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Abstract

The periodic tables of physics are built using a small set of rules that describe 
the mathematical relationships between physical elements, and provide a 
graphical representation of those relationships.  The periodic tables of physics 
are a powerful tool for interpreting, understanding and formulating mathematical 
expressions of physical relationships.  The periodic tables of physics enforce 
self-consistency and completeness when they are applied to the analysis of 
physical problems.

The periodic table of mechanical elements is based on the basic definitions and 
fundamental theorems of classical mechanics.  It shows the relationships 
between the elements of classical mechanics.

The periodic table of electromagnetic elements is based on the integral form of 
Maxwell's equations. It shows the relationships between the elements of 
classical electromagnetics, and clearly shows that a mechanical foundation 
underlies classical electromagnetics.

The periodic table of thermodynamic elements is based on a fundamental 
proposition that follows logically from the construction of the periodic tables of 
mechanical and electromagnetic elements.  The periodic table of 
thermodynamic elements suggests relationships between the elements of 
thermodynamics.  It also suggests that a mechanical foundation underlies 
thermodynamics.
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Preface

A new theory is like a rough rock torn from the ground.  It's value cannot be 
determined until it has been polished.

Foreword

Students of physics are foot-soldiers in the battle for understanding.  As 
understanding is refined, details of the battlefield are redrawn.  While the 
battlefield may be redrawn, the landmarks must remain.
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Mechanical Elements Mechanical Elements

Mechanical Elements

Power Energy Action
Moment of 

Inertia
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Pressure
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Volumetric 
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Diagram 1: The Periodic Table of Mechanical Elements

1



Mechanical Elements Introduction

Introduction

Force ( F ) is normally defined as the time rate of change of momentum ( P ):

F =
∂ P
∂ t

,

and momentum is defined as the product of mass ( m ) and velocity ( v ):

P = mv .

Force is found in Hooke's law:

F = ∫ kd x ,

and force is also found in the work-energy theorem:

W = ∫ F⋅d x .

In fact, physics is filled with relationships involving force.

There is a natural tendency to think of force as having different manifestations 
such that there is one type of force arising from the stretching of a spring, and 
another type of force arising from a time rate of change of momentum.  This 
case by case interpretation is incomplete.

As it turns out physical quantities, such as force, can only be described in terms 
of their relationship with other physical quantities.  This may seem like circular 
reasoning, but it is not.  There is a fundamentally simultaneous nature to the “fit” 
of physical quantities.

For example a moving body has both kinetic energy and momentum at the 
same time.  From the work-energy theorem the work done on the body to impart 
the kinetic energy must have been the result of a force which, by definition, was 
the result of a time rate of change of momentum.  The force-energy equation, 
and the force-momentum equation must be solved simultaneously.
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Mechanical Elements Constructing the grid

Constructing the grid

Consider a two-dimensional grid of boxes where each box is related to it's 
immediate neighbors by a specific set of rules.  The same set of rules applies to 
each and every box on the grid.  Each box on the grid represents a particular 
mechanical element (power, energy, force, …).

Using a suitable set of rules all of the mechanical elements can be arranged on 
the grid in accordance with the fundamental definitions and theorems of 
mechanics in an unambiguous fashion.  This arrangement constitutes the 
periodic table of mechanical elements.  The periodic quality of the mechanical 
elements will become clear in the course of the presentation.

3



Mechanical Elements Rules of the grid

Rules of the grid

This diagram describes how any element, represented by , is related to it's 
immediate neighbors.

∫d x /t  ∫dx ∫d xt 

∂
∂ t

Any
Element


∫dt

∂
∂xt 

∂
∂ x

∂
∂x /t 

Diagram 2: How an element is related to it's immediate neighbors

This is the complete set of rules by which the grid is constructed.
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Mechanical Elements Force on the grid

Force on the grid

This diagram shows a 4x4 piece of the grid containing a box labeled force.

Diagram 3: Force placed on the grid

The grid must extend infinitely in all directions.  This is a logical consequence of 
the fact that every box is related to eight immediate neighbors.

5
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Mechanical Elements Momentum and force

Momentum and force

Force ( F ) is defined as the time rate of change of momentum ( P ):

F =
∂P
∂ t

.

According to the rules by which the grid is constructed the force box is located to 
the left of the momentum box.

F=
∂P
∂ t

P

Diagram 4: The relationship between the force box and the momentum box

This means the momentum box must be placed on the grid to the right of the 
force box.
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Mechanical Elements Momentum on the grid

Momentum on the grid

This diagram shows a 4x4 piece of the grid with the momentum box placed 
correctly.

Force Momentum

Diagram 5: Momentum placed on the grid
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Mechanical Elements Energy and force

Energy and force

The work-energy theorem states that work ( W ) is equivalent to energy ( E ), 
and work is the integral of force in the direction of motion:

E = W = ∫ F⋅dx .

According to the rules by which the grid is constructed the energy box is located 
above the force box.

E=∫ F⋅d x

F

Diagram 6: The relationship between the force box and the energy box

This means the energy box must be placed on the grid above the force box.
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Mechanical Elements Energy on the grid

Energy on the grid

This diagram shows a 4x4 piece of the grid with the energy box placed correctly.

Energy

Force Momentum

Diagram 7: Energy placed on the grid
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Mechanical Elements Power and energy

Power and energy

Power ( P ) is defined as the time rate of change of energy:

P =
∂E
∂ t .

According to the rules by which the grid is constructed the power box is located 
to the left of the energy box.

P=
∂E
∂ t

E

Diagram 8: The relationship between the power box and the energy box
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Mechanical Elements Power on the grid

Power on the grid

This diagram shows a 4x4 piece of the grid with the power box placed correctly.

Power Energy

Force Momentum

Diagram 9: Power placed on the grid
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Mechanical Elements Mass and momentum

Mass and momentum

Momentum ( P ) is defined as the product of mass ( m ) and velocity ( v ):

P = m⋅v .

This can be rearranged to yield mass as the ratio of momentum over velocity:

m =
P
v

.

The directional components cancel, because the momentum and velocity 
vectors share the same direction. This leaves only the ratio of their magnitudes. 
Considering the instantaneous case yields mass as the velocity rate of change 
of momentum: 

m =
∂ P
∂v

.

According to the rules by which the grid is constructed the mass box is located 
diagonally down and to the right of the momentum box.

P

m=
∂ P
∂v

Diagram 10: The relationship between the momentum box and the mass box
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Mechanical Elements Mass on the grid

Mass on the grid

This diagram shows a 4x4 piece of the grid with the mass box placed correctly.

Power Energy

Force Momentum

Mass

Diagram 11: Mass placed on the grid
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Mechanical Elements Linear density and mass

Linear density and mass

Mass ( m ) can be calculated as the integral of linear density (  ) with respect 
to distance:

m = ∫ d x .

According to the rules by which the grid is constructed the mass box is located 
above the linear density box.

m=∫ d x



Diagram 12: The relationship between the linear density box and the mass box

This means the linear density box must be placed on the grid below the mass 
box.
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Mechanical Elements Linear density on the grid

Linear density on the grid

This diagram shows a 4x4 piece of the grid with the linear density box placed 
correctly.

Power Energy

Force Momentum

Mass

Linear Density

Diagram 13: Linear density placed on the grid
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Mechanical Elements Areal density and mass

Areal density and mass

Mass ( m ) can be calculated as the double integral of areal density (  ) with 
respect to area:

m = ∬ d x d x .

According to the rules by which the grid is constructed the mass box is located 
two boxes above the areal density box.

m=∬ d xd x

=∫ d x



Diagram 14: The relationship between the areal density box and the mass box

This means the areal density box (  ) must be placed on the grid two boxes 
below the mass box.
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Mechanical Elements Areal density on the grid

Areal density on the grid

This diagram shows a 5x4 piece of the grid with the areal density box placed 
correctly.

Power Energy

Force Momentum

Mass

Linear 
Density

Areal 
Density

Diagram 15: Areal density  placed on the grid
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Mechanical Elements Volumetric density and mass

Volumetric density and mass

Mass ( m ) can be calculated as the triple integral of volumetric density (  ) 
with respect to volume:

m = ∭ d xd xd x .

According to the rules by which the grid is constructed the mass box is located 
three boxes above the volumetric density box.

m=∭d xd xd x

=∬d x d x

=∫d x



Diagram 16: The relationship between the volumetric density box and the mass box

This means the volumetric density box (  ) must be placed on the grid three 
boxes below the mass box.
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Mechanical Elements Volumetric density on the grid

Volumetric density on the grid

This diagram shows a 6x4 piece of the grid with the volumetric density box 
placed correctly.

Power Energy

Force Momentum

Mass

Linear 
Density

Areal 
Density

Volumetric 
Density

Diagram 17: Volumetric density placed on the grid
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Mechanical Elements Moment and linear density

Moment and linear density

Moment ( M ) can be calculated as the double integral of linear density (  ) 
with respect to area:

M = ∬ d xd x .

According to the rules by which the grid is constructed the moment box ( M ) is 
located two boxes above the linear density box.

M=∬ d xd x

m=∫ d x



Diagram 18: The relationship between the moment box and the linear density box
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Mechanical Elements Moment on the grid

Moment on the grid

This diagram shows a 4x4 piece of the grid with the moment box placed 
correctly.

Power Energy

Force Momentum Moment

Mass

Linear Density

Diagram 19: Moment placed on the grid
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Mechanical Elements Moment of inertia and linear density

Moment of inertia and linear density

Moment of inertia ( I ) can be calculated as the triple integral of linear
density (  ) with respect to volume:

I = ∭ d x d x d x .

According to the rules by which the grid is constructed the moment of inertia
box ( I ) is located three boxes above the linear density box.

I=∭d x d x d x

M=∬d x d x

m=∫ d x



Diagram 20: The relationship between the moment of inertia box and the linear density box
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Mechanical Elements Moment of inertia on the grid

Moment of inertia on the grid

This diagram shows a 4x4 piece of the grid with the moment of inertia box 
placed correctly.

Power Energy
Moment of 

Inertia

Force Momentum Moment

Mass

Linear Density

Diagram 21: Moment of inertia placed on the grid
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Mechanical Elements Spring constant and force

Spring constant and force

Hooke's law states that force ( F ) is the integral of spring constant ( k ) with 
respect to distance:

F = ∫ k d x .

According to the rules by which the grid is constructed the force box is located 
above the spring constant box.

F=∫ k d x

k

Diagram 22: The relationship between the spring constant box and the force box
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Mechanical Elements Spring constant on the grid

Spring constant on the grid

This diagram shows a 4x4 piece of the grid with the spring constant box placed 
correctly.

Power Energy
Moment of 

Inertia

Force Momentum Moment

Spring Constant Mass

Linear Density

Diagram 23: Spring constant placed on the grid
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Mechanical Elements Pressure and energy

Pressure and energy

The energy ( E ) in a volume of gas can be calculated as the triple integral of 
pressure ( P ) with respect to volume:

E = ∭ p d xd xd x .

According to the rules by which the grid is constructed the Energy box is located 
three boxes above the pressure box.

E=∭P d x d x d x

F=∬ P d x d x

k=∫P d x

P

Diagram 24: The relationship between the pressure box and the energy box
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Mechanical Elements Pressure on the grid

Pressure on the grid

This diagram shows a 4x4 piece of the grid with the pressure box placed 
correctly.

Power Energy
Moment of 

Inertia

Force Momentum Moment

Spring Constant Mass

Pressure Linear Density

Diagram 25: Pressure placed on the grid
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Mechanical Elements Impedance and momentum

Impedance and momentum

Impedance (  ) is the rate at which momentum ( P ) changes as space is 
traversed:

 =
∂P
∂x

.

According to the rules by which the grid is constructed the impedance box (  ) 
is located below the momentum box ( P ).

P

=
∂P
∂x

Diagram 26: The relationship between the impedance box and the momentum box
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Mechanical Elements Impedance on the grid

Impedance on the grid

This diagram shows a 4x4 piece of the grid with the impedance box placed 
correctly.

Power Energy
Moment of 

Inertia

Force Momentum Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 27: Impedance placed on the grid
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Mechanical Elements Action and energy

Action and energy

Action ( A ) is the time integral of energy ( E ):

A = ∫ E d t .

According to the rules by which the grid is constructed the action box ( A ) is 
located to the right of the energy box.

E A=∫E d t

Diagram 28: The relationship between the action box and the energy box
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Mechanical Elements Action on the grid

Action on the grid

This diagram shows a 4x4 piece of the grid with the action box placed correctly.

Power Energy Action
Moment of 

Inertia

Force Momentum Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 29: Action placed on the grid
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Mechanical Elements Unnamed elements on the grid

Unnamed elements on the grid

For the sake of discussion the four as yet unnamed boxes on this 4x4 piece of 
the grid have been labeled with arbitrary names X1 , X 2 , X 3  and X 4 .

Power Energy Action
Moment of 

Inertia

X1 Force Momentum Moment

X 2
Spring 

Constant
Impedance Mass

X 3 Pressure X 4
Linear 

Density

Diagram 30: Unnamed elements labeled on the grid

According to the rules by which the grid is constructed X1  is both the space 

derivative of power ( X1 =
∂P
∂ x ). and the time derivative of force ( X 1 =

∂F
∂ t ). 

But, X1  is also related to six other neighbors.  Similarly X 2 , X 3  and X 4  
are each related to their eight neighbors.

Labeling one of these unnamed elements with it's relationship to a particular 
neighbor emphasizes one aspect of the element's nature, and diminishes the 
importance of the other seven.
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Mechanical Units Mechanical Units

Mechanical Units
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Pressure

kg
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m
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1
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Linear Density

kg
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Diagram 31: The Periodic Table of Mechanical Elements labeled with canonical units
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Mechanical Units The force between two masses

The force between two masses

The force ( F ) between two masses ( m1 , m2 ) is defined as the gravitational 
constant ( G ) times the ratio of the product of the two masses divided by the 
square of the distance ( r ) between their centroids:

F = G
m1 m2

r2 .

If the mass m1  is known by some means then the mass of m2 can, in 
principle, be determined by measuring the force of attraction it exerts on m1 . 
Note that this determination depends critically upon the distance between the 
centroids of the two masses.

Consider the situation where both the mass of m1 and the force F  are 
known.  It is not possible to determine the mass of m2  without making some 
assumption about the distance r  between the centroids of the two masses. 
From this it can be deduced that the force between two masses is only defined 
in terms of the distance between them.

The distributed nature of mass

Consider the situation of two point masses.  As these masses are brought 
infinitesimally close together the force of attraction will become infinite.  At the 
same time the potential energy of this two-particle system will become infinite. 
From this it can be deduced that mass must always be distributed in space.

The definition of the force between two masses can be rewritten to reflect this 
fact:

F = G
m1

r
m2

r
.

This reformulation reflects the fundamentally distributed nature of mass in terms 
of the product of two linear densities.

34



Mechanical Units Unit analysis of mechanical elements

Unit analysis of mechanical elements

To reflect physicality the distributed nature of mass should be applied rigorously 
to the unit analysis of mechanical elements.  A mass unit should not appear 
without a linear density.  In the SI system of units the kilogram ( kg ) should 

only appear as kg
 m  .

The joule, commonly written as:

kg
m2

 s2 ,

should be written as:

kg
 m m s 

2

m
1 .

The newton, commonly written as:

kg
m
s2 ,

should be written as:

kg
 m m s 

2

m
0 .

The watt, commonly written as:

kg
m2

s3 ,

should be written as:

kg
 m m s 

3

m
0 .

These formulations reflect the distributed nature of mass.
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Mechanical Units Canonical units for mechanical elements

Canonical units for mechanical elements

The units for power, energy and force have been written above in terms of three 

components.  There is a density component: kg
 m  , 

a velocity component: m s 
a

, and a spatial component: mb .

Expressing the units of mechanical elements in this form will be referred to as 
the canonical form for reasons that will become clear.

Placing the canonical units for power, energy and force in the appropriate boxes 
on the periodic table of mechanical elements reveals useful patterns for filling in 
the canonical units of the remaining elements on the grid.

Power

kg
 m m s 

3

m
0

Energy

kg
 m m s 

2

m
1

Action Moment of Inertia

Force

kg
 m m s 

2

m
0

Momentum Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 32: Power, energy and force labeled with canonical units on the grid
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Mechanical Units The energy/force column

The energy/force column

According to the rules by which the grid is constructed all of the elements in the 
energy/force column have spatial relationships.  This fact is reflected by 
changes in the exponent of the spatial component of the canonical units.  The 
exponent of the velocity component must remain unchanged in this column.

Examination of the canonical units for energy and force shows this relationship 
clearly.  Energy has a spatial exponent of 1, while force has a spatial exponent 
of 0.  The velocity exponent remains fixed at 2, as required by the rules.

Extending this pattern downward indicates that spring constant has a spatial 
exponent of -1, and pressure has a spatial exponent of -2.  The velocity 
exponent remains fixed at 2 for all elements in this column.

Power Energy

kg
 m m s 

2

m
1

Action Moment of Inertia

Force

kg
 m m s 

2

m
0

Momentum Moment

Spring Constant

kg
 m m s 

2

m
−1

Impedance Mass

Pressure

kg
 m m s 

2

m
−2

Linear Density

Diagram 33: The energy/force column labeled with canonical units on the grid
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Mechanical Units The power/force diagonal

The power/force diagonal

According to the rules by which the grid is constructed all of the elements in the 
power/force diagonal have velocity relationships.  This fact is reflected by 
changes in the exponent of the velocity component of the canonical units.  The 
exponent of the spatial component must remain unchanged along this diagonal.

Examination of the canonical units for power and force shows this relationship 
clearly.  Power has a velocity exponent of 3, while force has a velocity exponent 
of 2.  The spatial exponent remains fixed at 0, as required by the rules.

Extending this pattern downward along the diagonal indicates that impedance 
has a velocity exponent of 1, and linear density has a velocity exponent of 0. 
The spatial exponent remains fixed at 0 for all elements along this diagonal.

Power

kg
 m m s 

3

m
0

Energy Action Moment of Inertia

Force

kg
 m m s 

2

m
0

Momentum Moment

Spring Constant Impedance

kg
 m m s 

1

m
0

Mass

Pressure Linear Density

kg
 m m s 

0

m
0

Diagram 34: The power/force diagonal labeled with canonical units on the grid
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The power/energy row

According to the rules by which the grid is constructed all of the elements in the 
power/energy row have temporal (time) relationships.  This fact is reflected by 
simultaneous changes in the exponents of both the velocity and spatial 
components of the canonical units.

