgraph if it contains either 1 red and 3
blue edges, or 1 blue and 3 red edges.

We will find it convenient to associate edges in G with cells in a two dimensional
n × n array as is usually done in discussions of the assignment problem in operations
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Figure 4: On the left is the subgraph on which Procedure 3 applies. The right shows
the same subgraph after applying Procedure 3.

research literature (for example [5]). The cell (i, j) in the array associated with the
edge (i, j) in G is colored with the same color as the edge. For the sake of clarity, let
(A = {A1, . . . , An}, B = {B1, . . . , Bn}) be the bipartition for G; i.e., a general edge in
G is (Ai, Bj) for i, j = 1 to n. With this definition, we will denote G by (A, B).

LEMMA 2 The n × n complete bipartite graph G = (A, B) has no 2×2 odd subgraph
if and only if there exist partitions A = A′ ∪A′′, B = B′ ∪B′′, such that all the edges in
(A′, B′)∪ (A′′, B′′) have the same color, and all the edges in (A′, B′′)∪ (A′′, B′) have the
other color.

Proof. If partitions exist as stated in the lemma, it is easy to verify that no 2×2 odd
subgraph exists. To show the converse, suppose G has no 2×2 odd subgraph.

Let K1, . . .Kt be the components of GR, t ≥ 1. For v = 1 to t let Iv ⊂ A, Jv ⊂ B be
the subsets of nodes on edges in Kv. The following results clearly imply the lemma.

(i) Each Kv must be complete bipartite. For if not, Kv contains red edges (u, p), (w, p), (w, q)
while the edge (u, q) is blue, so the 2 × 2 subgraph induced by {u, w, p, q} is odd.

(ii) t ≤ 2. For if t ≥ 3, select u ∈ I1, p ∈ J1, w ∈ I2, q ∈ J3. Then (u, p) is red, while
(u, q), (w, p), (w, q) are blue giving a 2 × 2 odd subgraph induced by {u, w, p, q}.

(iii) If t = 1 at least one of |I1|, |J1| is n. For otherwise the 2 × 2 subgraph induced by
{u, w, p, q} where u ∈ I1, p ∈ J1, w ∈ A\I1, q ∈ B\J1 is odd.

(iv) If t = 2, then I1 ∪ I2 = A, J1 ∪ J2 = B. For if I1 ∪ I2 6= A, then the subgraph
induced by {u, w, p, q} where u ∈ I1, p ∈ J1, q ∈ J2, w ∈ A\(I1 ∪ I2) is odd.
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5 Algorithm when G has no 2×2 odd subgraph

Whether G satisfies the hypothesis in Lemma 2 can be checked in O(n2) time. If it does,
by rearranging the rows [columns] corresponding to nodes in the sets A′, A′′ [B′, B′′]
together, the two dimensional array representation of G is as in Figure 5 with the cells
in the blocks D1, D3 red, and those in D2, D4 blue.

B′ B′′

A′ D1 D2

Red Blue

A′′ D4 D3

Blue Red

Figure 5: Partition of G when it has
no 2 × 2 odd subgraph.

Lemma 3 Let A′, A′′, B′, B′′, D1 to D4 be as in Lemma 2 or Figure 5. For t = 1
to 4 let rt be the number of matching edges from block Dt in a solution matching for
requirement vector [r, n − r]. Then

r1 = (−n + r + |A′| + |B′|)/2, r2 = (n − r + |A′| − |B′|)/2
r3 = (n + r − |A′| − |B′|)/2, r4 = (n − r − |A′| + |B′|)/2

}
(4)

Proof. From (1), (2), (3), we see that r1 + r2 = |A′|, r1 + r4 = |B′|, r2 + r3 = |B′′| =
n−|B′|, r1+r3 = r. This system of four equations in r1, r2, r3, r4 has the unique solution
given in (4).

Theorem 1. Let A′, B′, A′′, B′′ be as in Lemma 2. A solution matching for the
requirement vector [r, n− r] exists in G iff n + r + |A′|+ |B′| is even, and r1 to r4 in (4)
are nonnegative.

