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Abstract

In [4] a new interior point method has been developed for linear pro-
gramming (LP), based on a new centering strategy that moves any interior
feasible solution x0 to the center of the intersection of the feasible region
with the objective hyperplane through x0, before beginning the descent
moves. Using this centering strategy, that method obtains an optimum
solution for an LP by a very efficient descent method that uses no matrix
inversions. Here we extend that method into a descent method for solving
quadratic programs (QP). The advantages of this method are: (i) all the
constraints in the problem never appear together in any matrix inversion
operations performed in the algorithm, (ii) each iteration in the algorithm
consists of essentially three steps, one step requires no matrix inversions, a
second step requires solving a system of linear equations involving a small
subset of constraints, a third step involves matrix operations involving
only the coefficient matrix of the objective function. So, compared to
other existing methods for QP, the new method is able to handle it with
minimal matrix inversion computations.
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1 Introduction

We consider the quadratic program (QP)

Minimize Q(x) = cx+ (1/2)xTDx

subject to Ax ≥ b (1)

where the objective coefficient matrix D is a symmetric matrix of order n, the
constraint coefficient matrix A is of order m × n, and b, c are column and row
vectors of appropriate orders [2, 3, 5]. Let K denote the set of feasible solutions.
For simplicity we assume that K is bounded. We also assume that an interior
point x0 of K (i.e., a point satisfying Ax0 > b) is available.

In this paper we assume that D is positive definite, i.e., that Q(x) is strictly
convex. Strategies for relaxing this assumption are discussed briefly in Section
7.

Let K0 = {x : Ax > b}, it is the interior of K. We assume that the row vec-
tors of A, denoted by Ai. for i = 1 to m, are normalized so that their Euclidean
norm ||Ai.|| = 1 for all i. For each x ∈ K0, we define δ(x) = min{Ai.x − bi : i
= 1 to m}, δ(x) is the radius of the largest ball that can be inscribed within K
with its center at x.

In [4], in the iteration when x0 is the current interior feasible solution, the
centering step has the aim of finding an x ∈ K0 on the objective plane through
x0, that maximizes δ(x) so as to get the largest ball inscribed in K with center
at an interior feasible solution that has the same objective value as x0. In our
problem here, the set of all points with the same objective value as x0 is a
nonlinear surface and not a hyperplane; so we will not constrain the center to
have the same objective value as x0 in the centering step here, but will allow
only moves that keep the objective value the same or decrease it while increasing
δ(x).

2 The Centering Strategy

When x0 is the current interior feasible solution for (1), the problem of finding
the largest inscribed sphere inside K with center at a point where the objective
value Q(x) is ≤ Q(x0) is the following constrained max-min problem:

Maximize δ

subject to δ −Ai.x ≤ −bi, i = 1, ...,m (2)

Q(x) ≤ Q(x0)
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If (x̄, δ̄) is an optimum solution of this problem, then δ̄ = δ(x̄), and the ball
B(x̄, δ̄) with x̄ as center, and δ̄ as radius is a largest inscribed sphere required.
This problem (2) is itself a quadratic program. This type of model may have to
be solved several times before we get a solution for our original QP (1), and for
implementing our algorithm an exact solution of (2) is not essential, so solving
(2) exactly will be counterproductive. Using the special max-min structure of
(2), we now develop an efficient procedure for getting an approximate solution to
(2), similar to the one developed in [4] for the corresponding centering problem
in the algorithm discussed there for LP.

Procedure for Getting an Approximate Solu-
tion for (2)

Since our goal is to increase the minimum distance of x from the facetal
hyperplanes of K, an approximate solution of (2) can be obtained through line
searches in directions perpendicular to the facetal hyperplanes of K. So, in this
procedure, for finding the new center x ∈ K0 ∩ {x : Q(x) ≤ Q(x0)}, we only
consider moves in directions among Γ = {ATi. ,−ATi. : i = 1, ...,m} which are
descent directions for Q(x) at the current point.