Examination of the canonical units for power and energy shows this relationship 
clearly.  Power has a velocity exponent of 3 and a spatial exponent of 0, while 
energy has a velocity exponent of 2 and a spatial exponent of 1.  The velocity 
and spatial exponents change in opposite directions, as required by the rules.

Extending this pattern to the right indicates that action has a velocity exponent 
of 1 and a spatial exponent of 2, while moment of inertia has a velocity exponent 
of 0 and a spatial exponent of 3.

Power

kg
 m m s 

3

m
0

Energy

kg
 m m s 

2

m
1

Action

kg
 m m s 

1

m
2

Moment of Inertia

kg
 m m s 

0

m
3

Force Momentum Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 35: The power/energy row labeled with canonical units on the grid
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The remaining mechanical elements

All of the elements in a given column share the same exponent for the velocity 
component of their canonical units.  Proceeding downward within that column 
the exponents of the spatial components decrease.

All of the elements in a given velocity diagonal share the same exponent in the 
spatial component of their canonical units.  Proceeding downward along that 
diagonal the exponents of the velocity components decrease.

Proceeding from left to right along a given row the exponents of the velocity 
components decrease, while the exponents of the spatial components increase.

Power

kg
 m m s 

3

m
0

Energy

kg
 m m s 

2

m
1

Action

kg
 m m s 

1

m
2

Moment of Inertia

kg
 m m s 

0

m
3

kg
 m m s 

3

m
−1

Force

kg
 m m s 

2

m
0

Momentum

kg
 m m s 

1

m
1

Moment

kg
 m m s 

0

m
2

kg
 m m s 

3

m
−2

Spring Constant

kg
 m m s 

2

m
−1

Impedance

kg
 m m s 

1

m
0

Mass

kg
 m m s 

0

m
1

kg
 m m s 

3

m
−3

Pressure

kg
 m m s 

2

m
−2 kg

 m m s 
1

m
−1

Linear Density

kg
 m m s 

0

m
0

Diagram 36: The remaining mechanical elements labeled with canonical units on the grid
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Alternative canonical systems

The canonical system presented is based on a spatial distribution of mass, 

indicated by the presence of the leading spatial density component, kg
 m  .  The 

spatial density perspective yields a periodic table where the exponents of the 
velocity and spatial components  are both 0 in the linear density box.

An alternative, but equivalent, system can be constructed based on a temporal 

distribution of mass, indicated by a leading temporal density component, kg
 s  . 

The temporal density perspective yields a periodic table where the exponents of 
the velocity and spatial components are both 0 in the impedance box.

Power

kg
 s m s 

2

m0

Energy

kg
 s m s 

1

m1

Action

kg
 s m s 

0

m2

Moment of Inertia

kg
 s m s 

−1

m3

kg
 s m s 

2

m−1

Force

kg
 s m s 

1

m0

Momentum

kg
 s m s 

0

m1

Moment

kg
 s m s 

−1

m2

kg
 s m s 

2

m−2

Spring Constant

kg
 s m s 

1

m−1

Impedance

kg
 s m s 

0

m0

Mass

kg
 s m s 

−1

m1

kg
 s m s 

2

m−3

Pressure

kg
 s m s 

1

m−2 kg
 s m s 

0

m−1

Linear Density

kg
 s m s 

−1

m0

Diagram 37: The mechanical elements labeled with temporal canonical units on the grid
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Yet another alternative system could be constructed by replacing the spatial 
component, m b   with a temporal component, sb  .  In this system each row 
has a constant exponent for the velocity component while the exponent of the 
temporal component increases when proceeding from left to right, and each 
column has a decreasing exponent for the velocity component while the 
exponent of the temporal component increases when proceeding downward.

Power

kg
 s m s 

2

s0

Energy

kg
 s m s 

2

s1

Action

kg
 s m s 

2

s2

Moment of Inertia

kg
 s m s 

2

s3

kg
 s m s 

1

s−1

Force

kg
 s m s 

1

s0

Momentum

kg
 s m s 

1

s1

Moment

kg
 s m s 

1

s2

kg
 s m s 

0

s−2

Spring Constant

kg
 s m s 

0

s−1

Impedance

kg
 s m s 

0

s0

Mass

kg
 s m s 

0

s1

kg
 s m s 

−1

s−3

Pressure

kg
 s m s 

−1

s−2 kg
 s m s 

−1

s−1

Linear Density

kg
 s m s 

−1

s0

Diagram 38: The mechanical elements labeled with yet another system of canonical units  
on the grid

There are several other possible canonical systems.  Each of these systems 
emphasizes certain types of relationships while making other types of 
relationships more obscure.  The choice of using a particular canonical system 
of units depends on the kinds of problems to be addressed.  This choice is 
similar to expressing geometric relationships using a rectangular, cylindrical or 
spherical coordinate system.
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Interpreting physical expressions

There are four major directions on the periodic table of mechanical elements: 
vertically up, horizontally right, diagonally up/left and diagonally up/right.

Elements that are arranged vertically (those that are in the same column) have 
spatial relationships.  Adjacent elements within a column are separated by lines 
that represent the spatial-dimension relationship between the two elements.

Elements that are arranged horizontally (those that are in the same row) have 
temporal (time) relationships.  Adjacent elements within a row are separated by 
lines that represent the temporal relationship between the two elements.

Elements that are arranged diagonally up/left (those that are in the same up/left 
diagonal) have velocity relationships (the ratio of a spatial relationship over a 
temporal relationship).  Adjacent elements within an up/left diagonal are 
separated by lines that represent the velocity-dimension relationship between 
the two elements.

Elements that are arranged diagonally up/right (those that are in the same 
up/right diagonal) have space-time relationships (the product of a spatial 
relationship and a temporal relationship).  Adjacent elements within an up/right 
diagonal are separated by lines that represent the space-time-dimension 
relationship between those two elements.

The periodic table of mechanical elements provides a powerful means for 
interpreting physical expressions.  This is best illustrated by looking at some 
examples.
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Interpreting physical expressions Hooke's law

Hooke's law

Hooke's law states that the magnitude of the force ( ∣F∣ ) on a spring is the 
product of the spring constant ( k ) times the magnitude of displacement ( ∣x∣ ) 
from equilibrium of the spring:

∣F∣ = k∣x∣ .

This expression can be interpreted on the periodic table of mechanical 
elements.  Start in the spring constant box.  Go up one box.  This ends up in the 
force box:

∣F∣ = ∫ k d∣x∣ .

Crossing one spatial-dimension line describes a distance  relationship.

Power Energy Action Moment of Inertia

Force

∣F∣=k∣x∣

Momentum Moment

Spring Constant

k=
∣F∣
∣x∣

Impedance Mass

Pressure Linear Density

Diagram 39: Interpreting Hooke's law using the periodic table of mechanical elements
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Pressure and force

The magnitude of the force ( ∣F∣ ) on an area can be calculated as the double 
integral of pressure ( P ) with respect to area:

∣F∣ = ∬P d x d x .

If the pressure ( P ) is constant over the entire area ( A ) this reduces to:

∣F∣ = P A .

Both expressions can be interpreted on the periodic table of mechanical 
elements.  Start in the pressure box.  Go up two boxes.  This ends up in the 
force box.  Crossing two consecutive spatial-dimension lines describes an area 
relationship.

Power Energy Action Moment of Inertia

Force

∣F∣=∬P d x d x

∣F∣=P A

Momentum Moment

Spring Constant Impedance Mass

Pressure

P=
∂∣F∣
∂ A

P=
∣F∣
A

Linear Density

Diagram 40: Interpreting ∣F∣ = ∬P d x d x  and ∣F∣ = P A  using the 
periodic table of mechanical elements
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Interpreting physical expressions A mass-spring system

A mass-spring system

The frequency ( f ) of a mass-spring system is the square root of the spring 
constant ( k ) divided by the mass ( m ):

f =  k
m

.

This can be rearranged to give:

k = m f 2 .

This expression can be interpreted on the periodic table of mechanical elements 
by recognizing that multiplying by frequency is the same as dividing by time 
(period).  Start in the mass box.  Go two boxes to the left.  This ends up in the 
spring constant box:

k =
∂2 m
∂ t2 .

Crossing two temporal-dimension lines describes a frequency squared 
relationship.

Power Energy Action Moment of Inertia

Force Momentum Moment

Spring Constant

k = m f 2

Impedance Mass

m =
k

f 2

Pressure Linear Density

Diagram 41: Interpreting the frequency of a mass-spring system using the periodic table 
of mechanical elements
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A pulse on a rope

The magnitude of the velocity ( ∣v∣ ) of a pulse on a stretched rope is the 
square root of the magnitude of the tension ( ∣T∣ ) on the rope divided by the 
linear density (  ) of the rope:

∣v∣ = ∣T∣ .

This can be rearranged to give:

∣T∣ = ∣v∣
2 .

This expression can be interpreted on the periodic table of mechanical 
elements, by recognizing that tension is another name for force.  Start in the 
linear density box.  Go two boxes up along the velocity diagonal.  This ends up 
in the force (tension) box:

∣F∣ = ∬d v⋅d v .

Crossing two velocity-dimension lines describes a velocity squared relationship.

Power Energy Action Moment of Inertia

Force

∣T∣ = ∣v∣
2

Momentum Moment

Spring Constant Impedance Mass

Pressure Linear Density

=
∣T∣

∣v∣
2

Diagram 42: Interpreting the velocity of a pulse on a rope using the periodic table of 
mechanical elements
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Interpreting physical expressions Power, force and impedance

Power, force and impedance

Consider the situation of a body moving against an impedance, such as a block 
sliding on a frictional surface.  For the body to proceed at a constant
velocity ( ∣v∣ ) a force ( ∣F∣ ) is required to overcome the impedance(  ):

∣F∣ = ∣v∣ .

This expression can be interpreted on the periodic table of mechanical 
elements.  Start in the impedance box.  Go up the velocity diagonal one box. 
This ends up in the force box.

This expression can be rewritten as:

 =
∣F∣
∣v∣

This new expression can be interpreted on the periodic table of mechanical 
elements.  Start in the force box.  Go down the velocity diagonal one box.  This 
ends up in the impedance box.

Power Energy Action Moment of Inertia

Force

∣F∣=∣v∣

Momentum Moment

Spring Constant Impedance

=
∣F∣
∣v∣

Mass

Pressure Linear Density

Diagram 43: Interpreting ∣F∣ = ∣v∣  and  =
∣F∣
∣v∣

 using the periodic table of 

mechanical elements
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Interpreting physical expressions Power, force and impedance

The force does work on the body.  The power ( P ) provided by this force is:

P = ∣F∣∣v∣ .

This expression can be interpreted on the periodic table of mechanical 
elements.  Start in the force box.  Go up the velocity diagonal one box.  This 
ends up in the the power box.

This expression can be rewritten as:

∣F∣ =
P
∣v∣ .

This new expression can be interpreted on the periodic table of mechanical 
elements.  Start in the power box.  Go down the velocity diagonal one box.  This 
ends up in the force box.

Power

P=∣F∣∣v∣

Energy Action Moment of Inertia

Force

∣F∣= P
∣v∣

Momentum Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 44: Interpreting P = ∣F∣∣v∣  and ∣F∣ = P
∣v∣

 using the periodic table of  

mechanical elements
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Interpreting physical expressions Power, force and impedance

These two equations can be combined to yield:

P = ∣v∣
2 .

This expression can be interpreted on the periodic table of mechanical 
elements.  Start in the impedance box.  Go up the velocity diagonal two boxes. 
This ends up in the power box.  Crossing two velocity-dimension lines describes 
a velocity squared relationship.

This expression can be rewritten as:

 =
P

∣v∣
2 .

This new expression can be interpreted on the periodic table of mechanical 
elements.  Start in the power box.  Go down the velocity diagonal two boxes. 
This ends up in the impedance box.

Power

P=∣v∣
2

Energy Action Moment of Inertia

Force Momentum Moment

Spring Constant Impedance

=
P

∣v∣
2

Mass

Pressure Linear Density

Diagram 45: Interpreting P = ∣v∣
2

 and  =
P

∣v∣
2  using the periodic table of  

mechanical elements
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Maxwell's kinetic theory of gas

A basic tenet of Maxwell's kinetic theory of gas states that the pressure( P ) of 
the gas times the volume( V ) of the gas is equal to the mass ( m ) of the gas 
times the square of the velocity ( v ) of the gas particles:

PV = mv2 .

The mass and velocity are defined to be consistent with the universal gas law:

PV = n R T .

There is no need to go into such details for the purpose of this discussion.

It is instructive to interpret the left and right side of the equation PV = mv2  
separately, and then return to the entire equation for further interpretation.
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Interpreting the left side of PV = mv2

The left side of this equation, PV  , is an energy expression.  It describes the 
potential energy contained in a volume of gas under pressure.  Pressure can be 
considered as a volumetric energy density.

The product of pressure times volume can be interpreted on the periodic table of 
mechanical elements.  Start in the pressure box.  Go up by a volume (three 
boxes).  This ends up in the energy box.  Crossing three consecutive spatial-
dimension lines describes a volume relationship.

Power Energy

E=P V

Action Moment of Inertia

Force Momentum Moment

Spring Constant Impedance Mass

Pressure

P=
E
V

Linear Density

Diagram 46: Interpreting the left side of PV = mv2  from Maxwell's kinetic theory 
of gas using the periodic table of mechanical elements
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Interpreting the right side of PV = mv2

The right side of this equation, m v2 , is also an energy expression.  It describes 
the kinetic energy contained in a volume of gas under pressure.

This can be interpreted on the periodic table of mechanical elements.  Start in 
the mass box.  Go up the velocity diagonal by two boxes.  This ends up in the 
energy box.  Crossing two velocity-dimension lines describes a velocity squared 
relationship.

Power Energy

E=mv2

Action Moment of Inertia

Force Momentum Moment

Spring Constant Impedance Mass

m=
E

v2

Pressure Linear Density

Diagram 47: Interpreting the right side of PV = mv2  from Maxwell's kinetic  
theory of gas using the periodic table of mechanical elements
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Interpreting physical expressions Maxwell's kinetic theory of gas

Interpreting the equation PV = mv2

This equation describes the energy of a gas in two ways.  The left side 
describes the potential energy view, from pressure to energy by volume:

E = ∭P dxdx dx .

The right side describes the kinetic energy view, from mass to energy by 
velocity squared:

E = ∬m dv dv .

Both sides are describing the same energy.

This equation states that the potential energy contained in a gas under pressure 
is the same as the kinetic energy of the particles in the gas.

Power Energy

E=P V=m v2

Action Moment of Inertia

Force Momentum Moment

Spring Constant Impedance Mass

m=
E

v2

Pressure

P=
E
V

Linear Density

Diagram 48: Interpreting PV = mv2  from Maxwell's kinetic theory of gas using 
the periodic table of mechanical elements
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Interpreting physical expressions The Euler-Lagrange equation

The Euler-Lagrange equation

The Euler-Lagrange equation states that the space derivative of the Lagrangian 
function ( L ) is equal to the time derivative of the velocity derivative of the 
Lagrangian function:

∂

∂ x
L  = d

dt [
∂

∂ v
L  ] .

This can be interpreted on the periodic table of mechanical elements.

Interpreting the Lagrangian function

The Lagrangian function is defined as the difference between the kinetic energy 
in the system ( T ) and the potential energy in the system ( U ):

L = T−U .

For the purpose of this discussion the Lagrangian function is simply an energy 
expression.
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Interpreting physical expressions The Euler-Lagrange equation

Interpreting the left side of the Euler-Lagrange equation

The left side of the Euler-Lagrange equation, 
∂
∂ x

 L  , can be interpreted on the 

periodic table of mechanical elements.  Start in the energy box.  Go down (in the 
inverse spatial direction on the grid) one box (take the partial derivative with 
respect to space).  This ends up in the force box.

Power Energy

E=L

Action Moment of Inertia

Force

F=
∂

∂ x
L 

Momentum Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 49: Interpreting the left side of the Euler-Lagrange equation using the 
periodic table of mechanical elements

The left side of the Euler-Lagrange equation, 
∂
∂ x

 L  , is a force expression.
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Interpreting physical expressions The Euler-Lagrange equation

Interpreting the right side of the Euler-Lagrange equation

The right side of the Euler-Lagrange equation, 
d
dt [

∂

∂ v
L  ] , can be interpreted 

on the periodic table of mechanical elements.  Start in the energy box.  Go down 
the velocity diagonal one box (take the partial derivative with respect to velocity) 
to arrive in the momentum box.  Go left one box (take the derivative with respect 
to time) to arrive in the force box.

Power Energy

E=L

Action Moment of Inertia

Force

F=
d
dt [

∂

∂ v
L  ]

Momentum

P=
∂

∂ v
L 

Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 50: Interpreting the right side of the Euler-Lagrange equation using the 
periodic table of mechanical elements

The right side of the Euler-Lagrange equation, 
d
dt [

∂

∂ v
L  ] , is a force 

expression.
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Interpreting the Euler-Lagrange equation

The Euler-Lagrange equation describes two different ways to get force from 
energy.  The left side describes a static view of force in terms of the work-
energy theorem.  The right side describes a dynamic view of force in terms of 
the time derivative of momentum.  Both sides are describing the same force in 
relation to the same energy.  Both sides of the Euler-Lagrange equation are 
describing the same physical situation, just from different perspectives.  The 
Euler-Lagrange equation states that the forces arising from the two perspectives 
are equivalent.

Power Energy

E=L

Action Moment of Inertia

Force

F=
∂

∂ x
L 

F=
d
dt [

∂

∂ v
L  ]

Momentum

P=
∂

∂ v
L 

Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 51: Interpreting the Euler-Lagrange equation using the periodic table of  
mechanical elements
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Interpreting physical relationships

The periodic table of mechanical elements provides a graphical representation 
of the relationships between physical elements.  The periodic table of 
mechanical elements is a topological map of the landscape of physical 
relationships.

The rules by which the periodic table of mechanical elements is constructed 
specify the mathematical relationships between a particular box and each of the 
eight adjacent boxes on the grid.  Each of the eight boxes adjacent to a given 
box has a different geometric relationship on the grid to the given box.

The geometric relationships between boxes on the grid can be described in 
terms of navigation instructions.  There are many sequences of navigation 
instructions that have the net result of describing a particular geometric 
relationship between two boxes on the grid. For example, going left one box 
followed by going up one box has the same net result as going up one box 
followed by going left one box.  In other words, there is a many-to-one 
relationship between sequences of navigation instructions that have the net 
result of going from one box to another and the geometric relationship between 
those two boxes on the grid.