Proof. If a solution matching exists, define r1 to r4 as in Lemma 3, and verify that
these quantities given by (4) are integers only if n + r + |A′| + |B′| is even.

If n + r + |A′|+ |B′| is even, and (r1, . . . , r4) given by (4) are all ≥ 0, the solution to
the four equations in the proof of Lemma 3, is nonnegative and integral. Let P1 ⊂ A′

with |P1| = r1, P2 = A′\P1; P3 ⊂ A′′ with |P3| = r3, P4 = A′′\P3; Q1 ⊂ B′ with
|Q1| = r1, Q4 = B′\Q1; Q2 ⊂ B′′ with |Q2| = r2, Q3 = B′′\Q2. Then for t = 1 to 4,
(Pt, Qt) is K(rt, rt), let Mt be a perfect matching in (Pt, Qt). Then ∪4

t=1Mt is a solution
matching in G for the requirement vector [r, n − r].
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Theorem 2 Let A′, A′′, B′, B′′ be as in Lemma 2. Consider the array representation
of G as in Figure 5. For t = 1 to n let at = {(Ai, Bi+t−1) : i = 1 to n − t + 1,
(Ai, Bi−n+t−1) : i = n − t + 2 to n} be the perfect matching represented by the tth
diagonal in Figure 5. Then a solution matching for the requirement vector [r, n − r]
exists in G iff one of these diagonal perfect matchings at, t = 1 to n has r red and n− r
blue edges.

Proof. The “if” part is obvious. Conversely if a solution matching exists, the rows
and columns in the array can be rearranged so that the cells in this solution matching
are along one of the diagonal positions in the array, implying the result.

Theorem 2 implies that if G has no 2 × 2 odd subnetwork, then all numbers r for
which solution matchings exist for the requirement vector [r, n − r] in G have the same
odd-even parity and form an arithmetic progression in which consecutive elements differ
by 2.

6 Conditions for the Nonexistence of a Solution Match-

ings

Theorem 3 If GR has a matching of cardinality r and GB has a matching of cardinality
n − r, where n ≥ 4 and 2 ≤ r ≤ n − 2 and there is no solution matching in G for the
requirement vector [r, n − r], then G has no 2×2 odd subgraph.

Proof. The theorem is easily verified for n = 4. So, assume n ≥ 5 and set up an
induction hypothesis that the theorem is true for graphs of order (n − 1) × (n − 1).

Assuming the hypothesis and the results in Section 2 imply that there exists match-
ings M̂R, M̂B in GR, GB satisfying |M̂R| = r, |M̂B| = n− r, and M̂R ∪ M̂B contains only
one bad node. This is guaranteed by repeatedly applying Procedures 1, 2, 3 as in Section
2.

Without any loss of generality assume that r ≥ n − r. Let (An, Bn) be a matching
edge in M̂R, with An, Bn being good nodes. Let Ā = A\{An}, B̄ = B\{Bn}, Ḡ = (Ā, B̄).
Since G has no solution matching for the requirement vector [r, n−r], Ḡ has no solution

matching for the requirement vector [r−1, n−r]. And ˆ̄MR = M̂R\{(An, Bn)}, ˆ̄MB = M̂B

are red and blue matchings in Ḡ of cardinalities r − 1, n − r. Hence by the induction
hypothesis and Lemma 2, there exist partitions Ā = Ā′ ∪ Ā′′, B̄ = B̄′ ∪ B̄′′ such that
all the edges in (Ā′, B̄′) ∪ (Ā′′, B̄′′) are red, and those in (Ā′, B̄′′) ∪ (Ā′′, B̄′) are all blue
(Figure 6).
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B′ B′′ Bn

A′ Red Blue

A′′ Blue Red

An Red

Figure 6: Partition of G.

The bad node in ˆ̄MR ∪ ˆ̄MB, its two mates and the exposed node in Ḡ define a

2 × 2 irreducible subgraph, let it be E = ({Ap, Aq}, {B`, Bm}). The edges in ˆ̄MR ∪ ˆ̄MB

outside of E are a pairwise node disjoint set of edges with r − 2 red and n − r − 1
blue edges. Also, from the structure in Figure 6 it can be verified that given any
Ap1 ∈ Ā′, Aq1 ∈ Ā′′, B`1 ∈ B̄′, Bm1 ∈ B̄′′; matching changes inside ḠR, ḠB can be made
so that in the resulting union ({Ap1 , Aq1}, {B`1, Bm1}) is the irreducible subgraph.