So, this procedure consists of a series of moves beginning with x0, generating
a sequence of points xr ∈ K0 ∩ {x : Q(x) ≤ Q(x0)}, r = 1, 2,.... When
at xr look for a profitable direction to move at xr, which is a direction
p ∈ Γ = {ATi. ,−ATi. : i = 1, ...,m} satisfying:

(i): ∇Q(xr)p < 0, and
(ii): δ(xr + αp) increases as α changes from 0 to positive values.

For any x ∈ K0 define T (x) = {i : 1 ≤ i ≤ m, and i ties for the minimum in
δ(x) = minimum{Ai.x− bi : i = 1, ...,m}}. T (x) is known as the index set of
touching constraints at x, because it is the index set of facetal hyperplanes
of K which are tangents to the ball B(x, δ(x)) if each constraint in (1) defines
a facetal hyperplane for K. In [4] it has been shown that a direction p satisfies
condition (ii) above at xr iff all the entries in {At.p : t ∈ T (xr)} are of the
same sign. So, for any given direction p, both (i), (ii) can be checked easily to
determine if p is a profitable direction to move at xr.

If a profitable direction p ∈ Γ to move at xr has been found, the step
length α to move at xr in the direction p to get the next point in the sequence
xr+1 = xr + αp is defined to be: α = minimum{β1,β2} where

β1 = the value of β that minimizes Q(x
r + βp) over β ≥ 0. Finding

β1 therefore requires minimizing a quadratic function in the single
variable β, which can be solved easily.
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β2 = the value of β that maximizes δ(xr + βp) over β ≥ 0. In [4]
it has been shown that this can be found by solving the following
2-variable linear program in which the variables are θ,β.

Maximize θ

subject to θ − βAi.p ≤ Ai.x
r − bi i = 1, . . . ,m

θ,β ≥ 0

which can be found with at most O(m) effort. [4] discusses how to
solve this efficiently.

Once β1,β2 are determined, let α = minimum{β1,β2}, take the next point
in the sequence to be xr+1 = xr + αp, and continue the procedure in the same
way with xr+1.

The procedure continues as long as profitable directions p ∈ Γ to move at
the current point can be found.

When there are several profitable directions to move at the current point in
this procedure, efficient selection criteria to choose the best among them can be
developed. In fact, additional directions can be included in Γ to improve the
quality of the approximation obtained. When there are no profitable directions
to move at the current point, or when improvement in the value of the radius
of the inscribed ball becomes smaller than some selected tolerance, take the
current point in the sequence as the center selected by this procedure.

As can be seen, the procedure used in this centering strategy does not need
any matrix inversion, and only solves a series of 2-variable LPs, and single
variable quadratic function minimization problems, which can be solved very
efficiently. Hence this centering strategy can be expected to be efficient.

What is the Purpose of Maximizing the Radius
of the Inscribed Ball in this Centering Step?

Our goal is to find an optimum solution to the original quadratic program
(1). Then, why are we focussing on the seemingly unrelated problem of maxi-
mizing the radius of the inscribed ball in this centering step? The reason is the
following.

Let B(x̄, δ̄), the ball with center x̄ and radius δ̄ be the ball constructed in
this centering step. Then in this iteration the algorithm uses the direction x̂− x̄
as a descent direction for a line search step to minimize Q(x) over {x̄+λ(x̂− x̄) :
λ ≥ 0, and λ such that x̄ + λ(x̂− x̄) ∈ K}}, where x̂ is a point that minimizes
Q(x) over the ball B(x̄, δ̄). There are efficient polynomial time algorithms for
computing x̂, but its computation is perhaps the most expensive computational
operation in this algorithm. Maximizing δ̄, the radius of the ball found in this
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centering step, helps to reduce the number of times this expensive step has to
be used in this algorithm.

