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Abstract
We discuss the concepts of ball centers of convex polytopes (bounded convex polyhedra),
and computational issues related to them, and how these issues are tied up with the way the
polytope is represented. Ball centers play an important role in the sphere methods for linear
programs, which points out the importance of efficient methods for computing them, at least
approximately. We show that if a polytope in R™ is either an n-dimensional simplex, or the
convex hull of a linearly independent set of vectors in R™, then its ball center is unique and

can be computed directly from the data.

Key words: Linear Programming (LP), Interior point methods (IPMs) , ball centers of
a polytope, Sphere methods-1, 2 for LPs.

1 Ball Centers of Polytopes and Problems Related to Them

Currently, Interior Point Methods (IPMs) are the most popular methods for large scale linear
programming (LP), most software systems for solving large scale LPs are based on some TPM.

The concept of the center of the feasible region is an important concept in IPMs for LP.



Sphere methods (Murty [2006-1, 2], Murty, Oskoorouchi [2008-1, 2]) are new IPMs being
developed for large scale LP. The center used in sphere methods is called the ball center, it is

the center of a largest ball inside the feasible region. Consider LPs in the form

minimize 2z(z) = cx (1)

subject to Ax > b

where A is an m x n data matrix, with a known initial interior feasible solution z° € R"
(i.e., satisfying Az® > b). The constraints in (1) include all bound constraints on individual
variables. We assume that the rows of A, denoted by A; for ¢ = 1to m, have been
normalized, so that ||4; || = 1 (]|.|]| denotes the Euclidean norm) for all ¢ = 1 to m.

For any matrix £ we will denote by FE;, E; its i¢-th row, j-th column respectively. The
symbol e denotes a vector in which all the entries are 1; it may be a row or column of appropriate
dimension, depending on the context.

Let K denote the set of feasible solutions of (1). Here we will assume that K is bounded, i.e.
that K is a convex polytope of full dimension n, represented by the system of linear constraints
(1). Let K = {x : Az > b} denote the interior of K.

The orthogonal distance from a point y € R™ to the facetal hyperplane {z : A;z = b;}
of the set K is: minimum{||z —y||: A;z = b} = A;y—b;, because ||A4;| = 1.

For each z € K, let §(z) denote the radius of the largest ball inside K with x as center.
For € K% §(z) is the minimum among the orthogonal distances of x to the various facetal
hyperplanes of K, so, §(z) = Min{A;x —b;: i = 1to m}, since ||4;]| = 1 for all i. And,
the largest ball inside K with z as its center is B(z,d(z)) = {y : ||y — z|| < d(z)}.

Definitions: A ball center of a convex polytope, is a point in it which is the center of a
largest ball inside that polytope.

Also, given a hyperplane H satisfying H N K" # (), a ball center of K on H is a point in
H N K that is the center of a largest radius ball inside K with its center restricted to H.

Now consider the following problems:



Problem 1: Given an interior point z in the polytope K, what is the radius §(z)

of the largest ball with x as center, that is contained inside K?

Problem 2: We want to find a largest ball inside the polytope K. Is it unique, and
if so what is its center and radius? If not, what is the set of all points, each of which
is the center of a largest ball inside K? Also, given an interior point of K, how can

we check whether it is the center of a largest ball inside K?

Hence when the polytope K is specified through linear constraints, for each point = in the
interior of K, Problem 1 mentioned above can be solved efficiently using the formulas given

above.

For our polytope K specified by the system of linear constraints (1), a ball center of K is a
point z € K which maximizes §(z), i.e., it is an optimum solution of the problem of maximizing

0 = minimum{A; x — b; : i = 1 to m} subject to the constraints in (1). This is the LP

Maximize o

subject to d < A;x—b;, i=1 tom (2)

So, a ball center of K represented by the system of constraints (1), is an optimum solution

Figure 1: Polytope K and the largest ball inside it are shown. When the largest inscribed ball

in K is unique as here, its center z* is the ball center of K.



Figure 2: A 2-dimensional polytope K for which the largest inscribed ball is not unique. S,
the set of centers of all such balls, the optimum face of (8.2.1) in the z-space, is the dashed line

segment in this polytope, x* is a point in it.

z of the LP (2), and the § in that optimum solution is the radius of the largest ball inside K, it
is 6(z) defined above for that point x.

An optimum solution of the LP (2) may not be unique, so a ball center for a polytope may
not be unique. Figure 1 illustrates a polytope which has a unique ball center, and Figure 2
illustrates one in which the ball center is not unique.

Linear programming theory provides efficient methods to cheque whether (z,d(z)) is an
optimum solution of (2) for a given interior point z of K; whether an optimum solution of (2)
is unique, and if not it provides a representation of the set of all optimum solutions of (2) by a
system derived from the system of constraints in (2) with some inequalities in it converted into
equations. So, when the polytope K is represented by a system of linear constraints, all the

questions in Problem 2 can be answered efficiently.