If the 3 × 3 subgraph H = ({Ap, Aq, An}, {B`, Bm, Bn}) has a solution matching for

the requirement vector [2, 1]; then by combining it with the matching edges in ˆ̄MR∪ ˆ̄MB

outside of E, we get a solution matching in G for the requirement vector [r, n−r]. Hence
there exists no solution matching in H for the requirement vector [2, 1]. This implies that
cells (Ap, Bn), (An, B`) have the same color; cells (Aq, Bn), (An, Bm) have the same color;
and that the cells (Ap, Bn), (Aq, Bn), (An, B`), (An, Bm) cannot all be red. By varying
Ap in Ā′, Aq in Ā′′, B` in B̄′, Bm in B̄′′, we conclude that all cells in (Ā′, Bn) ∪ (An, B̄′)
have the same color, say color 1; and that all cells in (Ā′′, Bn)∪ (An, B̄′′) have the same
color, say color t; and that it is not possible for both color 1 and color t to be red.

Suppose color 1 and color t are both blue. In this case the array representation for G
has the color pattern in Figure 6 with all cells in the blank spaces in the row of An and
the column of Bn being blue. Let M1 be the set of all perfect matchings in G with the
red edge (An, Bn) as a matching edge. For each 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 1, let M2ij

be the set of all perfect matchings in G with blue edges (An, Bj), (Ai, Bn) as matching
edges.

When edge (An, Bn) is deleted from each matching in M1 we get the set M̄1 of
perfect matchings in the array of order (n − 1) × (n − 1) obtained by deleting the row
of An and the column of Bn from the array in Figure 6. Similarly M̄2ij, the set of
matchings obtained by deleting cells (An, Bj), (Ai, Bn) from each matching in M2ij, is
the set of perfect matchings in array of order (n− 2)× (n− 2) obtained by deleting the
rows of An, Ai and the columns of Bj, Bn from the array in Figure 6. This array of order
(n− 1)× (n− 1), and each of the arrays of order (n− 2)× (n− 2) belong to the special
case discussed in Section 4, and hence the set of values that the number of red cells
can take among matchings in M̄1,M̄2ij is characterized by the results in Lemma 3, and
Theorems 1, 2. From this it can be verified that G has a perfect matching containing
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exactly r red cells, contradicting the hypothesis. This implies that color 1 and color t
cannot both be blue.

So color 1 and color t have to be different. Now define A′ = Ā′, B′ = B̄′, A′′ =
Ā′′ ∪ {An}, B′′ = B̄′′ ∪ {Bn} if color t is red; otherwise define A′ = Ā′ ∪ {An}, B′ =
B̄′ ∪ {Bn}, A′′ = Ā′′, B′′ = B̄′′ if color 1 is red. Then all edges in (A′, B′) ∪ (A′′, B′′)
are red and all edges in (A′, B′′) ∪ (A′′, B′) are blue. Hence by Lemma 2, G has no 2×2
odd subgraph, establishing the statement in the theorem for G. Hence by induction, the
theorem holds in general.

Definition 1: Suppose G = (A, B), has representation as in Figure 5. There is a
horizontal and a vertical line in the array in Figure 5 seperating the colors. These are
the thick lines in Figure 5 when all the sets A′, A′′, B′, B′′ are nonempty. If B′′ [A′′]
= ∅, we define the vertical [horizontal] line to be the rightmost vertical [bottommost
horizontal] boundary line of the array. The point of intersection of these horizontal and
vertical lines is called the crossover point, in this array representation. The crossover
cells in this array representation are defined to be the cells in the array that contain the
crossover point as either their upper right corner point or lower left corner point. Thus,
when both A′′, B′′ are nonempty, there are two crossover cells; when one of A′′, B′′ is
empty and the other is not, there is one crossover cell; and when both A′′, B′′ are empty
there is no crossover cell.