A pair of boxes, A and B, have a particular geometric relationship on the grid. 
This geometric relationship on the grid is described by many sequences of 
navigation instructions that have the net result of going from box A to box B.  If 
another pair of boxes, C and D, have the same geometric relationship as A and 
B then all of the sequences of navigation instructions that have the net result of 
going from box A to box B will also go from box C to box D.

The concept of navigation on the periodic table of mechanical elements provides 
a powerful tool for describing and interpreting physical relationships.  The rules 
by which the grid is constructed allow sequences of navigation instructions, and 
the corresponding geometric relationships on the grid, to be interpreted in terms 
of mathematical and physically meaningful relationships.  Any two boxes that 
have a particular geometric relationship on the grid also have a particular 
mathematical and physical relationship.  This is best illustrated by looking at 
some examples.
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Spatial relationships

Spatial relationships are described by any sequence of navigation instructions 
that have the net result of moving up (in the spatial direction on the grid) one 
box within a particular column on the grid.  Inverse spatial relationships are 
described by any sequence of navigation instructions that have the net result of 
moving down (in the inverse spatial direction on the grid) one box within a 
particular column on the grid.  A pair of elements that have a spatial relationship 
when considered in one order have an inverse spatial relationship when 
considered in the reverse order.

Hooke's law

Hooke's law describes the spatial relationship between force ( F ), spring 
constant ( k ) and displacement( x ):

F = k x .

This formula can be interpreted in terms of navigation instructions.  Start in the 
spring constant box.  Go up (in the spatial direction on the grid) one box to arrive 
in the force box:

F = ∫ k dx .
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The net result of this sequence of navigation instructions is to move up (in the 
spatial direction on the grid) one box.  This is characteristic of a spatial 
relationship.

Power Energy Action Moment of Inertia

Force

F=k x

Momentum Moment

Spring Constant

k

Impedance Mass

Pressure Linear Density

Diagram 52: The spatial relationship F = k x

Examining the periodic table of mechanical elements shows that the force box is 
one box above the spring constant box.
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Mass and linear density

Linear density (  ) can be defined as the partial derivative of mass ( m ) with 
respect to distance ( x ):

 =
∂m
∂ x .

This can be interpreted in terms of navigation instructions.  Start in the mass 
box.  Go down (in the inverse spatial direction on the grid) one box to arrive in 
the linear density box.  The net result of this sequence of navigation instructions 
is to move down (in the inverse spatial direction on the grid) one box.  This is 
characteristic of an inverse spatial relationship.

Power Energy Action Moment of Inertia

Force Momentum Moment

Spring Constant Impedance Mass

m

Pressure Linear Density

=
∂m
∂ x

Diagram 53: The inverse spatial relationship  =
∂m
∂ x

Examining the periodic table of mechanical elements shows that the linear 
density box is one box below the mass box.
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Temporal relationships

Temporal relationships are described by any sequence of navigation instructions 
that have the net result of moving right (in the temporal direction on the grid) one 
box within a particular row on the grid.  A temporal relationship is a time or 
period relationship.  Inverse temporal relationships are described by any 
sequence of navigation instructions that have the net result of moving left (in the 
inverse temporal direction on the grid) one box within a particular row on the 
grid.  An inverse temporal relationship is a frequency relationship.  A pair of 
elements that have a temporal relationship when considered in one order have 
an inverse temporal relationship when considered in the reverse order.
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Power and energy

Power ( P ) is defined as the time rate of change of energy ( E ):

P =
∂E
∂ t .

This formula can be interpreted in terms of navigation instructions.  Start in the 
energy box.  Go left (in the inverse temporal direction on the grid) one box to 
arrive in the power box.  The net result of this sequence of navigation 
instructions is to move left (in the inverse temporal direction on the grid) one 
box.  This is characteristic of an inverse temporal relationship.

Power

P=
∂E
∂ t

Energy

E

Action Moment of Inertia

Force Momentum Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 54: The inverse temporal relationship P =
∂E
∂ t

Examining the periodic table of mechanical elements shows that the power box 
is one box to the left of the energy box. 

64



Interpreting physical relationships Temporal relationships

Force, impulse and frequency

The force ( F ) due to a stream of impulses of momentum ( P ) arriving at a 
rate ( f ) is given by the formula:

F = P f .

This can be interpreted in terms of navigation instructions.  Start in the 
momentum box.  Go left (in the frequency direction on the grid) one box to arrive 
in the force box.  The net result of this sequence of navigation instructions is to 
move left (in the frequency direction on the grid) one box.  This is characteristic 
of a frequency relationship.

Power Energy Action Moment of Inertia

Force

F=P f

Momentum

P

Moment

Spring Constant Impedance Mass

Pressure Linear Density

Diagram 55: The frequency relationship F = P f

Examining the periodic table of mechanical elements shows that the force box is 
one box to the left of the momentum box.
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Velocity relationships

Velocity relationships are described by any sequence of navigation instructions 
that have the net result of moving up (in the spatial direction on the grid) one 
box and left (in the inverse temporal direction on the grid) one box.  This can 
also be described as moving diagonally up and left (in the velocity direction on 
the grid) one box.  Inverse velocity relationships are described by any sequence 
of navigation instructions that have the net result of moving down (in the inverse 
spatial direction on the grid) one box, and right (in the temporal direction on the 
grid) one box. This can also be described as moving diagonally down and right 
(in the inverse velocity direction on the grid) one box.  A pair of elements that 
have a velocity relationship when considered in one order have an inverse 
velocity relationship when considered in the reverse order.
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Interpreting physical relationships Velocity relationships

Momentum and mass

Momentum ( P ) is defined as the product of mass ( m ) times velocity. ( v ):
P = mv .

This can be interpreted in terms of navigations instructions.  Start in the mass 
box. Go diagonally up and left (in the velocity direction on the grid) one box to 
arrive in the momentum box.  The net result of this sequence of navigation 
instructions is to go diagonally up and left (in the velocity direction on the grid) 
one box.  This is characteristic of a velocity relationship.

Power Energy Action Moment of Inertia

Force Momentum

P=mv

Moment

Spring Constant Impedance Mass

m

Pressure Linear Density

Diagram 56: The velocity relationship P = mv

Examining the periodic table of mechanical elements shows that the momentum 
box is diagonally up and left (in the velocity direction on the grid) one box.
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Impedance and force

The impedance (  ) encountered when a force ( F ) is applied to maintain a 
velocity ( v ) is:

 =
F
v

.

This can be interpreted in terms of navigation instructions.  Start in the force 
box.  Go diagonally down and right (in the inverse velocity direction on the grid) 
one box to arrive in the impedance box.  The net result of this sequence of 
navigation instructions is to move diagonally down and right (in the inverse 
velocity direction on the grid) one box.  This is characteristic of an inverse 
velocity relationship.

Power Energy Action Moment of Inertia

Force

F

Momentum Moment

Spring Constant Impedance

=
F
v

Mass

Pressure Linear Density

Diagram 57: The inverse velocity relationship  =
F
v

Examining the periodic table of mechanical elements shows that the impedance 
box is diagonally down and right (in the inverse velocity direction on the grid) 
one box from the force box.
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Acceleration relationships

Acceleration relationships are described by any sequence of navigation 
instructions that have the net result of moving up (in the spatial direction on the 
grid) one box and left (in the inverse temporal direction on the grid) two boxes. 
Inverse acceleration relationships are described by any sequence of navigation 
instructions that have the net result of moving down (in the inverse spatial 
direction on the grid) one box, and right (in the temporal direction on the grid) 
two boxes.  A pair of elements that have an acceleration relationship when 
considered in one order have an inverse acceleration relationship when 
considered in the reverse order.
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Interpreting physical relationships Acceleration relationships

Force and mass

Force ( F ) is defined as the time derivate of momentum ( P ):

F =
∂P
∂ t

.

Momentum is defined as the product of mass ( m ) and velocity ( v ):

P = mv .

These two definitions can be combined to yield the equation:

F =
∂

∂ t
mv  .

This formula can be interpreted in terms of navigation instructions.  Start in the 
mass box.  Go diagonally up and left (in the velocity direction on the grid) one 
box (multiply by velocity) to arrive in the momentum box.  Go left (in the inverse 
temporal direction on the grid) one box (take the partial derivative with respect to 
time) to arrive in the force box.  The net result of this sequence of navigation 
instructions is to move up (in the spatial direction on the grid) one box, and left 
(in the inverse temporal direction on the grid) two boxes.  This is characteristic 
of an acceleration relationship.
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Power Energy Action Moment of Inertia

Force

F=
∂

∂ t
mv 

Momentum

P=mv

Moment

Spring Constant Impedance Mass

m

Pressure Linear Density

Diagram 58: The acceleration relationship F =
∂

∂ t
mv 

Examining the periodic table of mechanical elements shows that the force box is 
up (in the spatial direction on the grid) one box, and left (in the inverse temporal 
direction on the grid) two boxes from the mass box.
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Interpreting physical relationships Acceleration relationships

By applying the product rule for derivatives the equation F =
∂

∂ t
mv   can be 

rewritten as:

F =
∂m
∂ t

vm
∂v
∂ t .

The first term, 
∂m
∂ t

v , can be interpreted in terms of navigation instructions. 

Start in the mass box.  Go left (in the inverse temporal direction on the grid) one 
box (take the partial derivative with respect to time) to arrive in the impedance 
box.  Go diagonally up and left (in the velocity direction on the grid) one box 
(multiply by velocity) to arrive in the force box.  The net result of this sequence 
of navigation instructions is to move up (in the spatial direction on the grid) one 
box, and left (in the inverse temporal direction) two boxes.  This is characteristic 
of an acceleration relationship.

Power Energy Action Moment of Inertia

Force

F=
∂m
∂ t

v

Momentum Moment

Spring Constant Impedance

=
∂m
∂ t

Mass

m

Pressure Linear Density

Diagram 59: The acceleration relationship 
∂m
∂ t

v
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The second term, m
∂v
∂ t , can be interpreted in terms of navigation instructions. 

Start in the mass box.  Go diagonally up and left (in the velocity direction on the 
grid) one box (multiply by velocity) to arrive in the momentum box.  Go left (in 
the inverse temporal direction on the grid) one box (take the partial derivative 
with respect to time) to arrive in the force box.  The net result of this sequence of 
navigation instructions is to move up (in the spatial direction on the grid) one 
box, and left (in the inverse temporal direction on the grid) two boxes.  This is 
characteristic of an acceleration relationship.

Power Energy Action Moment of Inertia

Force

F=m
∂ v
∂ t

Momentum

P=mv

Moment

Spring Constant Impedance Mass

m

Pressure Linear Density

Diagram 60: The acceleration relationship m
∂v
∂ t
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Uniform circular motion

Consider a constant (non-time-varying) mass moving in a circular path at a 
constant (non-time-varying) speed.  A constant speed (linear velocity) means 
the magnitude of the velocity vector ( ∣v∣ ) does not change with time:

∂∣v∣
∂ t

= 0 .

However, the direction of the velocity vector is changing with time.  This is not a 
constant (non-time-varying) velocity situation.  There is a non-zero acceleration 
associated with the time-varying direction of the velocity vector.

When the position of the mass with respect to the center of the circular path is 
represented using a radius vector ( r ) the acceleration is:

a =
∣v∣

2

r
.

A force must be present to cause the momentum, and the kinetic energy, to 
change direction.  The force that causes the direction of the velocity vector to 
change (to maintain the circular path of motion) is:

F = m
∣v∣

2

r
.

This formula shows that the force vector is in the inverse radius direction 
(radially inward).  The magnitude of the force vector comes from the formula:

mv⋅v = m∣v∣
2 .

The formula F = m
∣v∣

2

r
 can be interpreted in terms of navigation instructions. 

Start in the mass box.  Go up and left along the velocity diagonal (in the velocity 
direction on the grid) two boxes (multiply by the square of velocity), passing 
through the momentum box, to arrive in the energy box.  Go down (in the 
inverse spatial direction on the grid) one box (divide by radius) to arrive in the 
force box.  The net result of this sequence of navigation instructions is to move 
up (in the spatial direction on the grid) one box, and left (in the inverse temporal 
direction on the grid) two boxes.  This is characteristic of an acceleration 
relationship.
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Power Energy

E=m∣v∣
2

Action Moment of Inertia

Force

F=m
∣v∣

2

r

Momentum

P=mv

Moment

Spring Constant Impedance Mass

m

Pressure Linear Density

Diagram 61: The acceleration relationship F = m
∣v∣

2

r

Examining the periodic table of mechanical elements shows that force is up (in 
the spatial direction on the grid) one box and left (in the inverse temporal 
direction on the grid) two boxes from the mass box.
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Circulation relationships

Circulation relationships are described by any sequence of navigation 
instructions that have the net result of moving up (in the spatial direction on the 
grid) two boxes, and left (in the inverse temporal direction on the grid) one box. 
Inverse circulation relationships are described by any sequence of navigation 
instructions that have the net result of moving down (in the inverse spatial 
direction on the grid) two boxes, and right (in the temporal direction on the grid) 
one box.  A pair of elements that have a circulation relationship when 
considered in one order have an inverse circulation relationship when 
considered in the reverse order.

The differential operator ∇× is sometimes used to describe circulation 
relationships.  For this reason circulation is also known as curl.

A brief look at some pairs of mechanical elements that have circulation 
relationships helps to illustrate the concept of a circulation relationship on the 
periodic table of mechanical elements.
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Energy and impedance

Examination of the periodic table of mechanical elements shows that
energy ( E ) and impedance (  ) have a circulation relationship:

E = ∫v⋅d x .

This can be interpreted as a sequence of navigation instructions.  Start in the 
impedance box.  Go diagonally up and left (in the velocity direction on the grid) 
one box to arrive in the force box.  Go up (in the spatial direction on the grid) 
one box to arrive in the energy box.

Power Energy

E=∫v⋅d x

Action Moment of Inertia

Force

F=v

Momentum Moment

Spring Constant Impedance



Mass

Pressure Linear Density

Diagram 62: The circulation relationship E = ∫v⋅d x
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Action and mass

Examination of the periodic table of mechanical elements shows that
action ( A ) and mass ( m ) have a circulation relationship:

A = ∫m∣v∣
2
d t .

This can be interpreted as a sequence of navigation instructions.  Start in the 
mass box.  Go diagonally up and left (in the velocity direction on the grid) two 
boxes, passing through the momentum box, to arrive in the energy box.  Go 
right (in the temporal direction on the grid) one box to arrive in the action box.

Power Energy

E = m∣v∣
2

Action

A=∫m∣v∣
2
d t

Moment of Inertia

Force Momentum

P=∫mv d t

Moment

Spring Constant Impedance Mass

m

Pressure Linear Density

Diagram 63: The circulation relationship A = ∫m∣v∣
2
d t
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Power and spring constant

Examination of the periodic table of mechanical elements shows that
power ( P ) and spring constant ( k ) have a circulation relationship:

P =
∂
∂ t

∬ kd x⋅d x  .

This can be interpreted as a sequence of navigation instructions.  Start in the 
spring constant box.  Go up (in the spatial direction on the grid) two boxes, 
passing through the force box, to arrive in the energy box.  Go left (in the 
inverse temporal direction on the grid) one box to arrive in the power box.

Power

P=
∂
∂ t

∬ kd x⋅d x

Energy

E=∬ kd x⋅d x

Action Moment of Inertia

Force

F=∫ kd x

Momentum Moment

Spring Constant

k

Impedance Mass

Pressure Linear Density

Diagram 64: The circulation relationship P =
∂
∂ t

∬ kd x⋅d x 
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Momentum and linear density

Examination of the periodic table of mechanical elements shows that 
momentum ( P ) and linear density (  ) have a circulation relationship:

P = v∫ d x .

This can be interpreted as a sequence of navigation instructions.  Start in the 
linear density box.  Go up (in the spatial direction on the grid) one box to arrive 
in the mass box.  Go diagonally up and left (in the velocity direction on the grid) 
one box to arrive in the momentum box.

Power Energy Action Moment of Inertia

Force Momentum

P=v∫ d x

Moment

Spring Constant Impedance Mass

m=∫ d x

Pressure Linear Density



Diagram 65: The circulation relationship P = v∫ d x
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Analyzing the grid

The rules by which the grid on which the periodic table of mechanical elements 
is constructed describes an infinite set of simultaneous partial differential 
equations.

∫d x /t  ∫dx ∫d xt 

∂
∂ t

Any
Element


∫dt

∂
∂xt 

∂
∂ x

∂
∂x /t 

Diagram 66: The rules by which the grid is constructed

The grid must extend infinitely in all directions, because each element is related 
to eight neighbors.

The elements on the grid form a basis set for the linear space of physical 
relationships described by the grid.  This linear space of physical relationships 
has an infinite number of dimensions.

Each element on the grid must have an infinite number of integrals and 
derivatives, because each element on the grid is related by both space and time 
derivatives to other elements on the grid.  This is a logical consequence of the 
rules by which the grid is constructed.

This is consistent with the fundamental assumption in quantum electrodynamics 
(QED) that all physical quantities have infinite integrals and derivatives in both 
time and space.  This fundamental, and unproven, assumption in QED is a 
logical consequence of the rules by which the grid is constructed.
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The distribution of energy

One of the most fundamental assumptions in all of physics is that energy is 
distributed in space.  This fundamental, and unproven, assumption of physics is 
a logical consequence of the rules by which the grid is constructed.

According to the rules by which the grid is constructed the element energy ( E ) 
is directly related to eight neighboring elements on the grid.

∫E d x / t  ∫E dx ∫E d xt 

Power

∂E
∂ t

Energy

E

Action

∫E dt

∂E
∂xt 

Force

∂E
∂ x

Momentum

∂E
∂x / t 

Diagram 67: Energy and it's eight immediate neighbors

The spatial distribution of energy

One of the rules by which the grid is constructed describes how energy is 
distributed in space:

∂E
∂ x .

The spatial distribution of energy is represented by the box called force.  Force 
can be considered as the spatial density of energy.
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The temporal distribution of energy

One of the rules by which the grid is constructed describes how energy is 
distributed in time:

∂E
∂ t .

The temporal distribution of energy is represented by the box called power. 
Power can be considered as the temporal density of energy.