One of the two steps in each iteration of sphere methods for LP is the centering step, which
tries to compute a good approximation to a ball center of a polytope, beginning with an initial
interior feasible solution. The sphere methods in (Murty and Oskoorouchi [2008-1, 2]) solve this

using a series of line searches. Here we encounter the following problem.

Problem 3: Given an interior point z of K, a y € R", y # 0 is said to be a
profitable direction at z, if §(Z + ay) increases strictly as a increases from 0. How
can we check efficiently whether a given y # 0 is a profitable direction at 7 How
can we check whether there exists a profitable direction at z, and if so how can we

compute one such direction efficiently?



Answers to Problem 3 are provided when the polytope is represented through a system of
linear constraints in (Murty [2006-1, 2]). For instance for our polytope K represented by (1),
for each interior point x of K, define T'(z) = set of all indices 4 satisfying: A;x —b; =
Minimum{A,z—b,: p = 1 to m} = 0(z). The hyperplane {z: A;z = b;} is a tangent
plane to the ball B(z,d(z)) for each i € T(z), therefore T(z) is called the index set of

touching constraints in (1) at = € K°. See Figure 3.

Figure 3: 2° € K%, and the ball shown is B(z°,6(2°)), the largest ball inside K with 20 as
center. Facetal hyperplanes of K corresponding to indices 1, 2 are tangent planes to this ball,
so T(z%) = {1,2}.

In (Murty [2006-1, 2], Murty and Oskoorouchi [2008-1, 2])) it has been proved that a y # 0
is R™ is a profitable direction at the interior point z of K represented by (1), iff A;y > 0 for
all 4 € T(z). Also, there exists no profitable direction at Z iff it is a ball center of K, which
holds iff the system: A;y >0 for all i € T(Z), has no solution in y.

Thus answers to all the questions in Problem 3 can be derived efficiently when the polytope

K is represented through a system of linear constraints.



2 Questions Related to Ball centers in Polytopes Represented

as Convex Hulls of Their Extreme Points

There are two ways of representing a convex polytope. One way represents it as the set of
feasible solutions of a given system of linear constraints, this is the representation we used in
Section 1, and we have seen that Problems 1, 2, 3 stated in Section 1 can be solved efficiently
under this representation of the convex polytope.

Another way is to give the set of all the extreme points of the polytope, and represent the
polytope as the convex hull of this set. Let T = {z!,...,2"} be the set of all extreme points of
a convex polytope K. In this way, K7 is represented as the convex hull of T'.

However, there are no efficient methods known to solve any of Problems 1, 2, 3 listed above
on the polytope K represented as the convex hull of its extreme points. All these problems on
K, remain as open problems. Some of these problems may be hard problems, as indicated by

the following theorem.

Theorem: I' = < {z!,...,z"} >, is a polytope of dimension n in R", which is represented
as the convex hull of its extreme points; and z¥ is a given interior point of I'. The problem of

computing §(z°) = the radius of the largest ball inscribed in T with 2 as center is NP-hard.

Proof: Transfer the origin to #°. Then I' becomes < {z', ...,z"} >, where z! = 2 — 20, In

this representation, since z° = 0 is an interior point of I, it can be represented by a system of
linear inequalities of the form Ax < e; where e is a column vector of all 1s, and A is a matrix of
order m x n; m being the number of facets of I'.

Then for each for each i = 1 to m, A;, is the i-th row vector of A, and {z : A;z = 1} is a
facetal hyperplane of I'. So the Euclidean distance between 20 = 0, and the nearest point to z°
on this facetal hyperplane is 1/[|4;.||. So, §(z°) = minimum{1/||4;|]: i = 1 to m}.

The vectors A;, i = 1 to m are all the extreme points of the system:

art <1 forallt =1to L

in variables a = (ay,...,a,). Hence 6(z°) is the inverse of the optimum objective value in

the problem of maximizing ||a|| subject to the system of inequalities given above. This is the



problem of maximizing the Euclidean norm, a convex function, on a convex polytope specified

by a system of linear inequalities, a well known NP-hard problem. N

In the next section we will discuss how to find the ball center of a special polytope, a simplex;

under either representation efficiently.

3 Ball Center of an n-Dimensional Simplex in R"

3.1 Ball Center of a Simplex Represented by Constraints

Let S be an n-dimensional simplex in R", i.e., its representation using linear constraints is of

the form

S={z:D; >d; fori=1ton+1}

where d = (d;) € R™*!, and the coefficient matrix D of order (n+41) x n with rows D; i =1 to
n + 1 satisfies the properties that all the (n + 1) submatrices of it of order n x n are nonsingular,
and that each row vector of D is a linear combination of the other rows with strictly negative
coefficients. Without any loss of generality we will assume that all the rows of D have been
normalized so that ||D; || = 1 for all 4.