Lemma 4 Let G = (A, B) have representation as in Figure 5. G has a solution
matching for the requirement vector [n − 1, 1] iff in this array representation, one of its
main diagonal cells is a crossover cell.

Proof. If a crossover cell is on the main diagonal, then the cells along the main
diagonal form a solution matching for the requirement vector [n − 1, 1]. If there is no
crossover cells, or when they exist but none of them is on the main diagonal, there is
no t such that the tth diagonal in the array contains exactly one blue cell, and by the
results in Section 4, there is no solution matching for the requirement vector [n − 1, 1].

Lemma 5 If there is no 2×2 odd subgraph with 1 blue and 3 red edges in G, then there
exist partitions A = A1 ∪ . . . ∪ Ak, B = B1 ∪ . . . ∪ Bk, k > 2 such that At 6= ∅, Bt 6= ∅
for all t = 1 to k − 1, and all edges in (At, Bt) are red for t = 1 to k′ where k′ is either
k − 1 or k, and all the other edges in G are blue (Figure 7).

Proof. Clearly the lemma holds for G when n = 2. Set up an induction hypothesis
that the lemma holds for complete bipartite graphs of order (n − 1) × (n − 1).

If there is no red edge in G, the lemma holds for G with k = 1, and k′ = k − 1.
Otherwise select a red edge, (Ap, Bq). Let Ā = A\{Ap}, B̄ = B\{Bq}. Since G has no
2× 2 odd subgraph with 1 blue and 3 red edges, Ḡ = (Ā, B̄) does not either. So, by the
induction hypothesis, there exist partitions Ā = Ā1 ∪ . . .∪ Āk1 , B̄ = B̄1 ∪ . . .∪ B̄k1 , such
that Āt, B̄t are both nonempty for all t = 1 to k1 − 1, and all the edges in (Āt, B̄t) are

9



red for t = 1 to k′
1 where k′

1 is either k1 − 1 or k1, and all the other edges in Ḡ = (Ā, B̄)
are blue.

B1 . . . Bk′

A1 R
...

. . . Blue

Ak′
R

Figure 7: Partition of G.

Case 1 Bq has another red edge other than (Ap, Bq) incident at it: Suppose
(Ah, Bq) is red with h 6= p. Let Āb be the set in the partition of Ā that contains Ah.
The facts here, imply that (Ap, Bj) is red for all Bj ∈ B̄b, and blue for all Bj 6∈ B̄b,
and similarly that (Ai, Bq) is red for all Ai ∈ Āb and blue for all Ai 6∈ Āb. Hence, if we
define At = Āt for all t 6= b, and Ab = Āb ∪ {Ap}, Bb = B̄b ∪ {Bq}, then the partitions
A = A1 ∪ . . . ∪ Ak1 , B = B1 ∪ . . . ∪ Bk1 satisfy the conditions in the lemma. Hence the
lemma holds for G.

Case 2 (Ap, Bq) is the only red edge in G incident at Bq: So, in this case (Ai, Bq) is
blue for all Ai 6= Ap. The facts here imply that (Ap, Bj) is blue for all Bj ∈ B̄1∪. . .∪B̄k′

1 .
Now define k = 1 + k1, A1 = {Ap}, B1 = {Bq} ∪ {Bj : Bj 6∈ B̄1 ∪ . . .∪ B̄k′

1 and (Ap, Bj)
is red}; At+1 = Āt, for t = 1 to k1; Bt+1 = B̄t for t = 1 to k′

1; and when k′
1 = k1 − 1,

Bk = B̄k1\B1; k′ = 1 + k′
1. Then A = A1 ∪ . . .∪Ak, B = B1 ∪ . . .∪Bk are partitions of

A, B satisfying the conditions in the lemma, hence the result in the lemma is true for G.
Thus the lemma holds for the n×n bipartite graph G under the induction hypothesis,

and by induction, it holds for all n.