The velocity distribution of energy

One of the rules by which the grid is constructed describes how energy is 
distributed in velocity:

∂E
∂x / t  .

The velocity distribution of energy is represented by the box called called 
momentum.  Momentum can be considered as the velocity density of energy.

The space-time distribution of energy

One of the rules by which the grid is constructed describes how energy is 
distributed in space-time:

∂E
∂xt  .

The space-time distribution of energy is represented by the unnamed box below 
the box called power, and to the left of the box called force.  This unnamed box 
can be considered as the space-time density of energy.
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Reference frames

All of the elements on the periodic table of mechanical elements must be 
described in terms of a particular frame of reference.  This frame of reference 
must be characterized by having a centroid that is stationary.  The periodic table 
of mechanical elements describes fully accounted (closed) systems.

Energy can neither enter nor leave the system.  Energy can only be transferred 
from one part of the system to another.

Linear momentum can be exchanged between parts of the system.  The linear 
momentum of the centroid of the system must at all times be zero.

Angular momentum can be exchanged between parts of the system.  The 
angular momentum of the centroid of the system must at all times be zero.

All forces must occur in balanced pairs.

Many seeming paradoxes will arise if these edicts are not adhered to rigorously. 
This is a consequence of mixing physical quantities described with respect to 
different reference frames without properly accounting for the relationship 
between those reference frames.

84



Analyzing the grid Crossing dimension lines

Crossing dimension lines

Interesting and useful relationships come from taking the ratio of two elements 
that have particular geometric relationships on the grid.  These relationships 
arise solely from the geometric relationship on the grid between the two 
elements.  These relationships are a logical consequence of the rules by which 
the grid is constructed.

The boxes on the grid are separated by dimension lines.  There are spatial-
dimension lines, temporal-dimension lines, velocity-dimension lines, and space-
time-dimension lines.  The ratio of two elements is related to the dimension lines 
that separate that pair of elements on the grid.

Each dimension line on the grid represents a particular aspect of the physical 
situation described by the elements on the grid.  Following a sequence of 
navigation instructions that go from one element on the grid to another involves 
crossing dimension lines.  Each step in the sequence of navigation instructions 
describes how particular dimension lines are crossed.  The concept of crossing 
dimension lines provides a powerful tool for analyzing physical relationships. 
This is best illustrated by looking at some examples.

Consider an arbitrary 3x3 piece of the grid.  The boxes have been labeled with 
arbitrary names to facilitate this discussion.

−1 ,1 0 ,1 1 ,1

−1 ,0 0 ,0 1 , 0

−1 ,−1 0 ,−1 1 ,−1

Diagram 68: An arbitrary 3x3 piece of the grid

Place this piece of the grid anywhere on the periodic table of mechanical 
elements and replace these labels with real elements.  The relationships 
discussed here apply to the real elements wherever this piece of the grid is 
placed on the periodic table of mechanical elements.
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Analyzing the grid Crossing dimension lines

Crossing one spatial-dimension line

Consider two elements ( 0 ,1  and 0 ,0 ) that have a spatial relationship ( x1 ):

0 ,1 = 0 ,0  x1 .

These two elements lie on opposite sides of the spatial-dimension line between 
the two elements.

0 ,1

0 ,0

Diagram 69: An arbitrary pair of elements that have a spatial relationship

The ratio of these two elements yields the spatial relationship represented by 
the spatial-dimension line between the two elements:

0 , 1

0 , 0

= x1 .

The ratio of any other pair of elements that are only separated by this spatial-
dimension line have exactly the same spatial relationship.

−1 , 1 0 ,1 1, 1

−1 , 0 0 ,0 1, 0

Diagram 70: Three pairs of elements that share a particular spatial relationship

For example:
−1 ,1

−1 ,0

= x1 , and 
1 ,1

1 ,0

= x1 .
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Analyzing the grid Crossing dimension lines

As a concrete example, the work-energy theorem states that energy ( E ) is the 
space integral of force in the direction of motion ( F∣∣ ) times the path length of 
that motion ( ∥x∥ ):

E = ∫∣F∣∣∣d∥x∥ .

Examining the differential case:
d E = ∣F∣∣∣d∥x∥ ,

and applying some simple algebraic manipulation yields:

d∥x∥ =
d E

∣F∣∣∣
.

This formula states that the differential path length is the ratio of the differential 
energy over force in the direction of motion.  Removing the differentials yields 
the path length of the motion as the ratio of energy over force in the direction of 
motion:

∥x∥ =
E

∣F∣∣∣
.

The spatial-dimension line that separates the energy box and the force box 
represents the path length of the motion caused by the force.  The ratio of action 
over momentum, the ratio of moment of inertia over moment, in fact the ratio of 
any two boxes that are only separated by this spatial-dimension line will yield 
the same path length.

Power Energy Action Moment of 
Inertia

Force Momentum Moment

Diagram 71: Some pairs of elements that share the same spatial relationship as energy and force
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Analyzing the grid Crossing dimension lines

Crossing two spatial-dimension lines

Consider three elements ( 0 ,1  0 ,0 , 0 ,−1 ) that are only separated by a pair 
of consecutive spatial-dimension lines ( x1 , x−1 ).

0 ,1

0 ,0

0 ,−1

Diagram 72: Three arbitrary elements that are only separated by a pair of spatial-dimension lines

The first two elements have the spatial relationship x1 :

0 ,1 = 0 ,0  x1 .

The ratio of the first two elements yields the spatial relationship between them:

0 , 1

0 , 0

= x1 .

The last two elements have the spatial relationship x−1 :

0 ,0 = 0 ,−1 x−1 .

The ratio of the last two elements yields the spatial relationship between them:

0 ,0

0 ,−1

= x−1 .

Algebraic manipulation shows that the ratio of the first and last elements yields 
the areal relationship between them:

0 ,1

0 ,−1

= x1  x−1  .
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Analyzing the grid Crossing dimension lines

The ratio of any pair of elements that are only separated by the same pair of 
spatial-dimension lines will yield the same areal relationship.

−1 , 1 0 ,1 1, 1

−1 , 0 0 ,0 1, 0

−1 ,−1 0 ,−1 1,−1

Diagram 73: Three sets of elements that are only separated by a pair of spatial-dimension lines

For example:

−1 ,1

−1 ,−1

= x1  x−1  , and 
1 ,1

1 ,−1

= x1 x−1  .

Algebraic manipulation also shows that the product of the first and last elements 
yields the square of the second element times the ratio of the first and second 
spatial relationships:

0 ,10 ,−1 = 0 ,0 
2 x1

x−1
 .
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Analyzing the grid Crossing dimension lines

As a concrete example, Hooke's law states that force ( ∣F∣ ) is equal to the 
product of spring constant ( k ) times the displacement ( x ) of the spring from 
it's equilibrium position:

∣F∣ = k x .

The ratio of force over spring constant yields the spatial relationship between 
force and spring constant:

∣F∣
k

= x .

The spatial-dimension line that separates the force box and the spring constant 
box represents the displacement of the spring from equilibrium.

Force Momentum Moment

Spring 
Constant

Impedance Mass

Pressure Linear 
Density

Diagram 74: Force, spring constant and pressure are only separated by a pair  
of spatial-dimension lines

Pressure ( P ) can be defined as the ratio of force ( F ) over area ( A ):

P =
F
A

.

The ratio of force over pressure yields the areal relationship between force and 
pressure:

P
F

= A .

The two spatial-dimension lines that separate the force box and the pressure 
box represent the areal relationship between force and pressure.  The ratio of 
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Analyzing the grid Crossing dimension lines

any other pair of elements that are only separated by these two spatial-
dimension lines will yield the same areal relationship.  For example, the ratio of 
moment over linear density yields this same areal relationship.

Force Momentum Moment

Spring 
Constant

Impedance Mass

Pressure Linear 
Density

Diagram 75: Some other elements that are only separated by the same pair of  
spatial-dimension lines as force and pressure

The spatial relationship between spring constant and pressure (the ratio of 
spring constant over pressure) can be found by dividing the areal relationship 
between force and pressure by the spatial relationship between force and spring 
constant:

k
P

=
∣A∣

x
.

The product of force and pressure yields the square of spring constant times the 
ratio of the spatial relationship between force and spring constant over the 
spatial relationship between spring constant and pressure:

∣F∣P = k2


x

∣A∣x   =
k2 x2

∣A∣ .

Spring constant can now be written as:

k = ∣F∣P∣A∣x2 =
P∣A∣

x
=

∣F∣
x

.

This is just a restatement of Hooke's law in terms of pressure and area.
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Analyzing the grid Crossing dimension lines

Crossing three spatial-dimension lines

Crossing three consecutive spatial-dimension lines represents a volume 
relationship.  The ratio of any pair of elements that are only separated by the 
same three consecutive spatial-dimension lines yields the volume relationship 
that is represented by those three spatial-dimension lines.

As a concrete example, the potential energy ( E ) contained in a volume of gas 
is the product of the pressure ( P ) of the gas times the volume ( V ) of the 
gas:

E = P V .

The ratio of energy over pressure yields the volume relationship represented by 
the three spatial-dimension lines that separate energy and pressure:

E
P

= V .

The ratio of moment of inertia over linear density, in fact the ratio of any two 
elements that are only separated by these three spatial-dimension lines will also 
yield this volume relationship.

From the previous concrete example of crossing two spatial-dimension lines the 
spatial-dimension line that separates force from spring constant represented the 
displacement:

x ,

and the spatial-dimension line that separates spring constant and pressure 
represented the ratio of area over displacement:

∣A∣
x

.
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Power Energy Action Moment of 
Inertia

Force Momentum Moment

Spring 
Constant

Impedance Mass

Pressure Linear 
Density

Diagram 76: The volume relationship between energy and pressure, and some 
other elements that are only separated by the same three spatial-dimension lines

The spatial-dimension line that separates energy from force can be calculated 
as:

V

∣A∣ .

The three consecutive spatial-dimension lines that separate energy and 
pressure represent the volume relationship between energy and pressure.  The 

product of the three dimension-lines 
∣A∣

x
, x , and 

V

∣A∣  yields the volume 

relationship:

V = ∣A∣x  x  V

∣A∣ .
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Analyzing the grid Crossing dimension lines

Crossing one temporal-dimension line

Consider two elements ( 0 ,0  and −1 , 0 ) that have a temporal
relationship ( −1 ):

0 ,0 = −1 ,0 −1 .

These two elements lie on opposite sides of the temporal-dimension line that 
separates them.

−1 ,0 0 ,0

Diagram 77: An arbitrary pair of elements that have a temporal relationship

The ratio of these two elements yields the temporal relationship that is 
represented by the temporal-dimension line between the two elements:

0 ,0

−1 ,0

= −1 .
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Analyzing the grid Crossing dimension lines

The ratio of any pair of elements that are only separated by this temporal-
dimension line yields the same temporal relationship.

−1 ,1 0 ,1

−1 ,0 0 ,0

−1 ,−1 0 ,−1

Diagram 78: Three pairs of elements that share a particular temporal relationship

For example:

0 ,1

−1 ,1

= −1  and 
0 ,−1

−1 ,−1

= −1 .
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Analyzing the grid Crossing dimension lines

As a concrete example, force ( F ) can be calculated as the product of 
impulses of momentum ( P ) times the frequency ( f ) at which those impulses 
are delivered:

F = P f .

The ratio of force over momentum yields the frequency at which the impulses of 
momentum are delivered:

F
P

= f .

The temporal-dimension line that separates the force box and the momentum 
box represents the frequency of the impulses that cause the force.

Power Energy Action Moment of 
Inertia

Force Momentum Moment

Spring 
Constant

Impedance Mass

Diagram 79: Some pairs of elements that share the same temporal relationship 
as force and momentum

The ratio of energy over action, the ratio of spring constant over impedance, in 
fact the ratio of any two boxes that are only separated by this temporal-
dimension line will  yield this same frequency.
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Crossing two temporal-dimension lines

Consider three elements ( −1 , 0  0 ,0 , 1, 0 ) that are only separated by two 
consecutive temporal-dimension lines ( −1 , 1 ).

−1 ,0 0 ,0 1 , 0

Diagram 80: Three arbitrary elements that are only separated by a pair of temporal-dimension lines

The first two elements have a temporal relationship:

0 ,0 = −1 ,0 −1 .

The ratio of the first two elements yields the inverse temporal relationship 
between the two elements:

−1 ,0

0 ,0

=
1
−1

.

The last two elements have a temporal relationship:

1 , 0 = 0 ,0 1  .

The ratio of the last two elements yields the inverse temporal relationship 
between the two elements:

0 , 0

1 , 0

=
1
1

.
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Analyzing the grid Crossing dimension lines

Algebraic manipulation shows the ratio of the first element over the last element 
is the product of the frequency relationship between the first two elements times 
the frequency relationship between the last two elements:

−1 ,0

1 ,0

=
1
−1

1
1

.

The ratio of any pair of elements that are only separated by this pair of temporal-
dimension lines will yield the same product of frequencies relationship.

−1 ,1 0 ,1 1 ,1

−1 ,0 0 ,0 1 , 0

−1 ,−1 0 ,−1 1 ,−1

Diagram 81: Three sets of elements that are only separated by a pair of temporal-dimension lines

Algebraic manipulation also shows the product of the first and last elements as 
the square of the second element times the ratio of the frequency relationship 
between the first two elements over the frequency relationship between the last 
two elements:

−1 ,01 ,0 =
 1
−1


 1
1


.
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Analyzing the grid Crossing dimension lines

As a concrete example, the self-resonant frequency ( f ) of a mass-spring 
system is the square root of the ratio of spring constant ( k ) over mass ( m ):

f =  k
m

.

This can be rewritten as:

f 2
=

k
m .

Each of the two temporal-dimension lines that separate the spring constant box 
and the mass box represents the self-resonant frequency of the mass-spring 
system.

Power Energy Action Moment of 
Inertia

Force Momentum Moment

Spring 
Constant

Impedance Mass

Diagram 82: The frequency squared relationship between mass and spring constant,  
and some other elements that share the same frequency squared relationship

The ratio of energy over moment of inertia, the ratio of force over moment, in 
fact the ratio of any two elements that are only separated by this pair of 
temporal-dimension lines will yield the same frequency squared relationship.

The product of spring constant and mass yields the square of the
impedance (  ) of the system times the ratio of the frequencies represented 
by the two temporal-dimension lines that separate the spring constant box and 
the mass box:
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k m = 
2 f

f
= 

2
.

The impedance of a mass-spring system is the square root of the product of the 
spring constant times the mass:

 = k m .
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Crossing velocity dimension lines

Crossing a velocity-dimension line from one element to another is the same as 
simultaneously crossing the spatial-dimension line and the temporal-dimension 
line which intersect at the velocity-dimension line between the two elements.  If 
the velocity-dimension line is crossed in a forward direction then the spatial-
dimension line is crossed in a forward direction and the temporal-dimension line 
is crossed in a backwards (or inverse) direction.  If the velocity-dimension line is 
crossed in a backwards direction then the spatial-dimension line is crossed in a 
backwards direction while the temporal-dimension line is crossed in a forward 
direction.
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Crossing one velocity-dimension line

Consider two elements ( −1 , 1  and 0 ,0 ) that have a velocity
relationship ( v1 ):

−1 ,1 = 0 ,0 v 1 .

These two elements line on opposite sides of the velocity-dimension line that 
separates them.

−1 ,1

0 ,0

Diagram 83: A pair of elements that are only separated by a velocity-dimension line

The ratio of the two elements yields the velocity relationship represented by the 
velocity-dimension line that separates the two elements:

−1 ,1

0, 0

= v1 .

The ratio of any two elements that are only separated by this velocity-dimension 
line yields the same velocity relationship.
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As a concrete example, the ratio of force ( F ) over impedance (  ) yields the 
velocity of motion ( v ):

F


= v .

The velocity-dimension line that separates the force box and the impedance box 
represents the velocity of motion.  The ratio of action over moment yields the 
same velocity relationship.  The ratio of any pair of elements that are only 
separated by this velocity-dimension line will yield the same velocity 
relationship.

Power Energy Action Moment of 
Inertia

Force Momentum Moment

Spring 
Constant

Impedance Mass

Diagram 84: The velocity relationship between force and impedance, and some 
other elements that share the same velocity relationship
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Crossing two velocity-dimension lines

Consider three elements ( −1 , 1 , 0 ,0 , 1,−1 ) that are only separated by two 
consecutive velocity-dimension lines ( v1 , v−1 ).

−1 ,1

0 ,0

1 ,1

Diagram 85: Three elements that are only separated by a pair of velocity-dimension lines

The first two elements have a velocity relationship:

−1 ,1 = 0 ,0 v 1 .

The ratio of the first two elements yields the velocity relationship between the 
two elements:

−1 ,1

0, 0

= v1 .
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The last two elements have a velocity relationship:

0 ,0 = 1 ,1 v−1 .

The ratio of the last two elements yields the velocity relationship between the 
two elements:

0, 0

1 ,−1

= v−1 .

Algebraic manipulation shows the ratio of the first element over the and last 
element as the product of the velocity relationship between the first two 
elements times the velocity relationship between the last two elements:

−1 ,1

1 ,−1

= v1  v−1 .

Algebraic manipulation also shows the product of the first and last elements as 
the square of the second element times the ratio of the velocity relationship 
between the first two elements over the velocity relationship between the last 
two elements:

−1 ,1  1 ,−1  = 0 ,0 
2  v1

v−1
 .

As a concrete example, the velocity ( v ) of a pulse traveling along a stretched 
rope is the square root of the ratio of the force of tension ( T ) in the rope over 
the linear density (  ) of the rope:

v = T


.

This can be rewritten as:

v2
=

T


.
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The ratio of force over linear density is the square of velocity.

Power Energy Action Moment of 
Inertia

Force Momentum Moment

Spring 
Constant

Impedance Mass

Pressure Linear 
Density

Diagram 86: The velocity and frequency relationships between force, impedance 
and linear density in a rope

The product of force times linear density yields the impedance (  ) squared 
times the ratio of the resonant frequency ( f ) over the resonant frequency:

T  = 
2 f

f
= 

2
.
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Crossing space-time dimension lines

Crossing a space-time-dimension line between two elements is the same as 
simultaneously crossing the spatial-dimension line and the temporal-dimension 
line which intersect at the space-time-dimension line between the two elements. 
If the space-time-dimension line is crossed in a forward direction then the 
spatial-dimension line and the temporal-dimension line are both crossed in a 
forward direction.  If the space-time-dimension line is crossed in a backwards (or 
inverse) direction then both the spatial-dimension line and the temporal-
dimension line are crossed in a backwards (or inverse) direction.
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Crossing one space-time-dimension line

Consider two elements ( 0 ,0  and 1, 1 ) that have a space-time relationship. 
These two elements are separated by a spatial-dimension line ( x1 ) and a 
temporal-dimension line ( 1 ).