3 Descent Step Using a Descent Direction

Let B(x̄, δ̄) = {x : (x − x̄)T (x − x̄) ≤ δ̄2} be the ball with center x̄, and radius
δ̄, obtained in the centering step. In this step we solve the problem

Minimize Q(x) = cx+ (1/2)xTDx

subject to (x− x̄)T (x− x̄) ≤ δ̄2 (3)

This is the problem of minimizing a quadratic function inside a ball for which
efficient polynomial time algorithms exist. Associating the Lagrange multiplier
λ ∈ R1 with the constraint, the KKT optimality conditions for this problem are

cT +Dx+ 2λ(x− x̄) = 0

λ ≥ 0, δ̄2 − (x− x̄)T (x− x̄) ≥ 0

λ(δ̄2 − (x− x̄)T (x− x̄)) = 0

Since λ ∈ R1, this problem can be solved efficiently (in polynomial time)
using the KKT conditions, see [1, 5] for complete details of this algorithm. The
algorithm becomes simpler when D is positive definite or semidefinite, but even
if D is not positive semidefinite, it can be solved efficiently using the KKT
conditions.

Let x̂ be the optimum solution computed for (3). If x̂ is an interior point of
B(x̄, δ̄), or if it is a boundary point of both B(x̄, δ̄) and K, or if ∇Q(x̂) = 0;
then x̂ is an optimum solution of (1), terminate.

Otherwise, using x̂− x̄ as the descent direction for Q(x) at x̄, do a line search
to minimize Q(x) on the line segment {x̄ + λ(x̂ − x̄) : λ ≥ 0, and λ such that
x̄ + λ(x̂ − x̄) ∈ K}. Let λ1 be the optimum step length for this line search. If
x̄ + λ1(x̂ − x̄) is an interior point of K; then terminate if ∇Q(x) = 0 at this
point, otherwise define this point as the output of this step.

If however, x̄+λ1(x̂−x̄) is a boundary point of K, let I = {i : i-th constraint
in (1) is satisfied as an equation by x̄ + λ1(x̂ − x̄)}. If the following system in
Lagrange multipliers πI = (πi : i ∈ I)

c+ (x̄+ λ1(x̂− x̄))TD −
i∈I

πiAi. = 0 (4)

πi ≥ 0 for all i ∈ I
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has a feasible solution, then x̄+λ1(x̂− x̄) is an optimum solution of (1), termi-
nate. However, it may not be productive to check if system (4) is feasible every
time this step ends up at this stage. If this operation of checking the feasibility
of (4) is not carried out, or if (4) turns out to be infeasible, then take the output
of this step as x̄+ (λ1− 6)(x̂− x̄) where 6 is some preselected positive tolerance
for the current point to be an interior point of K.

4 Descent Step Using the Touching Costraints

We will first provide the motivation for this step. Assume that the centering step
is carried out exactly, and suppose B(x̄, δ̄) = {x : (x − x̄)T (x− x̄) ≤ δ̄2} is the
ball with center x̄ and radius δ̄ obtained in the centering step in this iteration.
T (x̄) = {i : Ai.x̄ = bi + δ̄} is the index set of touching constraints in this
iteration, this is the index set of facetal hyperplanes of K that are touching
the ball B(x̄, δ̄) and hence are tangent hyperplanes for it. Actually T (x̄) is the
index set of linear constraints in (2) that are active at its optimum solution,
all other linear constraints in (2) are inactive at its optimum solution; and the
same thing is also true for the problem obtained by replacing x0 in (2) by x̄.
So, (x̄, δ̄) is an optimum solution for (2) when x0 there is replaced by x̄, i.e., for

Maximize δ

subject to δ −Ai.x ≤ −bi, i = 1, ...,m (5)

Q(x) ≤ Q(x̄)

It often happens the the index set of touching constraints for the ball ob-
tained from an optimum solution of (5) with Q(x̄) replaced by Q(x̄)−γ remains
the same as T (x̄), for a range of values of γ, say 0 ≤ γ ≤ γ1. In this range
0 ≤ γ ≤ γ1, let δ(γ) denote the optimum radius of the ball, and x(γ) the center.
Beginning with δ(0) = δ̄, clearly, δ(γ) decreases as γ increases to γ1. From these
facts we see that in the range δ(0) ≥ δ(γ) ≥ δ(γ1), x(γ) is the optimum solution
of

Minimize Q(x) (6)

subject to Ai.x = bi + δ(γ), i ∈ T (x̄)