Definition 2: Suppose G = (A, B) has representation as in Figure 7. There are k − 1
horizontal lines (k−1 vertical lines) separating the subsets in the row (column) partition
isolating the red blocks. In case Ak (or Bk) is empty, the bottommost horizontal line
(rightmost vertical line) is considered to be one of the horizontal (vertical) lines. For t
= 1 to k−1, the point of intersection of the tth horizontal line from the top, and the tth
vertical line from the left, is called the tth crossover point in this array representation.
For t = 1 to k−1, the cells containing the tth crossover point either as their upper right
corner point or as their lower left corner point are called the tth crossover cells in this
array representation.

Theorem 4. Let n ≥ 3, and G be as in Figure 7. Suppose k′ = k, and none of the
crossover cells as specified in Definition 2 are on the main diagonal. Then G has no
perfect matching with 1 blue and (n − 1) red edges.
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Proof. It can be verified that the theorem holds when n = 3. Let n ≥ 4. Set up
an induction hypothesis that the theorem holds for complete bipartite graphs of order
(n − 1) × (n − 1) that have array representation as in Figure 7 with k′ = k.

Select a red edge in G, say (Ai, Bj). When the row corresponding to Ai, and the col-
umn corresponding to Bj are deleted from the array representation of G, what remains
is the array representation of Ḡ = (A\{Ai}, B\{Bj}). Ḡ either has an array representa-
tion as in Figure 7 with k′ = k, or as in Figure 5, and has a crossover cell along its main
diagonal iff G has one or more crossover cells along its main diagonal, and (Ai, Bj) is
a main diagonal cell of G whose deletion leaves at least one of the crossover cells along
the main diagonal of G in Ḡ. Since G has no crossover cells along its main diagonal, Ḡ
satisfies the same property. Hence by Lemma 4 and the induction hypothesis, Ḡ has no
perfect matching with 1 blue and (n − 2) red cells, so there is no perfect matching in
G with 1 blue and (n − 1) red cells containing (Ai, Bj) as a matching edge. A similar
argument shows that the same statement is true for every red edge (Ai, Bj) in G, i.e.,
G has no perfect matching with 1 blue and (n − 1) red edges. So the theorem holds for
the n× n complete bipartite graph G under the induction hypothesis, and by induction
it holds for all n ≥ 3.

Theorem 5. G has no 2×2 odd subgraph with 1 blue and 3 red edges iff each connected
component of GR is a complete bipartite subgraph. This condition can be checked, and a
2 × 2 odd subgraph of G with 1 blue and 3 red edges can be found if it is violated, with
O(n2) effort.

Proof. If G has a 2 × 2 odd subgraph with 1 blue and 3 red edges, the connected
component of GR containing the nodes on this subgraph is not complete bipartite. Com-
bining this fact with the result in Lemma 5, we conclude that G has no 2×2 odd subgraph
with 1 blue and 3 red edges iff each connected component of GR is a complete bipartite
subgraph.

When this condition is violated, let K1 be a connected component of GR which is
not complete bipartite. So, you can find nodes i1, j1 in K1 contained in different sets of
the bipartition of G, such that (i1, j1) is not an edge in K1, i.e., (i1, j1) is a blue edge in
G.

With the length of each edgs equal to 1, find a shortest simple path from i1 to j1 in
K1. Suppose it is P,

i1 = u0, (i1 = u0, v1), v1, (v1, u1), u1, . . . , (us−1, vs), vs, (vs, us), us, (us, j1), j1

where s ≥ 1 since (i1, j1) is not an edge in K1. Also, since P is a shortest path from i1
to j1 in K1, (us−1, j1) is not an edge in K1 even though us−1, j1 are in different sets of
the bipartition of G, i.e., (us−1, j1) is a blue edge in G. Hence the 2 × 2 subgraph of G
induced by {us−1, vs, us, j1} has 1 blue and 3 red edges.

Each of the operations involved in this work (like finding the connected components
of GR; checking whether each of these connected components is complete bipartite;
finding a blue edge in G joining two nodes i1, j1 in a connected component of GR that

11



is not complete bipartite; finding a shortest path in that connected component) can be
carried out with O(n2) effort. So, the existence of a 2× 2 odd subgraph with 1 blue and
3 red edges can be checked, and one of them found if they exist, with O(n2) effort.