1 ,1

0 ,0

Diagram 87: A pair of elements that are only separated by a space-time-dimension line

The ratio of the second element over the first element yields the space-time 
relationship represented by the space-time-dimension line that separates the 
two elements:

1 ,1

0 ,0

= x11  .
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Analyzing the grid Crossing dimension lines

As a concrete example, momentum ( P ) and spring constant ( k ) have a 
space-time relationship ( x ):

P = k x .

The ratio of momentum over spring constant yields the space-time relationship 
between the momentum box and the spring constant box:

P
k

= x .

The space-time-dimension line between spring constant and momentum 
represents the product of displacement and period.

Power Energy Action Moment of 
Inertia

Force Momentum Moment

Spring 
Constant

Impedance Mass

Linear 
Density

Diagram 88: The spatial, temporal and space-time relationships between spring 
constant and momentum
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Crossing two space-time-dimension lines

Consider three elements ( −1 ,−1  0 ,0 , 1, 1 ) that are only separated by a pair 
of consecutive space-time-dimension lines ( x−1−1  , x11 ).

1 ,1

0 ,0

−1 ,−1

Diagram 89: Three elements that are only separated by a pair of space-time-dimension lines

The first element and the second element have a space-time relationship:

0 ,0 = −1 ,−1  x−1−1  .

The ratio of the second element over the first element yields the space-time 
relationship between the first element and the second element:

0 ,0

−1 ,−1

= x−1−1 .

The second element and the third element have a space-time relationship:

1 ,1 = 0 ,0  x11 .
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The ratio of the third element over the second element yields the space-time 
relationship between the second element and the third element:

1 ,1

0 ,0

= x11  .

Algebraic manipulation shows that the ratio of the third element over the first 
element yields the product of the space-time relationship between the first 
element and the second element times the space-time relationship between the 
second element and the third element:

1 ,1

−1 ,−1

= x−1−1  x11 .

Algebraic manipulation also shows that the product of the first element times the 
third element yields the square of the second element times the ratio of the 
space-time relationship between the first element and the second element over 
the space-time relationship between the second element and the third element:

−1 ,−11 ,1 =
 x−1−1
 x11 

.
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Electromagnetic Elements

dE

dt
E

d V
dt V=

dB

dt

B

d E
dt

E 1

c2

dE

dt

d B
dt

B

Diagram 90: The Periodic Table of Electromagnetic Elements

Introduction

Maxwell's equations define the relationships between the electromagnetic 
elements.  Maxwell's equations are a set of simultaneous equations.  They must 
all be satisfied at the same time.

The integral form of Maxwell's equations will be used for this presentation:

∮ E⋅d A = E

∮ B⋅d A = B

∮ E⋅d s = −
dB

dt

∮ B⋅d s =
1

c
2

d E

dt
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Constructing the grid

Consider a two-dimensional grid of boxes where each box is related to it's 
immediate neighbors by a specific set of rules.  The same set of rules applies to 
each and every box on the grid.  Each box on the grid represents a particular 

electromagnetic element (
dE

dt
, E , voltage, …).

Using a suitable set of rules all of the electromagnetic elements can be arranged 
on the grid in accordance with Maxwell's equations in an unambiguous fashion. 
This arrangement constitutes the periodic table of electromagnetic elements. 
The periodic quality of the electromagnetic elements will become clear in the 
course of the presentation.

Rules of the grid

This diagram describes how any element, represented by , is related to it's 
immediate neighbors.

∫d x /t  ∫dx ∫d xt 

∂
∂ t

Any
Element


∫dt

∂
∂xt 

∂
∂ x

∂
∂x /t 

Diagram 91: How an element is related to it's immediate neighbors

This is the complete set of rules by which the grid is constructed.
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E on the grid

This diagram shows a 4x4 piece of the grid containing a box labeled E .

Diagram 92: E  placed on the grid

The grid must extend infinitely in all directions.  This is a logical consequence of 
the fact that every box is related to eight immediate neighbors.
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E and E

The first Maxwell equation states that E  is the product of E  times an area:

∮ E⋅d A = E .

This is an area integral which must be calculated as a double integral with 
respect to area:

∬∣E∣dxdx = E ,

with appropriate limits of integration.

According to the rules by which the grid is constructed the E  box is located 
two boxes above the E  box.

∮ E⋅d A = E

E

Diagram 93: The relationship between the E  box and the E  box
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E on the grid

This diagram shows a 4x4 piece of the grid with the E  box placed correctly.

E

E

Diagram 94: E  placed on the grid
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Voltage and E

The third Maxwell equation describes electric potential, or voltage ( V ):

V = ∮ E⋅d s = −
dB

dt
.

Examining the left part of this three way equality shows voltage is the product of 
E  times the length of the electric path.

According to the rules by which the grid is constructed the V  box is located 
one box above the E  box.

V = ∮ E⋅d s

E

Diagram 95: The relationship between the V  box and the E  box
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Voltage on the grid

This diagram shows a 4x4 piece of the grid with the V  box placed correctly.

E

V

E

Diagram 96: V  placed on the grid
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B and voltage

The third Maxwell equation describes electric potential, or voltage ( V ):

V = ∮ E⋅d s = −
dB

dt
.

Examining the left and right parts of this three way equality shows voltage is the 
time derivative of B .

According to the rules by which the grid is constructed the V  box is located 
one box to the left of the B  box.

V=−
dB

dt
B

Diagram 97: The relationship between the B  box and the V  box

This means the B  box must be placed on the grid one box to the right of the 
V  box.
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B on the grid

This diagram shows a 4x4 piece of the grid with the B  box placed correctly.

E

V B

E

Diagram 98: B  placed on the grid
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B and B

The third Maxwell equation states B  is the product of B  times an area:

∮ B⋅d A = B .

This is an area integral which must be calculated as a double integral with 
respect to area:

∬∣B∣dxdx = B ,

with appropriate limits of integration.

According to the rules by which the grid is constructed the B  box is located 
two boxes above the B  box.

∮ B⋅d A=B

B

Diagram 99: The relationship between the B  box and the B  box

This means the B  box must be placed on the grid two boxes below the B  
box.
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B on the grid

This diagram shows a 4x4 piece of the grid with the B  box placed correctly.

E

V B

E

B

Diagram 100: B  placed on the grid
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d/dt-E and E

According to the rules by which the grid is constructed 
dE

dt
 is located one box 

to the left of the E  box.

dE

dt
E

Diagram 101: The relationship between the 
dE

dt
 box and the E  box

This means the 
dE

dt
 box must be placed on the grid one box to the left of the 

E  box.
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d/dt-E on the grid

This diagram shows a 4x4 piece of the grid with the 
dE

dt
 box placed correctly.

dE

dt
E

V B

E

B

Diagram 102: 
dE

dt
 placed on the grid
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B.ds, E and B

The fourth Maxwell equation states the relationship between ∮ B⋅d s  and 
dE

dt
:

∮ B⋅d s =
1

c
2

d E

dt .

The left side of this equation is the product of B  times a distance.  According 
to the rules by which the grid is constructed the ∮ B⋅d s  box is located one box 
above the B  box.  This describes crossing one spatial-dimension line.

The right side of this equation is 
dE

dt
 over a velocity squared.  According to 

the rules by which the grid is constructed the ∮ B⋅d s  box is located two boxes 

down and to the right of the 
dE

dt
 box.  This describes crossing two velocity-

dimension lines.

dE

dt

∮ B⋅d s=
1

c
2

d E

dt

B

Diagram 103: The relationship between the ∮ B⋅d s  box, the 
dE

dt
 box and the B  box
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B.ds on the grid

This diagram shows a 4x4 piece of the grid with the ∮ B⋅d s  box placed 
correctly.

dE

dt
E

V B

E ∮ B⋅d s

B

Diagram 104: ∮ B⋅d s  placed on the grid
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dv/dt and voltage

According to the rules by which the grid is constructed the 
dV
dt  box is located 

one box to the left of the V  box.

dV
dt

V

Diagram 105: The relationship between the 
dV
dt

 box and the V  box
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dv/dt on the grid

This diagram shows a 4x4 piece of the grid with the 
dV
dt  box placed correctly.

dE

dt
E

dV
dt

V B

E ∮ B⋅d s

B

Diagram 106: 
dV
dt

 placed on the grid

129



Electromagnetic Elements dE/dt and E

dE/dt and E

According to the rules by which the grid is constructed the 
d E
dt

 box is located 

one box to the left of the E  box.

d E
dt

E

Diagram 107: The relationship between the 
d E
dt

 box and the E  box
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dE/dt on the grid

This diagram shows a 4x4 piece of the grid with the 
d E
dt

 box placed correctly.

dE

dt
E

dV
dt

V B

d E
dt

E ∮ B⋅d s

B

Diagram 108: 
d E
dt

 placed on the grid
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dB/dt and B

According to the rules by which the grid is constructed the 
d B
dt

 box is located 

one box to the left of the B  box.

d B
dt

B

Diagram 109: The relationship between the 
d B
dt

 box and the B  box
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dB/dt on the grid

This diagram shows a 4x4 piece of the grid with the 
d B
dt

 box placed correctly.

dE

dt
E

dV
dt

V B

d E
dt

E ∮ B⋅d s

d B
dt

B

Diagram 110: 
d B
dt

 placed on the grid
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Maxwell's velocity prediction

Maxwell predicted:

∣E∣ = c∣B∣ .

Examining the periodic table of electromagnetic elements shows the E  box 
and the B  box have a velocity relationship.

dE

dt
E

dV
dt

V B

d E
dt

∣E∣=c∣B∣ ∮ B⋅d s

d B
dt

∣B∣=1
c
∣E∣

Diagram 111: The velocity relationship between the E  box and the B  box 
on the periodic table of electromagnetic elements

Maxwell's prediction indicates the velocity-dimension line separating the E  
box from the B  box represents the velocity of propagation of electromagnetic 
waves, and must have the value c .
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Electromagnetic Units

dE

dt
(Power)

kg /m
 C/m  m s 

3

m
0

E

(Energy)

kg /m
 C/m  m s 

2

m
1

(Action)

kg /m
 C/m  m s 

1

m
2

(Moment of Inertia)

kg /m
 C/m  m s 

0

m
3

dV
dt

kg /m
 C/m  m s 

3

m
−1

V

(Force)

kg /m
 C/m  m s 

2

m
0

B

(Momentum)

kg /m
 C/m  m s 

1

m
1

(Moment)

kg /m
 C/m  m s 

0

m
2

d E
dt

kg /m
 C/m  m s 

3

m
−2

E

(Spring Constant)

kg /m
 C/m  m s 

2

m
−1

∮ B⋅d s

(Impedance)

kg /m
 C/m  m s 

1

m
0

(Mass)

kg /m
 C/m  m s 

0

m
1

kg /m
 C/m  m s 

3

m
−3

d B
dt

(Pressure)

kg /m
 C/m  m s 

2

m
−2

B

kg /m
 C/m  m s 

1

m
−1

(Linear Density)

kg /m
 C/m  m s 

0

m
0

kg /m
 C/m  m s 

3

m
−4 kg /m

 C/m  m s 
2

m
−3 kg /m

 C/m  m s 
1

m
−2

(Areal Density)

kg /m
 C/m  m s 

0

m
−1

kg /m
 C/m  m s 

3

m
−5 kg /m

 C/m  m s 
2

m
−4 kg /m

 C/m  m s 
1

m
−3

(Volumetric Density)

kg /m
 C/m  m s 

0

m
−2

Diagram 112: The Periodic Table of Electromagnetic Elements labeled with canonical units
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The force between two charges

The force ( F ) between two charges ( q1 , q2 ) is defined as the product of a 

proportionality constant (
1

40
) times the ratio of the product of the two 

charges divided by the square of the distance ( r ) between their centroids:

F =
1

40

q1 q2

r
2 .

If the charge q1  is known by some means then the charge of q2 can, in 
principle, be determined by measuring the force of attraction it exerts on q1 . 
Note that this determination depends critically upon the distance between the 
centroids of the two charges.

Consider the situation where both the charge of q1 and the force F  are 
known.  It is not possible to determine the charge of q2  without making some 
assumption about the distance r  between the centroids of the two charges. 
From this it can be deduced that the force between two charges is only defined 
in terms of the distance between them.

The distributed nature of charge

Consider the situation of two point charges.  As these charges are brought 
infinitesimally close together the force of attraction, or repulsion, will become 
infinite.  At the same time the potential energy of this two-particle system will 
become infinite.  From this it can be deduced that charge must always be 
distributed in space.

The definition of the force between two charges can be rewritten to reflect this 
fact:

F =
1

40

q1

r
q2

r .

This reformulation reflects the fundamentally distributed nature of charge in 
terms of the product of two linear densities.
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Unit analysis of electromagnetic elements

To reflect physicality the distributed nature of charge should be applied 
rigorously to the unit analysis of electromagnetic elements.  A charge unit 
should not appear  without a linear density.  In the SI system of units the 

coulomb ( C ) should only appear as Cm  .

The volt ( V ) is commonly written as a joule ( J ) per coulomb:

V =
 J
C .

The joule can be written as a newton-meter:

J = N⋅m .

This allows the volt to be written as a newton-meter per coulomb:

V =
N⋅m
   C .

However, in order to reflect the distributed nature of charge, the volt should be 
written as a newton per coulomb per meter:

V =
    N
C/m  .

This formulation reflects the distributed nature of charge.

The volt is the electromagnetic unit of potential.  The newton is the mechanical 
unit of potential.  This formulation of the volt expresses electromagnetic potential 
as the ratio of mechanical potential over linear charge density.

From the section on mechanical units the newton should be written as:

N = kg
 m m s 

2

m
0 .

The volt should be written as:

V =
kg
 m m s 

2

m
0

 C m 
, or V = kg /m

 C/m  m s 
2

m
0 .
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Canonical units for electromagnetic elements

The units for the volt have been written above in terms of three components. 

There is a density component: kg /m
 C/m  , a velocity component: m s 

a

, and a 

spatial component: mb .

Expressing the units of electromagnetic elements in this form will be referred to 
as the canonical form for reasons that will become clear.

Placing the units for voltage in the appropriate box on the periodic table of 
electromagnetic elements provides a starting point for assigning units to the 
other elements.

dE

dt
(Power)

E

(Energy) (Action) (Moment of Inertia)

dV
dt

V

(Force)

kg /m
 C/m  m s 

2

m
0

B

(Momentum) (Moment)

d E
dt

E

(Spring Constant)

∮ B⋅d s

(Impedance) (Mass)

d B
dt

(Pressure)

B

(Linear Density)

Diagram 113: Voltage labeled with canonical units on the grid
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The voltage column

Just as seen when assigning units to the elements within a column on the 
periodic table of mechanical elements, the only changes will be in the exponent 
of the spatial component which decreases when proceeding from top to bottom.

The E  box is one box above the voltage box; the exponent of the spatial 
component will be one greater than the voltage box.  The E  box is one box 
below the voltage box; the exponent of the spatial component will be one less 

than the voltage box.  The 
d B
dt

 box is two boxes below the voltage box; the 

exponent of the spatial component will be two less than the voltage box.  The 
exponent of the velocity component will remain fixed at 2 for all of the elements 
in this column.

dE

dt
(Power)

E

(Energy)

kg /m
 C/m  m s 

2

m
1

(Action) (Moment of Inertia)

dV
dt

V

(Force)

kg /m
 C/m  m s 

2

m
0

B

(Momentum) (Moment)

d E
dt

E

(Spring Constant)

kg /m
 C/m  m s 

2

m
−1

∮ B⋅d s

(Impedance) (Mass)

d B
dt

(Pressure)

kg /m
 C/m  m s 

2

m
−2

B

(Linear Density)

Diagram 114: The voltage column labeled with canonical units on the grid
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The voltage velocity-diagonal

Just as seen when assigning units to the elements along a velocity-diagonal on 
the periodic table of mechanical elements the only changes will be in the 
exponent of the velocity component which decreases when proceeding from 
upper left to lower right.

The 
dE

dt
 box is one box up and to the left of the voltage box; the exponent of 

the velocity component will be one greater than the voltage box.  The ∮ B⋅d s  
box is one box down and to the right of the voltage box; the exponent of the 
velocity component will be one less than the voltage box.  The exponent of the 
spatial component will remain fixed at 0 for all of the elements along this 
velocity-diagonal.

dE

dt
(Power)

kg /m
 C/m  m s 

3

m
0

E

(Energy) (Action) (Moment of Inertia)

dV
dt

V

(Force)

kg /m
 C/m  m s 

2

m
0

B

(Momentum) (Moment)

d E
dt

E

(Spring Constant)

∮ B⋅d s

(Impedance)

kg /m
 C/m  m s 

1

m
0

(Mass)

d B
dt

(Pressure)

B

(Linear Density)

kg /m
 C/m  m s 

0

m
0

Diagram 115: The voltage velocity-diagonal labeled with canonical units on the grid
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The voltage row

Just as seen when assigning units to the elements within a row on the periodic 
table of mechanical elements the exponent of the velocity component decreases 
by one while the exponent of the spatial component increases by one when 
proceeding from left to right.