Replacing the parameter δ(γ) by the symbol s, an optimum solution for (6)
can be obtained by solving
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cT +Dx−
i∈T (x̄)

πiAi. = 0 (7)

Ai.x = bi + s, i ∈ T (x̄)
where πT (x̄) = (πi : i ∈ T (x̄)) is the vector of lagrange multipliers for (6). If
(x(s),πT (x̄(s)) is a solution of (7) as a function of the parameter s, then x(s)
defines a straight line in Rn in terms of the parameter s. The above argument
shows that by carrying out a line search step on this straight line, we can
decrease the value of Q(x) to reach Q(x(γ1)); and any further decrease in the
value of Q(x) below this will lead to an optimal touching constraint index set
for the ball different from T (x̄).

Even when (2) is solved approximately, we may improve the objective value
by carrying out this work with the ball obtained. That is what this step does.

Denoting the ball obtained in the centering step by the same symbolB(x̄, δ̄) =
{x : (x− x̄)T (x− x̄) ≤ δ̄2}, denote the touching constraint index set by the same
symbol as above T (x̄) = {i : Ai.x̄ = bi + δ̄}. With this T (x̄), get the solution
(x(s),πT (x̄)) for system (7). Then do a line search to minimize Q(x) over the
line segment {x(s) : s such that x(s) ∈ K}. Suppose s = s1 gives the optimum
x(s) in this line search step.

If x(s1) is an interior point of K; then terminate if ∇Q(x) = 0 at this point,
otherwise define this point as the output of this step.

If however, x(s1) is a boundary point of K, let I = {i : i-th constraint in
(1) is satisfied as an equation by x(s1)}. If the following system in Lagrange
multipliers πI = (πi : i ∈ I)

c+ x(s1)
TD −

i∈I
πiAi. = 0 (8)

πi ≥ 0 for all i ∈ I

has a feasible solution, then x(s1) is an optimum solution of (1), terminate.
However, it may not be productive to check if system (8) is feasible every time
this step ends up at this stage. If this operation of checking the feasibility of
(8) is not carried out, or if (8) turns out to be infeasible, then take the output
of this step as a point on the line segment {x(s) : s ∈ R1} close to x(s1) but in
the interior of K.

5 The Algorithm

The algorithm consists of repititions of the following iteration beginning with
an initial interior point of K. We will now describe the general iteration. In

7



each iteration, Steps 2.1 and 2.2 are parallel steps, both of which begin with the
ball obtained in the centering step in the iteration.

A General Iteration

Let x0 be the current interior feasible solution.

1. Centering Strategy: Apply the centering strategy described in Section
2 beginning with the current interior feasble solution. Let B(x̄, δ̄) denote the
ball obtained with center x̄ and radius δ̄. Let T (x̄) = {i : Ai.x̄ = bi + δ̄} is the
index set of touching constraints for this ball.

2.1. Descent Step Using a Descent Direction: Apply this strategy
described in Section 3 beginning with the ball B(x̄, δ̄). If termination did not
occur in this step, let x1 denote the interior feasible solution of (1) which is the
output point in this step.

2.2. Descent Step Using the Touching Constraints: Apply this strat-
egy described in Section 4 beginning with the ball B(x̄, δ̄). If termination did
not occur in this step, let x2 denote the interior feasible solution of (1) which is
the output point in this step.

3. Move to Next Iteration: Define the new current interior feasible
solution as the point among x1, x2 obtained in Steps 2.1, 2.2, which gives the
smallest value for Q(x). With it, go to the next iteration.

6 Convergence Results

In this section we discuss convergence results on the algorithm under the as-
sumption that the centering problem is solved to optimality in every iteration.

Theorem 1: Cosider the following version of (2) with Q(x0) replaced by a
parameter t.

δ[t] = Maximum value of δ

subject to δ −Ai.x ≤ −bi, i = 1, ...,m (9)

Q(x) ≤ t

δ[t] is a concave function of t in the interval of values of t for which the above
problem has a feasible solution.
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Proof: Let tmin, tmax be the minimum and maximum values of Q(x) over
x ∈ K. Let t1, t2 be any pair of values in the interval [tmin, tmax]; and suppose
(x1, δ1), (x2, δ2) are optimum solutions of (9) when t = t1, t2 respectively. Let
0 < α < 1.