Theorem 6. Let t be the number of connected components in GR. G has no 2 × 2
odd subgraph (either with 1 red and 3 blue edges, or with 1 blue and 3 red edges) iff the
following conditions hold.

(i) t must be ≤ 2, and each of the connected components of GR must be a complete
bipartite subgraph of G.

(ii) If GR is connected (i.e., t = 1), then it must contain all the nodes in at least one
of the two sets in the bipartition of G. If t = 2, both the connected components of
GR put together must contain all the nodes in G.

With at most O(n2) effort we can check whether these conditions are satisfied; if they
are, find the partitions A = A′ ∪ A′′, B = B′ ∪ B′′ as described in Lemma 2; and if they
are not, find a 2 × 2 odd subgraph of G.

Proof. This result follows directly from the proof of Lemma 2.
The main work in checking whether these conditions are satisfied is to find the

connected components of GR, and check whether each of these connected components is
a complete bipartite subgraph of G. Each of these can be carried out with O(n2) effort,
so the overall effort needed is O(n2).

If both conditions (i), (ii) are satisfied and t = 2, let the two connected components
of GR be (A′, B′, A′ × B′), (A′′, B′′, A′′ × B′′). In this case all the sets A′, A′′, B′, B′′ are
nonempty, and by (ii), A = A′ ∪ A′′, B = B′ ∪ B′′; these are the partitions as described
in Lemma 2.

If (i), (ii) are both satisfied and t = 1, then again by (ii), either GR = (A, B′, A×B′)
for some B′ ⊂ B, or GR = (A′, B, A′ × B) for some A′ ⊂ A. In the former case the
partitions as described in Lemma 2 are given by A′ = A, A′′ = ∅, B′, B′′ = B\B′; and in
the latter case by A′, A′′ = A\A′, B′ = B, B′′ = ∅.

When any of the conditions in (i), (ii) are violated, G has a 2×2 odd subgraph which
can be found as follows.

If one of the connected components of GR is not complete bipartite, a 2 × 2 odd
subgraph of G can be found with at most O(n2) effort as described in the proof of
Theorem 5.

If each of the connected components of GR is a complete bipartite subgraph of G,
but their number t ≥ 3, let Iv ⊂ A, Jv ⊂ B be the sets of nodes in the vth connected
component Kv of GR for v = 1 to t. Select any node u ∈ I1, p ∈ J1, w ∈ I2, q ∈ J3. The
2 × 2 subgraph induced by {u, w, p, q} has 1 red and 3 blue edges.

Suppose t = 2, and these connected components are the complete bipartite subgraphs
(I1, J1, I1 × J1) and (I2, J2, I2 × J2), where Iv ⊂ A, Jv ⊂ B for v = 1, 2. If I1 ∪ I2 6= A,
select any u ∈ I1, p ∈ J1, q ∈ J2, w ∈ A\(I1 ∪ I2). If I1 ∪ I2 = A, but J1 ∪ J2 6= B,

12



select any u ∈ I1, p ∈ J1, q ∈ B\(J1 ∪ J2), w ∈ I2. The 2 × 2 subgraph of G induced by
{u, w, p, q} has 1 red and 3 blue edges.

Suppose t = 1, and GR is the complete bipartite subgraph (I1, J1, I1 × J1) where
I1 ⊂ A, J1 ⊂ B. If I1 6= A and J1 6= B, select any u ∈ I1, p ∈ J1, w ∈ A\I1, q ∈ B\J1.
The 2 × 2 subgraph induced by {u, w, p, q} has 1 red and 3 blue edges.

Clearly the effort needed to check whether conditions (i), (ii) hold; to find the parti-
tions as described in Lemma 2 if these conditions hold; or to find a 2× 2 odd subgraph
of G when any of these conditions are violated; is at most O(n2).

Theorem 7. Let α = the cardinality of a maximum cardinality matching in GR. The
necessary and sufficient conditions for G to have a solution matching for the requirement
vector [n − 1, 1] are that either α = n − 1; or that α = n and that G have a 2 × 2 odd
subgraph with 1 blue and 3 red edges.