The 
dV
dt  box is one box to the left of the voltage box; the exponent of the 

velocity component will be one greater than the voltage box while the exponent 
of the spatial component will be one less than the voltage box.  The B  box is 
one box to the right of the voltage box; the exponent of the velocity component 
will be one less than the voltage box while the exponent of the spatial 
component will be one greater than the voltage box.

dE

dt
(Power)

E

(Energy) (Action) (Moment of Inertia)

dV
dt

kg /m
 C/m  m s 

3

m
−1

V

(Force)

kg /m
 C/m  m s 

2

m
0

B

(Momentum)

kg /m
 C/m  m s 

1

m
1

(Moment)

kg /m
 C/m  m s 

0

m
2

d E
dt

E

(Spring Constant)

∮ B⋅d s

(Impedance) (Mass)

d B
dt

(Pressure)

B

(Linear Density)

Diagram 116: The voltage row labeled with canonical units on the grid
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The remaining electromagnetic elements

Just as seen when assigning units to the remaining elements on the periodic 
table of mechanical elements the column pattern, the velocity-diagonal pattern 
and/or the row pattern can be used to assign units to the remaining elements on 
the periodic table of electromagnetic elements.

dE

dt
(Power)

kg /m
 C/m  m s 

3

m
0

E

(Energy)

kg /m
 C/m  m s 

2

m
1

(Action)

kg /m
 C/m  m s 

1

m
2

(Moment of Inertia)

kg /m
 C/m  m s 

0

m
3

dV
dt

kg /m
 C/m  m s 

3

m
−1

V

(Force)

kg /m
 C/m  m s 

2

m
0

B

(Momentum)

kg /m
 C/m  m s 

1

m
1

(Moment)

kg /m
 C/m  m s 

0

m
2

d E
dt

kg /m
 C/m  m s 

3

m
−2

E

(Spring Constant)

kg /m
 C/m  m s 

2

m
−1

∮ B⋅d s

(Impedance)

kg /m
 C/m  m s 

1

m
0

(Mass)

kg /m
 C/m  m s 

0

m
1

kg /m
 C/m  m s 

3

m
−3

d B
dt

(Pressure)

kg /m
 C/m  m s 

2

m
−2

B

kg /m
 C/m  m s 

1

m
−1

(Linear Density)

kg /m
 C/m  m s 

0

m
0

Diagram 117: The remaining electromagnetic elements labeled with canonical units on the grid
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Mechanical correspondence

Simple inspection shows that every element on the periodic table of 
electromagnetic elements corresponds to an element on the periodic table of 
mechanical elements divided by linear charge density.  For example voltage 
corresponds to force divided by linear charge density, E corresponds to 
energy divided by linear charge density, and B  corresponds to momentum 
divided by linear charge density.

Power

kg
 m m s 

3

m
0

Energy

kg
 m m s 

2

m
1

Action

kg
 m m s 

1

m
2

Moment of Inertia

kg
 m m s 

0

m
3

kg
 m m s 

3

m
−1

Force

kg
 m m s 

2

m
0

Momentum

kg
 m m s 

1

m
1

Moment

kg
 m m s 

0

m
2

kg
 m m s 

3

m
−2

Spring Constant

kg
 m m s 

2

m
−1

Impedance

kg
 m m s 

1

m
0

Mass

kg
 m m s 

0

m
1

kg
 m m s 

3

m
−3

Pressure

kg
 m m s 

2

m
−2 kg

 m m s 
1

m
−1

Linear Density

kg
 m m s 

0

m
0

Diagram 118: The periodic table of mechanical elements labeled with canonical units on the grid

The correspondence between electromagnetic and mechanical systems is 
not a coincidence.  It is a logical consequence of the mechanical foundation on 
which electromagnetics is constructed.
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Thermodynamic elements Thermodynamic elements

Thermodynamic elements

(Power) (Energy) (Action) (Moment of Inertia)

(Force) (Momentum) (Moment)

(Spring Constant) (Impedance) (Mass)

(Pressure) (Linear Density)

Diagram 119: The periodic table of thermodynamic elements

Introduction

The relationship between electromagnetic elements and mechanical elements 
poses an interesting question.  Are thermodynamic elements related to 
mechanical elements in the same way that electromagnetic elements are related 
to mechanical elements?

Assuming that thermodynamic elements are related to mechanical elements in 
the same way they will fit the following pattern.
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Thermodynamic elements Constructing the grid

Constructing the grid

Consider a two-dimensional grid of boxes where each box is related to it's 
immediate neighbors by a specific set of rules.  The same set of rules applies to 
each and every box on the grid.  Each box on the grid represents a particular 
thermodynamic element.

Using a suitable set of rules all of the thermodynamic elements can be arranged 
on the grid in accordance with the fundamental definitions and theorems of 
thermodynamics in an unambiguous fashion.  This arrangement constitutes the 
periodic table of thermodynamic elements.  The periodic quality of the 
thermodynamic elements will become clear in the course of the presentation.

Rules of the grid

This diagram describes how any element, represented by , is related to it's 
immediate neighbors.

∫d x /t  ∫dx ∫d xt 

∂
∂ t

Any
Element


∫dt

∂
∂xt 

∂
∂ x

∂
∂x /t 

Diagram 120: How an element is related to it's immediate neighbors

This is the complete set of rules by which the grid is constructed.
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Thermodynamic units

(Power)

kg /m
 K /m  m s 

3

m
0

(Energy)

kg /m
 K /m  m s 

2

m
1

(Action)

kg /m
 K /m  m s 

1

m
2

(Moment of Inertia)

kg /m
 K /m  m s 

0

m
3

kg /m
 K /m  m s 

3

m
−1

(Force)

kg /m
 K /m  m s 

2

m
0

(Momentum)

kg /m
 K /m  m s 

1

m
1

(Moment)

kg /m
 K /m  m s 

0

m
2

kg /m
 K /m  m s 

3

m
−2

(Spring Constant)

kg /m
 K /m  m s 

2

m
−1

(Impedance)

kg /m
 K /m  m s 

1

m
0

(Mass)

kg /m
 K /m  m s 

0

m
1

kg /m
 K /m  m s 

3

m
−3

(Pressure)

kg /m
 K /m  m s 

2

m
−2 kg /m

 K /m  m s 
1

m
−1

(Linear Density)

kg /m
 K /m  m s 

0

m
0

kg /m
 K /m  m s 

0

m
0 kg /m

 K /m  m s 
0

m
0 kg /m

 K /m  m s 
0

m
0

(Areal Density)

kg /m
 K /m  m s 

0

m
0

kg /m
 K /m  m s 

0

m
0 kg /m

 K /m  m s 
0

m
0 kg /m

 K /m  m s 
0

m
0

(Volumetric Density)

kg /m
 K /m  m s 

0

m
0

Diagram 121: The periodic table of thermodynamic elements labeled with canonical units
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Thermodynamic units The force between two temperatures

The force between two temperatures

In mechanics the force ( F ) between two particles of mass is defined as the 
product of a proportionality constant ( G ) times the ratio of the product of the 
masses ( m1 , m2 ) of the two particles divided by the square of the
distance ( r ) between their centroids:

F = G
m1 m2

r2 = G
m1

r
m2

r .

In electromagnetics the mechanical force ( F ) between two particles of charge 

is defined as the product of a proportionality constant (
1

40
) times the ratio of 

the product of the charges ( q1 , q2 ) of the two particles divided by the square 
of the distance ( r ) between their centroids:

F =
1

40

q1 q2

r 2 =
1

40

q1

r
q2

r .

Suppose there is a mechanical force that causes two particles of temperature to 
be repelled.  Suppose this force ( F ) is defined as the product of a 
proportionality constant (  ) times the ratio of the product of the
temperatures ( T 1 , T 2 ) of the two particles divided by the square of the 
distance ( r ) between their centroids:

F = 
T1 T2

r
2 .

The distributed nature of temperature

Consider the situation of two point temperatures.  As these temperatures are 
brought infinitesimally close together the force of repulsion will become infinite. 
At the same time the potential energy of this two-particle system will become 
infinite.  From this it can be deduced that temperature must always be 
distributed in space.

The definition of the force between two temperatures can be rewritten to reflect 
this fact:

F = 
T1

r
T2

r
.

This reformulation reflects the fundamentally distributed nature of temperature in 
terms of the product of two linear densities.
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Thermodynamic units Unit analysis of thermodynamic elements

Unit analysis of thermodynamic elements

To reflect physicality the distributed nature of temperature should be applied 
rigorously to the unit analysis of thermodynamic elements.  A temperature unit 
should not appear without a linear density.  In the SI system of units the

kelvin ( K ) should only appear as   K m  .

The universal gas law constant

The constant ( R ) from the universal gas law:

PV = nRT

commonly has the units joules per mole kelvin:

R =
    J
mol⋅K .

A joule is also known as a newton-meter:

J = N⋅m .

The units for the universal gas law constant can be written as:

R =
 N⋅m
mol⋅K .

The units for the universal gas law constant should be written as:

R =
    N

Km mol .

This formulation reflects the distributed nature of temperature.

From the section on mechanical units the newton should be written as:

N = kg
 m m s 

2

m
0 .

The units for the universal gas law constant should be written as:

R =
kg /m
 K /m  m s 

2

m
0

         mol

.
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Thermodynamic units Boltzmann's constant

Boltzmann's constant

The units for Boltzmann's constant ( B ) are commonly written as joules per 
kelvin:

B =
 J
K .

From the section on mechanical units the joule should be written as:

J = kg
 m  m s 

2

m
1 .

Boltzmann's constant should be written as:

B =
kg
 m m s 

2

m1

         K
.

To reflect the distributed nature of temperature Boltzmann's constant should be 
written as:

B =
kg
 m m s 

2

m0

Km 
, or B = kg/m

 K /m m s 
2

m0 .

Temperature is an intrinsic property of mass.  The mass and temperature must 
be distributed identically over the same space.
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Thermodynamic units Canonical units for thermodynamic elements

Canonical units for thermodynamic elements

The units for the universal gas law constant and Boltzmann's constant have 
been written above in terms of three components.  There is a density 

component: kg /m
 K /m  , a velocity component: m s 

a

, and a spatial

component: mb .

Expressing the units for thermodynamic elements in this form will be referred to 
as the canonical form for reasons that will become clear.

Mechanical correspondence

Simple inspection shows that every element on the periodic table of 
thermodynamic elements corresponds to an element on the periodic table of 
mechanical elements divided by linear temperature density.
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Final thoughts

In the course of developing the periodic tables of mechanical and 
electromagnetic elements the thermodynamic proposition presented itself.

The fundamental proposition behind the periodic table of thermodynamic 
elements presented above clearly needs to be backed up with theoretical work 
and experimental evidence.

Other questions also arise.  Are there more fundamental quantities and 
associated periodic tables in physics?  Do quantum theories fit on the tables 
presented?
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Analyzing physical problems

The periodic tables of physics are a powerful tool for analyzing physical 
problems.  The analysis process consists of labeling the boxes (which represent 
physical elements) and the dimension-lines (which represent the physical 
relationships between elements) on the grid in accordance with the fundamental 
definitions and theorems that apply to the problem at hand.  The analysis is 
complete when consistency is achieved no matter what path (sequence of 
navigation instructions) is used to get from one box (element) on the grid to 
another.

This is best illustrated by looking at some examples.
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Analyzing physical problems The classic inductor

The classic inductor

It is very instructive to analyze the classic inductor using the periodic table of 
electromagnetic elements.

The geometry of the cylindrical/helical inductor

Start by examining the geometry of the cylindrical/helical inductor.

Diagram 122: The geometry of the cylindrical/helical inductor

The cylinder has a radius r , and a height H .

The cross section area is:

A =  r 2 .

The surface area is:

S = 2 r H .

In the classic derivation the wire is assumed to have an infinitesimal pitch.  This 
allows the use of the stack of loops approximation.  There are N  turns of wire 
which yields a wire length of:

w = 2r N .
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Analyzing physical problems The classic inductor

The B field

In the classic derivation the B  field is assumed to be uniform within the 
solenoid, having a value of:

B = 0
N
H
i0 .

Place this in the B  box on the periodic table of electromagnetic elements.

dE

dt
(Power)

E

(Energy) (Action) (Moment of Inertia)

dV
dt

V

(Force)

B

(Momentum) (Moment)

d E
dt

E

(Spring Constant)

∮ B⋅d s

(Impedance) (Mass)

d B
dt

(Pressure)

B

B=0
N
H
i0

(Linear Density)

Diagram 123: Magnetic field, B , placed on the grid
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Analyzing physical problems The classic inductor

Total magnetic flux

The magnetic flux inside a single loop is the product of the B  field times the 
area of the loop:

∣B∣A = ∣0

N
H
i0∣r 2  .

The total magnetic flux within the solenoid is the sum of the magnetic flux in 
each of the N  loops:

B = N ∣B∣A  = 0
N
H

 Nr2∣i0∣ .

Multiply by the factor 
4
4 :

B = 0
4
4

N
H

N r2∣i0∣ ,

then regroup:

B = 0

2r N 
2

4H
∣i0∣ .

Place this in the B  box on the periodic table of electromagnetic elements.
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Analyzing physical problems The classic inductor

dE

dt
(Power)

E

(Energy) (Action) (Moment of Inertia)

dV
dt

V

(Force)

B

(Momentum)

B=0

2r N 2

4H
∣i0∣

(Moment)

d E
dt

E

(Spring Constant)

∮ B⋅d s

(Impedance) (Mass)

d B
dt

(Pressure)

B

B=0
N
H
i0

(Linear Density)

Diagram 124: Total magnetic flux, B , placed on the grid

This shows an important and physically meaningful geometric relationship.  The 
total magnetic flux within the solenoid is a function of the ratio of the square of 
the wire length divided by the height of the solenoid.  Recall that the wire length 
is 2r N .
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Analyzing physical problems The classic inductor

Voltage

From Maxwell's third equation voltage is the time derivative of total magnetic 
flux:

V =
dB

dt
= 0

2r N 
2

4H ∣d i0dt ∣ .

The only quantity changing with time is current.  The geometry remains fixed.

Place this in the V  box on the periodic table of electromagnetic elements.

dE

dt
(Power)

E

(Energy) (Action) (Moment of Inertia)

dV
dt

V

(Force)

V=0

2r N 
2

4H ∣di0
dt ∣

B

(Momentum)

B=0

2r N 
2

4H
∣i0∣

(Moment)

d E
dt

E

(Spring Constant)

∮ B⋅d s

(Impedance) (Mass)

d B
dt

(Pressure)

B

B=0
N
H
i0

(Linear Density)

Diagram 125: Voltage, V , placed on the grid

The current is changing direction as it flows along the wire.  There will be a non-
zero time derivative of current flow even when the magnitude of the current does 
not vary with time.
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Analyzing physical problems The classic inductor

The E field

The potential (voltage) along a path can be calculated as:

V = ∫ E⋅d s .

In the classic derivation E  is in the direction of the wire at all points along the 
wire.  The voltage from one end of the wire to the other is given by the equation:

V = ∣E∣2 r N  .

Simple algebraic manipulation and substitution yields:

E =
V

2 r N
= 0

2r N 
4H

d i0
dt

.

Place this in the E  box on the periodic table of electromagnetic elements.

dE

dt
(Power)

E

(Energy) (Action) (Moment of Inertia)

dV
dt

V

(Force)

V=0

2r N 
2

4H ∣di0
dt ∣

B

(Momentum)

B=0

2r N 
2

4H
∣i0∣

(Moment)

d E
dt

E

(Spring Constant)

E=0

2r N 
4H

d i0
dt

∮ B⋅d s

(Impedance) (Mass)

d B
dt

(Pressure)

B

B=0
N
H
i0

(Linear Density)

Diagram 126: Electric field, E , placed on the grid
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Analyzing physical problems The classic inductor

Total electric flux

In the classic derivation the E  field is distributed over the surface area of the 
solenoid:

A = 2 r H .

The total electric flux is the product of the E  field times the surface area:

E = ∣E∣A .

Substitution and algebraic manipulation yields:

E = ∣0

2 r N 
4H

d i0
dt ∣2 r H  N

N  = 0

2 r N 
2

4 N ∣di0
dt ∣ .

Place this in the E  box on the periodic table of electromagnetic elements.

dE

dt
(Power)

E

(Energy)

E=0

2 r N 
2

4N ∣d i0dt ∣
(Action) (Moment of Inertia)

dV
dt

V

(Force)

V=0

2r N 
2

4H ∣di0
dt ∣

B

(Momentum)

B=0

2r N 
2

4H
∣i0∣

(Moment)

d E
dt

E

(Spring Constant)

E=0

2r N 
4H

d i0
dt

∮ B⋅d s

(Impedance) (Mass)

d B
dt

(Pressure)

B

B=0
N
H
i0

(Linear Density)

Diagram 127: Total electric flux, E , placed on the grid
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Analyzing physical problems The classic inductor

The spatial-dimension lines between total magnetic flux and magnetic field

The ratio of B  over B  yields the areal relationship between the B  box 
and the B  box:

B

∣B∣
=

0

2r N 
2

4H
∣i0∣

0
N
H
∣i0∣

= N r2 .

The areal relationship between the B  box and the B  box represents the 
total area of magnetic flux.  This is simply the total area enclosed by the N  
loops of the inductor.

The ratio of V  over E  yields the spatial relationship between the V  box 
and the E  box:

V

∣E∣
=

0

2r N 
2

4H ∣di0
dt ∣

0

2r N 
4H ∣di0

dt ∣
= 2r N .

The spatial relationship between the V  box and the E  box represents the 
length of the path along which the E  field stretches.  The current also flows 
along the length of this path.

The product of the two spatial-dimension lines between the B  box and the 
B  box must yield the areal relationship between these two boxes.  The ratio of 

the areal relationship between the B  box and the B  box over the spatial 
relationship between the V  box and the E  box yields the spatial relationship 
represented by the spatial-dimension line that separates the E  box from the 
B  box:

B

∣B∣
 V

∣E∣
=

N r 2 
2 r N 

=
r
2

.

Which is the ratio of the area over the circumference for any circle.
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Analyzing physical problems The classic inductor

The spatial dimension lines between total electric flux and electric field

The ratio of E  over E  yields the areal relationship between the E  box 
and E  box:

E

∣E∣
=

0

2 r N 
2

4N ∣di0
dt ∣

0

2 r N 
4H ∣di0

dt ∣
= 2 r H .

The areal relationship between the E  box and the E  box represents the 
area over which the E  field is distributed.

The ratio of V  over E  yields the spatial relationship between the V  box 
and the E  box:

V

∣E∣
=

0

2r N 
2

4H ∣di0
dt ∣

0

2r N 
4H ∣di0

dt ∣
= 2r N .

The spatial relationship between the V  box and the E  box represents the 
length of the path over which the E  field stretches.

The product of the two spatial-dimension lines between the E  box and the 
E  box must yield the areal relationship between these two boxes.  The ratio of 

the areal relationship between the E  box and the E  box over the spatial 
relationship between the V  box and the E  box yields the spatial relationship 
represented by the spatial-dimension line that separates the E  box from the 

V  box:

E

V
=

0

2 r N 
2

4 N ∣di0
dt ∣

0

2 r N 2

4H ∣di0
dt ∣

=
2 r H
2 r N

=
H
N .