Since Q(x) is convex, we have Q(αx1+ (1−α)x2) ≤ αQ(x1)+ (1−α)Q(x2)
≤ αt1+(1−α)t2. From this we verify that (αx1+(1−α)x2,αδ1+(1−α)δ2) is
feasible to (9) when t = αt1+(1−α)t2, but it may not be an optimum solution
of (9).

Therefore the optimum objective value in (9) when t = αt1 + (1 − α)t2,
δ[αt1 + (1 − α)t2] ≥ αδ1 + (1 − α)δ2 = αδ[t1] + (1 − α)δ[t2]. This shows that
δ[t] satisfies Jensen’s inequality required for being concave.

Let P (t) denote the set of feasible solutions of (9). Clearly, for t1 < t2, we
have P (t1) ⊂ P (t2). So, δ[t] decreases monotonically as t decreases; and since
it is concave its slope decreases as t increases.

Theorem 2: The index set of touching constraints for the ball obtained in
the centering step changes after each iteration in the algorithm.

Proof: This follows since the output point in each iteration in the algorithm,
is selected as the best among the outputs in Steps 2.1, 2.2 in that iteration.

Theorem 3: The algorithm terminates after at most 2m iterations.

Proof: Select an index between 1 to m, say i1. As t is decreasing to tmin,
suppose the index i1 is in the touching constraint index set for the ball obtained
from (9) when t = t1, and drops out of this set when t decreases from t1. This
implies that the system of constraints

δ −Ai1.x = −bi1 ,
δ −Ai.x ≤ −bi, i W= i1 (10)

Q(x) ≤ t

is feasible when t = t1, and infeasible when t is slightly smaller than t1. From
convexity of Q(x) we know that the set of values of t for which (10) is feasible
is an interval. These facts imply that (10) is infeasible for all t < t1, i.e., as t
decreases below t1, the index i1 can never be in the touching constraint index
set. So, once an index drops out of the touchnig constraint index set in the
algorithm, it can never enter it in a subsequent iteration. Since the touching
constraint index set changes in every iteration, these facts prove the theorem.
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Even if the centering step is carried out approximately, these results in-
dicate that if it is carried to good accuracy, the algorithm will have superior
performance.

7 The Case When the Matrix D is Not Positive
Definite

Relaxing the positive definiteness assumption on the matrix D leads to a vast
number of applications for the model (1). For example, an important model
with many applications is the following 0−1 mixed integer programming (MIP)
model:

Minimize cx

subject to Ax ≥ b (11)

x ≥ 0
xj = 0 or 1 for each j ∈ J

where J is the subscript set for variables which are required to be binary. Solv-
ing this problem is equivalent to finding the global minimum in the quadratic
program

Minimize cx+M
j∈J

xj(1− xj)

subject to Ax ≥ b (12)

xj ≥ 0 for j W∈ J
0 ≤ xj ≤ 1 for each j ∈ J

where M is a large positive penalty coefficient; which is in the form (1) with
D negative semidefinite. Unlike the model (1) when D is positive definite, (12)
may have many local minima, and we need to find the global minimum for (12).

Some of the steps in this algorithm can still be carried out. The approximate
centering procedure can be carried out. Also, Steps 2.1 can be carried out
exactly. For Step 2.2, the system of equations (6) may typically have a unique
solution. Even when (6) has many feasible solutions, a solution to (7) may not
even be a local minimum for (6), in fact it may be a local maximum for (6).
So, the value of including Step 2.2 in the algorithm is not clear in this case.
Also, many of the proofs in Section 6 based on convexity will not be valid in
this nonconvex case.
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However, since the ball minimization problems in Step 2.1 can be solved
exactly, there is reason to hope that by adjusting the value of the penalty cost
coefficientM during the algorithm, the algorithm can be made to lead to a good
local minimum, and thereby offer a good heuristic approach. For this general
case, these and other issues need to be pursued.
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