Proof. Clearly, α ≥ n − 1 is a necessary condition for the existence of a solution
matching in G for the requirement vector [n − 1, 1].

If α = n − 1, let M̄ be any maximum cardinality matching in GR. So, |M̄ | = n − 1.
Let Ap, Bq be the exposed nodes in G with respect to the matching M̄ . If (Ap, Bq) is
red, then M̄ ∪{(Ap, Bq)} is a perfect matching in GR, contradicting the hypothesis that
α = n− 1. So, (Ap, Bq) must be a blue edge, and M̄ ∪{(Ap, Bq)} is a solution matching
for the requirement vector [n − 1, 1].

Now consider the case where α = n. Suppose G has no 2×2 odd subgraph containing
1 blue and 3 red edges. Lemma 5 and the fact that G has a red perfect matching imply
that there exist partitions A = A1 ∪ . . . ∪ Ak, B = B1 ∪ . . . ∪ Bk, k > 2 such that
At 6= ∅, Bt 6= ∅ for all t = 1 to k, and all the edges in (At, Bt) are red and all the
other edges are blue. So, after rearranging nodes so that the rows and columns in the
array representation appear as in Figure 7, the main diagonal represents a red perfect
matching. These facts imply that any perfect matching in G that contains one edge
outside of ∪k

t=1(A
t, Bt) must also contain at least one more edge outside this union.

Hence in this case there exists no solution matching in G for the requirement vector
[n − 1, 1].

The only remaining case to consider is when α = n and G has a 2 × 2 subgraph,
Ĝ say, with 1 blue and 3 red edges. Let M̄ be any matching of cardinality n − 1 in
GR. Let Ap, Bq be the exposed nodes in G with respect to M̄ . If (Ap, Bq) is blue, then
M̄ ∪ {(Ap, Bq)} is a desired solution matching, we are done.

If (Ap, Bq) is red, M̄ ∪ {(Ap, Bq)} is a red perfect matching in G. Let N be the

set of all nodes which include the nodes of Ĝ, and all the nodes on matching edges in
M̄ ∪ {(Ap, Bq)} incident to nodes of Ĝ. Clearly |N ∩ A| = |N ∩ B| and 4 ≤ |N | ≤ 8.
Let n′′ = |N |/2. Let G′′ be the complete bipartite graph of order n′′ × n′′ which is the
subgraph of G induced by N . Then we will show below that G′′ has a perfect matching
M ′′ with exactly 1 blue edge and other edges red. Let M ′ be the set of all matching
edges in M̄ ∪ {(Ap, Bq)} that are not incident to any node in N . Then M ′′ ∪ M ′ is a
solution matching in G for the requirement vector [n − 1, 1].
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Now to show that G′′ must have a perfect matching with exactly one blue edge. If
n′′ = 2, then G′′ = g′, in this case one of the two perfect matchings in G′′ has exactly
one blue edge.

If n′′ = 3, rearrange the nodes of G′′ so that in the array form of G the main diagonal
has the red perfect matching. In this case if the colors of the other cells in the array are
not symmetric about the main diagonal, this case can easily be reduced to the case of
n′′ = 2. So, the only form of G′′ (equivalent under rearrangement) left to consider is the
symmetric case with colors of cells as shown in the following array,

R R R
R R B
R B R

and this array can be verified to have a perfect matching with 1 blue and 3 red edges.
If n′′ = 4, rearrange the nodes of G′′ so that in the array representation the main

diagonal contains the red perfect matching. Many cases reduce easily. The only one
that is not trivially reduced corresponds to the array form

R R R
R B R

R B R
R R R

in which the blank cells may be red or blue. In this case also, it can be verified that
there is a perfect matching with exactly one blue edge.

Thus in all cases we have verified that G′′ has a perfect matching with exactly one
blue edge.

7 Algorithm for the General Problem

The statement of our original algorithm was long and tedious to read. We are grateful to
a referee who suggested a much simpler way of presenting it. We present this improved
version.

Step 1:
If r = 0 or n, the problem is a standard bipartite matching problem (only one color)

[3]. Also, among the values 1, n − 1 for r we consider only r = n − 1 (if r = 1, just
interchange the red and blue colors). So we assume that 2 ≤ r ≤ n− 1. We also assume
that n ≥ 5.