Which is the ratio of the surface area over the wire length of the solenoid. 
Physically this represents the area over which the electric field is distributed 
divided by the distance over which the electric field stretches.
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Analyzing physical problems The classic inductor

Clarifying the magnetic field

The B  field within the solenoid is classically written as:

B = 0
N
H
i0 .

Multiplying the numerator and denominator by the factor 2r  can be used to 
clarify the initial formula for the B  field within the solenoid:

B = 0
N
H
i0 = 0

2 r N
2r H

i0 .

This now reflects the physical geometry of the situation.

dE

dt
(Power)

E

(Energy)

E=0

2 r N 
2

4N ∣d i0dt ∣
(Action) (Moment of Inertia)

dV
dt

V

(Force)

V=0

2r N 
2

4H ∣di0
dt ∣

B

(Momentum)

B=0

2r N 2

4H
∣i0∣

(Moment)

d E
dt

E

(Spring Constant)

E=0

2r N 
4H

d i0
dt

∮ B⋅d s

(Impedance) (Mass)

d B
dt

(Pressure)

B

B=0
2 r N
2 r H

i0

(Linear Density)

Diagram 128: Magnetic field, B , clarified on the grid
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Analyzing physical problems The classic inductor

Filling in the table

Examination of the periodic table of electromagnetic elements shows that each 
element labeled so far is the product of the permeability constant ( 0 ) times a 
geometric constant times a particular time derivative of charge.  Remember that 
current is defined as the time derivative of charge.

All of the elements in a given column contain the same particular time derivative 
of charge.  The time derivatives decrease when proceeding from left to right 
across a given row.  The geometric constants are the same for each element in 
a given row because the only quantities that change with time are the charge, 
and it's time derivatives.

dE

dt
(Power)

0

2 r N 
2

4N ∣d
2i0

d t2 ∣

E

(Energy)

0

2 r N 
2

4N ∣d i0dt ∣
(Action)

0

2 r N 2

4N
∣i0∣

(Moment of Inertia)

0

2 r N 2

4N
∣q0∣

dV
dt

0

2 r N 
2

4H ∣d
2i0

d t2 ∣

V

(Force)

0

2 r N 
2

4H ∣d i0dt ∣

B

(Momentum)

0

2 r N 
2

4H
∣i0∣

(Moment)

0

2r N 2

4H
∣q0∣

d E
dt

0

2 r N 
4H

d2i0
d t2

E

(Spring Constant)

0

2 r N 
4H

d i0
dt

∮ B⋅d s

(Impedance)

0

2 r N 
4H

i0

(Mass)

0

2 r N 
4H

q0

d2B

d t2

0
2r N
2 r H

d2i0
d t2

d B
dt

(Pressure)

0
2r N
2 r H

di0
dt

B

0
2r N
2 r H

i0

(Linear Density)

0
2r N
2 r H

q0

Diagram 129: Completed analysis of the classic inductor
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A template for electromagnetic analysis

A careful analysis of the geometric relationships embodied in the construction of 
the periodic table of electromagnetic elements leads to a useful template for the 
analysis of electromagnetic problems.

E vol 

dE

dt
E B vol

dV
dt

V B

d E
dt

E B⋅d s

E

vol 

B

V
vol 

B

vol 

E
vol 

B⋅d s
vol 

B
vol 

165



Analyzing physical problems A template for electromagnetic analysis

E

Start by examining the first Maxwell equation:

∮ E⋅d A = E =
Q
0

.

Place the right-hand expression in the E  box on the periodic table of 
electromagnetic elements.
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E vol 

dE

dt
E

Q
0

B vol 

dV
dt

V B

d E
dt

E B⋅d s

E

vol 

B

V
vol 

B

vol 

E
vol 

B⋅d s
vol 

B
vol 

Diagram 130: The value E =
Q
0

 placed on the grid
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d/dt-E

Evaluating the time derivative of E :

dE

dt
=

d
dt Q

0


yields:

d E

dt
=

1
0
 dQ

dt  .

Recognizing that 
dQ
dt  is simply ∣i∣  leads to the expression:

d E

dt
=

∣i∣
0

.

Place the right-hand expression in the 
dE

dt
 box on the periodic table of 

electromagnetic elements.

This can be interpreted according to the rules by which the table is constructed:

dE

dt

1
0

dQ
dt

=
∣i∣
0

E

Q
0

Diagram 131: The relationship between 
dE

dt
 and E  on the grid
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E vol 

dE

dt
∣i∣
0

E

Q
0

B vol 

dV
dt

V B

d E
dt

E B⋅d s

E

vol 

B

V
vol 

B

vol 

E
vol 

B⋅d s
vol 

B
vol 

Diagram 132: The value 
d E

dt
=

∣i∣
0

 placed on the grid
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B.ds

Examine the fourth Maxwell equation:

∮ B⋅d s =
1
c2

d E

dt
=

1
c2

∣i∣
0

.

Recognize that 
1

0 c2  is just 0 .

This leads to the expression:

∮ B⋅d s = 0∣i∣ .

Place the right-hand expression in the B⋅d s  box on the periodic table of 
electromagnetic elements.

This can be interpreted according to the rules by which the table is constructed:

dE

dt
∣i∣
0

V

B⋅d s

1

c
2

dE

dt
= 0∣i∣

Diagram 133: The relationship between 
dE

dt
 and B⋅d s  on the grid
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E vol 

dE

dt
∣i∣
0

E

Q
0

B vol 

dV
dt

V B

d E
dt

E B⋅d s

0∣i∣

E

vol 

B

V
vol 

B

vol 

E
vol 

B⋅d s
vol 

B
vol 

Diagram 134: The value ∮ B⋅d s = 0∣i∣  placed on the grid
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E

The E  box is located to the left of the B⋅d s  box.  According to the rules by 
which the table is constructed, the E  box differs from the B⋅d s  box by a 
time derivative.

The B⋅d s  box has the value:

B⋅d s = 0∣i∣ .

So, the E  box has the value:

E =
∂

∂ t
0∣i∣ = 0

di
dt

.

Place the right-hand expression in the E  box on the periodic table of 
electromagnetic elements.

E

0
di
dt

B⋅d s

0∣i∣

Diagram 135: The relationship between E  and B⋅d s  on the grid
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E vol 

dE

dt
∣i∣
0

E

Q
0

B vol 

dV
dt

V B

d E
dt

E

0
di
dt

B⋅d s

0∣i∣

E

vol 

B

V
vol 

B

vol 

E
vol 

B⋅d s
vol 

B
vol 

Diagram 136: The value E = 0
di
dt

 placed on the grid
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dE/dt

The 
d E
dt

 box is located to the left of the E  box.  According to the rules  by 

which the table is constructed, the 
d E
dt

 box differs from the E  box by a time 

derivative.

The E  box has the value:

E = 0
di
dt

.

So, the 
d E
dt

 box has the value:

d E
dt

= 0
d2i

d t2 .

Place the right-hand expression in the 
d E
dt

 box on the periodic table of 

electromagnetic elements.

d E
dt

0
d2i

d t2

E

0
di
dt

Diagram 137: The relationship between 
d E
dt

 and E  on the grid
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E vol 

dE

dt
∣i∣
0

E

Q
0

B vol 

dV
dt

V B

d E
dt

0
d2i

d t2

E

0
di
dt

B⋅d s

0∣i∣

E

vol 

B

V
vol 

B

vol 

E
vol 

B⋅d s
vol 

B
vol 

Diagram 138: The value 
d E
dt

= 0
d2i

d t2  placed on the grid
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The box to the right of B.ds

According to the rules by which the table is constructed, the B⋅d s  box is the 
time derivative of the box to the right.

The B⋅d s  box has the value:

B⋅d s =0∣i∣ .

Recall that ∣i∣  is just the time derivative of Q :

∣i∣ = dQ
dt .

So, the box to the right of B⋅d s  has the value:

0 Q .

Place this value in the box to the right of the B⋅d s  box on the periodic table of 
electromagnetic elements.

B⋅d s

0∣i∣ 0 Q

Diagram 139: The relationship between B⋅d s   and the box to the right on the grid

Note that the E  box is related to the box to the right of B⋅d s  by crossing 

two velocity-dimension lines.  Recall that c20  is just 
1
0

.
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E vol 

dE

dt
∣i∣
0

E

Q
0

B vol 

dV
dt

V B

d E
dt

0
d2i

d t2

E

0
di
dt

B⋅d s

0∣i∣ 0 Q

E

vol 

B

V
vol 

B

vol 

E
vol 

B⋅d s
vol 

B
vol 

Diagram 140: The value 0 Q  placed on the grid
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The spatial relationships between ΦE, V and E

Consider a path ( E p ) that is in the direction of the E  field at every point 
along the path.  If the E  field has the same value at every point on the path, 
the third Maxwell equation can be evaluated as:

V = ∮ E⋅d s = E⋅E p .

The spatial-dimension line that separates E  and V  represents the electric 
path, E p .

Consider an area ( Ea ) that is in the direction of the E  field at all points of the 
area.  If the E  field has the same value at every point of the area, the first 
Maxwell equation can be evaluated as:

E = ∮ E⋅d A = E⋅Ea .

The spatial-dimension line that separates V  and E  represents the ratio of 
electric area, Ea , over electric path, E p :

Ea
Ep

.

These two spatial-dimension lines can be interpreted on the periodic table of 
electromagnetic elements.

E

E⋅Ea

V

E⋅E p

E

E

Diagram 141: Spatial relationships in the E  column on the grid
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The spatial relationships between ΦB, B.ds and B

Consider a path ( B p ) that is in the direction of the B  field at every point 
along the path.  If the B  field has the same value at every point on the path, 
the fourth Maxwell equation can be evaluated as:

∮ B⋅d s = B⋅B p .

The spatial-dimension line that separates B  and B⋅d s  represents the 
magnetic path, B p .

Consider an area ( Ba ) that is in the direction of the B  field at all points of the 
area.  If the B  field has the same value at every point of the area, the second 
Maxwell equation can be evaluated as:

B = ∮ B⋅d A = B⋅Ba .

The spatial-dimension line that separates B⋅d s  and B  represents the ratio 
of magnetic area, Ba , over magnetic path, B p :

Ba
Bp

.

These two spatial-dimension lines can be interpreted on the periodic table of 
electromagnetic elements.

B

B⋅Ba

B⋅d s

B⋅Bp

B

B

Diagram 142: Spatial relationships in the B  column on the grid
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Electromagnetic volume

Crossing three consecutive spatial-dimension lines on the periodic table of 
electromagnetic elements describes a volume.  Crossing any three consecutive 
spatial-dimension lines describes the same volume.  This is due to the fact that 
the sum of the volumetric parts must add up to the whole volume.  For this 
reason the three consecutive spatial-dimension line labels repeat over and over 
again when proceeding up or down within a column on the periodic table of 
electromagnetic elements.

The volume described by three consecutive spatial-dimension lines is a quantity 
that has the units of volume.  This volume is sometimes a readily apparent 
geometric volume, sometimes not.  This is illustrated in the following examples.
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Volume in the ΦE column

The electromagnetic volume can be interpreted in terms of the spatial dimension 
lines that separate the elements in the E  column:

volume =  Ea

E p
 Ep  B p =  E p Bp  .

E

V

E

Diagram 143: The geometric relationships between E , V  and E  on the grid

The electromagnetic volume can be calculated as the product of the electric 
area ( E a ) times the magnetic path ( B p ).
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Volume in the ΦB column

The electromagnetic volume can be interpreted in terms of the spatial dimension 
lines that separate the elements in the B  column:

volume =  Ea

E p
 Ba

B p
 B p =  Ea

E p
 Ba .

B

B⋅d s

B

Diagram 144: The geometric relationships between B , B⋅d s  and B  on the grid

The electromagnetic volume can be calculated as the product of the ratio of the 
electric area ( E a ) over the electric path ( E p ) times the magnetic area ( Ba ).

The magnetic area ( Ba ) can be seen to be:

Ba = E p  B p .

By using the fact that:

E p =
Ba

B p
,

because the spatial-dimension line that separates the V  box from the E  box 
also separates the B  box from the B⋅d s  box.
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Geometry of the spatial-dimension lines

Geometric labels can now be provided for the spatial-dimension lines.

E vol 

dE

dt
∣i∣
0

E

Q
0

B vol 

dV
dt

V B

d E
dt

0
d2i

d t2

E

0
di
dt

B⋅d s

0∣i∣ 0 Q

E

vol 

B

V
vol 

B

vol 

E
vol 

B⋅d s
vol 

B
vol 

Diagram 145: Geometric labels for the spatial-dimension lines on the grid
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Filling in the ΦB column

It is now possible to fill in all of the boxes (elements) in the B  column on the 
periodic table of electromagnetic elements by utilizing the spatial-dimension line 
labels to calculate the contents of each box (element).  When proceeding 
upward from a given box, multiply the contents of the lower box by the spatial-
dimension line label that separates the lower box from the upper box to 
determine the contents of the upper box.  When proceeding downward from a 
given box, divide the contents of the upper box by the spatial-dimension line 
label that separates the upper box from the lower box to determine the contents 
of the lower box.

Start in the B⋅d s  box which contains:

0∣i∣ .

Proceed upward utilizing the spatial-dimension line label:

E p

to yield:

B =  B⋅d s  E p  = 0∣i∣  E p = 0 E p∣i∣ .

Proceed downward utilizing the spatial-dimension line label:

B p

to yield:

B =  B⋅d s   1
B p

 = 0
i  1

B p

= 0

1
B p

i .

Apply these procedures repetitively, utilizing the appropriate spatial-dimension 
line labels, to fill in all of the boxes in the column.
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E vol 

0 vol ∣i∣

dE

dt
∣i∣
0

E

Q
0

B vol 

0 Ea∣i∣

dV
dt

V B

0 E p∣i∣

d E
dt

0
d2i

d t2

E

0
di
dt

B⋅d s

0∣i∣ 0 Q

E

vol 

B

0
1
B p

i

V
vol 

B

vol 

0
1
Bp

E p

Ea

∣i∣

E
vol 

B⋅d s
vol 

0
1

vol 
∣i∣

B
vol 

0
1
B p

1
vol 

∣i∣

Diagram 146: The B⋅d s  column filled in on the grid
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Filling in the right-hand column

It is possible to fill in all of the boxes (elements) in the right-hand column using 
the same procedure as was used for the B  column.

Start with the box labeled 0 Q , and proceed as before.
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E vol 

0 vol ∣i∣ 0 vol Q

dE

dt
∣i∣
0

E

Q
0

B vol 

0 Ea∣i∣ 0 Ea Q

dV
dt

V B

0 E p∣i∣ 0 E p Q

d E
dt

0
d2i

d t2

E

0
di
dt

B⋅d s

0∣i∣ 0 Q

E

vol 

B

0
1
B p

i 0
1
B p

Q

V
vol 

B

vol 

0
1
Bp

E p

Ea

∣i∣
0 E p Q

E
vol 

B⋅d s
vol 

0
1

vol 
∣i∣ 0

1
vol 

Q

B
vol 

0
1
B p

1
vol 

∣i∣ 0
1
B p

1
vol 
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Diagram 147: The right-hand column filled in on the grid
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Analyzing physical problems A template for electromagnetic analysis

Filling in the remaining columns

Inspection of the two columns filled in shows that all of the boxes in a given row 
contain a particular constant multiplied by a time derivative of charge (possibly 
the zeroth derivative, which is just charge itself).  The particular time derivative 
of charge increases when proceeding from right to left.  These two facts can be 
used to fill in the remaining boxes in each row.
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Analyzing physical problems A template for electromagnetic analysis

0 vol 
d2i
d t2
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di
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Diagram 148: The remaining elements filled in on the grid
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Analyzing physical problems A template for electromagnetic analysis

Applying the template

The template has been developed using a specific value, 0 i , for the box 
labeled B⋅d s .  The template can be generalized by noting that the geometric 
labels associated with the spatial-dimension lines apply to a wide variety of 
situations.

To apply the template to the analysis of a particular situation, identify the 

geometry (
Ea

Ep
, E p  and Bp ) associated with the spatial-dimension lines and 

assign a known value to one of the boxes.  Be sure the value has the correct 
derivative of charge for the column in which it is being placed, as shown on the 
template.  Utilize the geometric spatial-dimension line labels and the sequence 
of derivatives pattern within a row to fill in the table.

For example, the classic inductor can be analyzed with the template by 
identifying the geometry of the spatial-dimension lines:

E a

E p

=
2 r H
2 r N ,

E p = 2 r N  and

B p =
r2

2r
=

r
2

and assigning the classic value

B = 0
2r N
2r H

i0 .

This yields the results shown previously.
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Analyzing physical problems A current-carrying wire

A current-carrying wire

The template for electromagnetic analysis can be applied to a current-carrying 
wire.

The geometry of the current-carrying wire

Start by examining the geometry of the current-carrying wire.

Diagram 149: The geometry of the current-carrying wire and associated fields
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Analyzing physical problems A current-carrying wire

The wire is a cylindrical object.  It has a height ( H ), and a radius ( r ).  The 
cross section area ( A ) is:

A =  r 2 .

The circumference ( C ) is:

C = 2 r .

The current flows along the length of the wire.  The E  field stretches the 
length of the wire.  The length of the electric path ( Ep ) is the length of the wire:

E p = H .

The area ( E a ) over which the electric field is distributed is the cross section of 
the wire:

E a = r2 .

The B  field circulates around the current.  One half of the B  field lies inside 
the wire, and one half of the B  field lies outside the wire.  The centroid of the 
B  field is at the surface of the wire.  The length ( B p ) of the path for the 

circulating B  field at the surface of the wire is:

B p = 2 r .

The magnitude of the B  field at the surface of the wire is:

∣B∣ =
0 i

2 r
.

Labeling the template for electromagnetic analysis

The preceding information can be used to label the template for electromagnetic 
analysis.
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Analyzing physical problems A current-carrying wire

E vol  B⋅d s vol 

dE

dt
E B vol 

dV
dt

V B

d E
dt

E B⋅d s

E

vol 

B

0

2 r
i

V
vol 

B

vol 

E
vol 

B⋅d s
vol 

B
vol 

Diagram 150: The template for electromagnetic analysis labeled with the 
details for the current-carrying wire
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Analyzing physical problems A current-carrying wire

Filling in the B box

The magnitude of the B  field at the surface of the wire is:

∣B∣ =
0 i

2 r
.

This value has already been placed on the template.

Filling in the B.ds box

Utilizing the spatial-dimension line between the B  box and the B⋅d s  box 
yields:

B⋅d s =  B  B p  .