We will now show that S has a unique ball center which is the unique solution of the system

of linear equations:

Dz —de=4d

where z will be the ball center of S in the solution and 4 is the radius the largest ball inside S
with center at that z.

It can be verified that the coefficient matrix of this system is nonsingular, hence this system
has a unique solution, (Z,8). The ball B(z,d) with Z as the center and ¢ as radius is inside S
and touches all the facets of S, so it is the largest ball with Z as center inside S.

Also, the system Dy > 0 has 0 as its unique solution, because Dy, 1. = a1 D1, + ... + an Dy,

with all o, ..., a, < 0.



Applying the conditions mentioned under Property 3, we conclude that Z is the ball center
of K and it is unique. So, when the simplex S is represented using linear constraints, its ball

center can be computed efficiently as described above.

3.2 Ball Center of a Simplex Represented as the Convex Hull of its Extreme
Points

Now suppose that S is represented as the convex hull of its set of extreme points T' = {z?, ..., 2" T1}.

So, an x € S is represented as:

r = ,31(1'1 _ 1;71+1) + .. +ﬁn($n _ l,n—i—l) + $n+1 (3)

where 31, ...,0, >0, and 1 + ... + B, < 1.
Let B denote the n x n matrix with its j-th column B ; = zd — 2"t for j = 1 to n; and

B = (B1,..., 3,)". Since S is a simplex we know that B is nonsingular. So, from (3), we have

Bz = B+ B lgntl,

Using this, from the bounds on § we have

B 'z

Y

B~ lgntt (4)

—eB 'z > —1—eB gt

So, (4) is the representation of S = convex hull of T' here through linear constraints. To
derive the ball center of S using this representation (4), we need to normalize each constraint
in (4) so that the Euclidean norm of its coefficient vector is 1. For this we need v; = ||(B~1); ||
for i = 1 to n, and 7,41 = |[eB~!{|. Then from the results in Section 3.1, we know that the ball

center x of S, and the radius § of the largest ball inside S, are the solution of the system

B—l —y T B_1$n+1
—eB™t —vyi 5 ) \ —1—eB-lgnt!



where v = (71, ...,7,)". By adding the sum of the first n equations in this system to the last,

we find that in the solution of this system

d=1/(v1+ ..+ Vns1)

and from the first n equations we see that the ball center of the simplex S here is

z=2""+ (1/(m + -+ Yas1)) By

4 Ball Center of the Convex Hull of a Linearly Independent Set

of Vectors in R"

Let P = {z!,...,2"} be a linearly independent set of column vectors in R", and S, = convex
hull of P, where r < n. Then S5 is an (r — 1)-dimensional simplex in its affine hull. In this
section we discuss how to compute the ball center of Sy directly.

In this case the n x (r — 1) matrix

By = (z! — 2" - "l —2")

is of full column rank. Find a row partition of it into (B, Ba2)” such that By, By are of
orders (r —1) x (r —1) and (n —r + 1) x (n — r + 1) respectively, and By is nonsingular.

Let (g{,g%)T, (z4,25)" be the corresponding row partitions of the column vectors 27 for
each 7 = 1 to r, and each x € Sy respectively.

Then for each = = (z,,z5)7 € Ss, it can be verified that

zy = Buy[By'(z; —z})] + 2} (5)

(5) is the system of linear equations that defines the affine hull of S,.
Now, the convex hull of {z},...,27} C R"~! is a full dimensional simplex in R"~! and its
ball center x; can be found by applying the formula derived in Section 3.2 to it. Then in the

original space R", the ball center of Sy is (z,,z5)” where z, is obtained from z, using (5).



5 Applications in Sphere Methods for Solving Large Scale LPs

Sphere methods (Murth [2006-1, 2], Murty and Oskoorouchi [2008-1, 2]) consider linear programs
(LPs) in the form

Minimize 2z = cx

subject to Ax > b

where A is an m X n matrix. Sphere methods use ball centers (i.e., centers z of largest radius
balls contained inside K) subject to constraints on centers z. If the constraint on the center x
is cx = t for some given ¢, the center obtained is called a ball center of K on the objective plane
{y:ey =t}

One of the descent steps used in sphere methods is called D5.1, it consists of a sequence of at
most m descent steps. Let {Z!,..., 4%} be the output points obtained in an application of D5.1.
Then these s are all close to the boundary of K, scattered all around K in different directions,
and typically form a linearly independent set. Also, these properties ensure that the ball center
of their convex hull < {#!,...,2%} > is very close to a ball center of K on the objective plane
through it; and hence it can be used for the next iteration in sphere methods. This application
is more fully discussed in (Murty [2009]), and computational results using it will be reported in
(Murty and Oskoorouchi [2008-2]).
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