If 2 ≤ r ≤ n − 2 go to Step2. If r = n − 1 go to Step 3.

Step 2:
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Check whether G has a 2×2 odd subgraph using the conditions described in Theorem
6. If G has no 2 × 2 odd subgraph; let the partitions as described in Lemma 2 be
A = A′ ∪ A′′, B = B′ ∪ B′′; use the algorithm for the partitioned case discussed in
Section 3 to find a solution matching or conclude that none exists; and terminate.

Otherwise let the 2 × 2 odd subgraph found in G be Ĝ.
Find a matching of cardinality r in GR, and a matching of cardinality n − r in

GB. If either of these matchings do not exist, there is no solution matching, terminate.
Otherwise, beginning with the matchings obtained in GR, GB, use Procedures 1, 2, 3 of
Section 2 to obtain red and blue matchings M̄R, M̄B satisfying |M̄R| = r, |M̄B| = n − r,
such that M̄R ∪ M̄B contains either 0 or 1 bad nodes. If the former case M̄R ∪ M̄B is a
solution matching, terminate. Otherwise continue.

Let N be the set of nodes which includes the nodes of Ĝ, the exposed node, and all
the nodes that are incident with a matching edge in M̄R ∪ M̄B incident with the bad
node or a node of Ĝ. Clearly |N ∩ A| = |N ∩ B| and |N | ≤ 12.

Let M ′ be the set of all matching edges in M̄R ∪ M̄B that are not incident to any
node in N . Let r′ = r − |M ′ ∩ MR|, s′ = n − r − |M ′ ∩ MB|.

If both r′, s′ are ≥ 2, define M̄ = M ′, N ′′ = N .
If r′ = 1 [ s′ = 1 ] select any of the matching edges in M ′ ∩ MR [ M ′ ∩ MB ], e say,

and let N ′′ = the union of N and the set of two nodes on the edge e, and M̄ = M ′\{e}.
So, |N ′′| ≤ 14 and even. Let n′′ = |N ′′|/2. Let G′′ be the subgraph of G induced by

N ′′. G′′ is a complete bipartite graph of order n′′ ≤ 7.
Let M ′′

R, M ′′
B be the set of matching edges in MR, MB in G′′, then r′′ = |M ′′

R| ≥ 2, s′′ =
|M ′′

B| ≥ 2.
By Theorem 3, G′′ has a perfect matching satisfying the requirement vector [r′′, s′′].

Find it by enumeration, let it be M̄ ′′. Then M̄ ∪ M̄ ′′ is a solution matching in the
original graph G, terminate.

Step 3:
Find a maximum cardinality matching, M̃ say, in GR. Let α = |M̃ |.
If α ≤ n − 2, there is no solution matching in G, terminate.
If α = n − 1, let p, q be the exposed nodes in G with respect to the matching M̃ .

Then from Theorem 7, M̃ ∪ {(p, q)} is a solution matching in G, terminate.
If α = n, find a 2 × 2 odd subgraph of G with 1 blue and 3 red edges using the

procedure described in Theorem 5. If such an odd subgraph does not exist, there exists
no solution matching in G, terminate.

Otherwise, let Ĝ be the 2× 2 odd subgraph found. Let N be the set of nodes which
includes the nodes of Ĝ and all the nodes on the matching edges in M̃ incident to nodes
in Ĝ. Let G′′ be the complete bipartite subgraph of G induced by N . By, Theorem 7
there exists a perfect matching in G′′ with exactly one blue edge, find it, M ′′ say, by
enumeration. Let M̃ ′ be the set of matching edges in M̃ that are not incident to any
node in N . Then M̃ ′ ∪ M ′′ is a solution matching in the original graph G, terminate.
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8 Computational complexity analysis

The major work in the algorithm is that of finding matchings of cardinalities r, n − r
in GR, GB respectively, which has complexity O(n2.5). The other work takes less time
than this. Thus the overall complexity of the algorithm to find a solution matching or
establish that there is none is O(n2.5).
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