Substituting:

B⋅d s =  0 i

2 r  2 r  .

Resulting in:
B⋅d s = 0i .

Place this value in the B⋅d s  box on the template.

Filling in the ΦB box

Utilizing the spatial-dimension line between the B⋅d s  box and the B  box 
yields:

B =  B⋅d s  E p  .

Substituting:

B = 0 i  H  .

Resulting in:

B = 0 H i .

Place this value in the B  box on the template.
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Analyzing physical problems A current-carrying wire

Filling in the B(vol) box

Utilizing the spatial-dimension line between the B vol  box and the B  box 
yields:

B vol  = B  Ea

Ep
 .

Substituting:

B vol  = 0 H i  r2

H  .

Resulting in:

B vol  = 0 r2 i .

Place this value in the B vol  box on the template.

Filling in the B.ds(vol) box

Utilizing the spatial-dimension line between the B⋅d s vol   box and the B vol  
box yields:

B⋅d s vol  = B vol  B p .

Substituting:

B⋅d s vol  = 0 r2 i 2r  .

Resulting in:

B⋅d s vol  = 0  r2  2 r  i = 0 22 r3 i .

Place this value in the B⋅d s vol   box on the template.

The electromagnetic volume

Now,
B⋅d s = 0i , Ea = r2  and B p = 2 r .

The electromagnetic volume, vol  , is:

vol  =  Ea B p = 22 r3 .

This is a quantity with the units of volume.
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Analyzing physical problems A current-carrying wire

Filling in the ΦB/(vol) box

Utilizing the spatial-dimension line between the 
B

vol 
 box and the B  box 

yields:

B

vol 
=

 B 

 Ea

E p

=  B   E p

Ea
 .

Substituting:

B

vol 
=  0

2r
i H

 r2  .

Resulting in:
B

vol 
=

0 H

2 r  r2 
i =

0 H

22r3
i .

Place this value in the 
B

 vol 
 box on the template.

Filling in the B.ds/(vol) box

Utilizing the spatial-dimension line between the 
B⋅d s
vol 

 box and the 
B

 vol 
 box 

yields:

B⋅d s
vol 

=
 B

vol  
 E p

=
B 

vol   Ep 
.

Substituting:

B⋅d s
vol 

=
0 H i 

22r3   H 
.

Resulting in:

B⋅d s
vol 

=
0 

22r3 
i .

Place this value in the 
B⋅d s
vol 

 box on the template.
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Analyzing physical problems A current-carrying wire

Filling in the B/(vol) box

Utilizing the spatial-dimension line between the 
B

vol 
 box and the 

B⋅d s
vol 

 box 

yields:

B
vol 

=
 B⋅d svol  

B p 
=

 B⋅d s 
vol  B p 

.

Substituting:

B
vol 

=
0 i 

22 r3  2 r 
.

Resulting in:

B
vol 

=
0 

43 r4
i .

Place this value in the 
B

 vol 
 box on the template.

Filling in the remaining boxes

The remaining boxes in each row can now be filled in by using the value from 
the box in the B  column for that row.  The spatial (geometry) constant for 
each box in a given row is the same, because the boxes in a given row only 
differ by time derivatives.  The particular time derivative of charge for each box 
in a given row follows a simple progression; it increases when proceeding from 
right to left within a row.
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Analyzing physical problems A current-carrying wire

022r3 d 2 i

d t2

E vol 

022r3 d i
d t
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d t 2
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0 r2 i 0 r2 Q

dV
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V
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d i
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B

0 H i 0 H Q
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0
d i
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0 i 0 Q

0

2 r
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E

vol 
0
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d i
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d2 i
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d i
d t

B⋅d s
vol 

0

22 r3 
i

0

22r3 
Q

0

 43r4 
d 2 i

d t2
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 43r4 
d i
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Q

Diagram 151: The completed analysis for a current-carrying wire
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Analyzing physical problems A parallel-plate capacitor

A parallel-plate capacitor

The template for electromagnetic analysis can be applied to a current-carrying 
wire.

The geometry of the parallel-plate capacitor

Start by examining the geometry of the parallel-plate capacitor.

Diagram 152: The geometry of the parallel-plate capacitor and associated fields
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Analyzing physical problems A parallel-plate capacitor

The parallel-plate capacitor is a cylindrical object.  It has a height ( d ) which is 
the distance between plates, and a radius r .  The cross section area ( A ) is:

A =  r 2 .

The circumference ( C ) is:

C = 2 r .

The current flows along the length of the wire.  The E  field stretches between 
the plates.  The length of the electric path ( Ep ) is the distance between the 
plates:

Ep = d .

The area ( E a ) over which the electric field is distributed is the area between 
the plates:

E a = r2 .

The B  field circulates around the current.  One half of the B  field lies 
between the plates (inside the capacitor), and one half of the B  field lies 
outside the capacitor.  The centroid of the B  field is at the edge of the plates. 
The length ( B p ) of the path for the circulating B  field at the edge of the 
plates is:

B p = 2 r .

The magnitude of the B  field at the edge of the plates is:

∣B∣ =
0 i

2 r
.

Similarity to the current-carrying wire

The geometry of the parallel-plate capacitor is remarkably similar to the 
geometry of the current-carrying wire.  The length ( H ) of the wire has been 
replaced by the distance ( d ) between the plates.  The current ( i ) flows 
between the plates and the electric field ( E ) stretches between the plates, 
while in the current-carrying wire the current flows from one end of the wire to 
the other and the electric field stretches the entire length of the wire.  In both 
cases, the magnetic field ( B ) circulates around the current.  The centroid of 
the magnetic field lies at the edge of the plates, while in the current-carrying wire 
the centroid of the magnetic field lies at the surface of the wire.

The similarity allows the preceding analysis to be used in it's entirety.

200



Analyzing physical problems A parallel-plate capacitor

022r3 d 2 i

d t2

E vol 
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0 r2 i 0 r2 Q

dV
dt

0d
d 2 i

d t2

V

0d
d i
d t

B

0 d i 0 d Q

d E
dt

0

d 2 i

d t2

E

0
d i
d t

B⋅d s

0 i 0 Q
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Diagram 153: The completed analysis for a parallel-plate capacitor
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Analyzing physical problems A parallel-plate capacitor

The inductance of a parallel-plate capacitor

The voltage ( V ) across an inductance ( L ) is given by the formula:

V = −L
di
d t .

From the completed analysis template for the parallel-plate capacitor, the 
voltage box contains:

V = 0 d
d i
d t .

Therefore the inductance is:

L = −0 d .
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Analyzing physical problems A sphere of charge

A sphere of charge

The template for electromagnetic analysis can be used to understand the 
behavior of an expanding sphere of charge.

The geometry of the sphere of charge

Start by examining the geometry of the sphere of charge.

Diagram 154: The geometry of the sphere of charge and associated fields
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Analyzing physical problems A sphere of charge

Suppose that all of the charge ( Q ) starts at the center of the sphere.  The 
charge will expand radially outward with spherical symmetry.  The expanding 
charge represents a current ( i ) that is flowing in a radially outward direction. 
Current flows in the direction of the electric field, so the electric field ( E ) is 
pointing radially outward.  The magnetic field ( B ) circulates around the current 
in a spherically-symmetric fashion.

The length of the electric path ( Ep ) is equal to the radius of the sphere at any 
given time:

Ep = r .

The charge is distributed over the surface of the sphere, so the area of the 
electric field ( Ea ) at any given time is:

Ea = 4r2 .
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Analyzing physical problems A sphere of charge

The electromagnetic volume and the magnetic path

The template shows:

E

vol 
= ∣d Bdt ∣ .

The template was constructed using the fact:

E = ∣E∣Ea .

The template also shows:

∣d Bdt ∣ =
∣E∣
B p

.

Combining these formulas yields:

B p =
vol 
Ea

.

Now, Ea  is the surface area of the sphere:

Ea = 4r2 .

If the electromagnetic volume vol   is the volume of the sphere:

vol  =
4
3
 r3

,

then the magnetic path ( B p ) is the volume over the surface area for a sphere:

B p =
vol 
Ea

=

4
3
r3

4 r2
=

r
3

.

Filling in the B.ds box

The template was derived for the case of free-space.  The B⋅d s  box contains:

B⋅d s = 0∣i∣ .

Filling in the template

The preceding facts can be used to fill in the template to complete the analysis.
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Analyzing physical problems A sphere of charge
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Diagram 155: The completed analysis for a sphere of charge
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Analyzing physical problems A sphere of charge

Potential and kinetic views

The classic formula:

E =
Q
0

,

and the formula from the template:

E = 0
di
dt   Ea 

are both talking about the same total electric flux.  Equating the two right-hand 

sides and applying the identity c2
=

1
00

 yields:

c2

Ea

=

di
dt
Q

.

If the charge ( Q ) is sinusoidal with a particular radian frequency (  ) this 
reduces to:

c2

Ea

=

di
dt
Q

= −
2 .

Standing waves and resonant frequencies

The electromagnetic volume is the product of three spatial-dimensions:

vol  =  Ea

Ep
  Ea  B p  .

Each of these spatial dimensions
Ea

E p
, Ea  and B p

can be considered to be a path (wave) length, and has an associated frequency. 
Each of these frequencies can give rise to resonant behavior and standing-wave 
phenomena along that spatial path.
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Analyzing physical problems A spherical capacitor

A spherical capacitor

A spherical capacitor can be analyzed using the electromagnetic template.

The geometry of a spherical capacitor

Start by examining the geometry of the spherical capacitor.

Diagram 156: The geometry of the spherical capacitor and associated fields

209

r

i

E

E

E

E

E

B

B

B



Analyzing physical problems A spherical capacitor

Similarity to the sphere of charge

The geometry of the spherical capacitor is remarkably similar to the sphere of 
charge.  The centroid of the charge is located at the center of the sphere.  In the 
case of the spherical capacitor the radius remains fixed, while for the sphere of 
charge the radius was increasing with time.  The electric field points radially 
outward, and is distributed over the surface of the sphere.

The spherical capacitor represents a “snapshot” of the expanding sphere of 
charge frozen in time.

Labeling the template

The geometric labels for the spatial-dimension lines are exactly the same for the 
spherical capacitor and the sphere of charge.

Filling in the template

The similarity of the geometry for the spherical capacitor and the sphere of 
charge allows the analysis to be used in it's entirety.
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Analyzing physical problems A spherical capacitor
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Diagram 157: The completed analysis for a spherical capacitor
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Analyzing physical problems A spherical capacitor

The capacitance

The classic formula for total electric flux is:

E =
Q
0

.

The template shows:

V =
E

 Ea

Ep

=

Q
0


4 r
=

Q
0

1
4 r .

The definition for capacitance ( C ) is:

CV = Q .

Therefore the capacitance of a sphere is:

C =
1

40 r .

This is in agreement with the classic derivation.

The E field box

The template also shows:

E =
E

Ea

=
E

4 r2
=

Q
0

1
40 r2 .

The density of electric field lines ( E ) is the total electric flux ( E ) divided 
over the surface area of the sphere ( 4r2 ).  This is in agreement with classic 
definitions.

The dB/dt box

Finally, the template shows:

∣d B
dt ∣ = Q

0

1
4
3
 r3

=
E

vol  .

The right-hand side of this equation is the total electric flux divided by the 
volume of the sphere.
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Analyzing physical problems Planck units

Planck units

The Planck system of units can be shown on the periodic table of mechanical 
elements.

Power

c5

G

Energy Action

ℏ

Moment of 
Inertia

Force

c4

G

Momentum Moment

Spring 
Constant

Impedance

c3

G

Mass

mp= ℏ c
G

Pressure Linear 
Density

c2

G

Areal 
Density

c
G

Volumetric 
Density

1
G

Diagram 158: Planck's units on the periodic table of mechanical elements
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Unit analysis of the gravitational constant

The force between two masses is given by the formula:

F = G
m1

r
m2

r
.

Convert this to a unit expression using the SI system of units:

N = G
kg
 m

kg
 m .

Recall that the newton should be written as:

N = kg
 m m s 

2

m
0 .

Substitute and solve for G :

G =
m s 

2

kg
 m 

.

Take the reciprocal of both sides:

1
G

=
kg
 m 
m s 

2 = kg
 m m s 

−2

.

This shows that 
1
G  is linear density divided by the square of velocity.
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Analyzing physical problems Planck units

Place this label on the periodic table of mechanical elements in the box two 
boxes down and to the right of the linear density box.  Remember that the grid 
extends infinitely in all directions.

Power

kg
 m m s 

3

m
0

Energy

kg
 m m s 

2

m
1

Action

kg
 m m s 

1

m
2

Moment of 
Inertia

kg
 m m s 

0

m
3 kg

 m m s 
−1

m
4 kg

 m m s 
−2

m
5

kg
 m m s 

3

m
−1

Force

kg
 m m s 

2

m
0

Momentum

kg
 m m s 

1

m
1

Moment

kg
 m m s 

0

m
2 kg

 m m s 
−1

m
3 kg

 m m s 
−2

m
4

kg
 m m s 

3

m
−2

Spring 
Constant
kg
 m m s 

2

m
−1

Impedance

kg
 m m s 

1

m
0

Mass

kg
 m m s 

0

m
1 kg

 m m s 
−1

m
2 kg

 m m s 
−2

m
3

kg
 m m s 

3

m
−3

Pressure

kg
 m m s 

2

m
−2 kg

 m m s 
1

m
−1

Linear 
Density

kg
 m m s 

0

m
0 kg

 m m s 
−1

m
1 kg

 m m s 
−2

m
2

kg
 m m s 

3

m
−4 kg

 m m s 
2

m
−3 kg

 m m s 
1

m
−2

Areal 
Density

kg
 m m s 

0

m
−1 kg

 m m s 
−1

m
0 kg

 m m s 
−2

m
1

kg
 m m s 

3

m
−5 kg

 m m s 
2

m
−4 kg

 m m s 
1

m
−3

Volumetric 
Density

kg
 m m s 

0

m
−2 kg

 m m s 
−1

m
−1

1
G

kg
 m m s 

−2

m
0

Diagram 159: 
1
G

 placed on the periodic table of mechanical elements
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Analyzing physical problems Planck units

Fill in the velocity-diagonal

Consider the velocity-diagonal to represent a speed of light ( c ) relationship. 
Label the boxes along the velocity-diagonal as:

cn

G
, n=0,1,2, .

Power

c5

G

Energy Action Moment of 
Inertia

Force

c4

G

Momentum Moment

Spring 
Constant

Impedance

c3

G

Mass

Pressure Linear 
Density

c2

G

Areal 
Density

c1

G

Volumetric 
Density

c0

G

Diagram 160: cn

G
 progression along the velocity-diagonal on the grid
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Analyzing physical problems Planck units

Planck's constant on the grid

Recall that Planck's constant has the units of action.  Place the reduced 
Planck's constant ( ℏ ) in the action box on the grid.

Power

c5

G

Energy Action

ℏ

Moment of 
Inertia

Force

c4

G

Momentum Moment

Spring 
Constant

Impedance

c3

G

Mass

Pressure Linear 
Density

c2

G

Areal 
Density

c
G

Volumetric 
Density

1
G

Diagram 161: Reduced Planck's constant placed on the grid
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Analyzing physical problems Planck units

Planck's length unit

The Planck's length unit is defined by the formula:

lp =  ℏG
c3 .

Simple rearrangement yields:

lp
2 =

ℏ

 c3

G  .

This can be interpreted on the periodic table of mechanical elements as the ratio 
of the action box over the impedance box.
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Analyzing physical problems Planck units

Power Energy Action

ℏ

Moment of 
Inertia

Force Momentum Moment

Spring 
Constant

Impedance

c3

G

Mass

Pressure Linear 
Density

Areal 
Density

Volumetric 
Density

Diagram 162: Planck's length unit interpreted on the grid

Each of the spatial-dimension lines can be interpreted as representing a 
Planck's length unit spatial relationship.
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Analyzing physical problems Planck units

Planck's time unit

The Planck's time unit is defined by the formula:

tp =  ℏG
c5 .

Simple rearrangement yields:

tp
2 =

ℏ

 c5

G  .

This can be interpreted on the periodic table of mechanical elements as the ratio 
of the action box over the power box.
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Analyzing physical problems Planck units

Power

c5

G

Energy Action

ℏ

Moment of 
Inertia

Force Momentum Moment

Spring 
Constant

Impedance Mass

Pressure Linear 
Density

Areal 
Density

Volumetric 
Density

Diagram 163: Planck's time unit interpreted on the grid

Each of the temporal-dimension lines can be interpreted as representing a 
Planck's time unit temporal relationship.
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Analyzing physical problems Planck units

Planck's mass unit

The Planck's mass unit is defined by the formula:

mp =  ℏ c
G

.

Simple rearrangement yields:

mp
2 = ℏ  c

G  = ℏ c   1
G  .

This can be interpreted on the periodic table of mechanical elements as the 

product of the action box ( ℏ ) times the box labeled 
c
G .  The action box is 

related to the mass box by a circulation relationship.  The mass box is related to 

the box labeled 
c
G  by an inverse circulation relationship.  Taking the product 

causes the circulation relationships to cancel.  This leaves only the square of the 
mass.

This can also be interpreted on the periodic table of mechanical elements as the 
product of the box above the box labeled energy ( ℏ c ) times the box labeled 

1
G .  Again the relationships cancel leaving only the square of the Planck's 

mass unit.

The square of the Planck's mass unit can be interpreted as the product of any 
two boxes that are arranged symmetrically around the mass box.
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Analyzing physical problems Planck units

Power Energy Action

ℏ

Moment of 
Inertia

Force Momentum Moment

Spring 
Constant

Impedance Mass

mp= ℏ c
G

Pressure Linear 
Density

Areal 
Density

c
G

Volumetric 
Density

Diagram 164: Planck's mass unit interpreted on the grid
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Analyzing physical problems Planck units

Canonical Planck's units

The periodic table of mechanical elements can be labeled with canonical units 
written using Planck's units.

Power

mp

lp 
lp

t p 
3

l p
0

1
G

c5 l p
0 t p

0

Energy

mp

lp 
lp

t p 
2

l p
1

1
G

c4 l p
1 t p

0

ℏ

mp

lp 
lp

t p 
1

l p
2

1
G

c3 l p
2 t p

0

Moment of Inertia

mp

lp 
lp

t p 
0

l p
3

1
G

c2 l p
3 t p

0

mp

lp 
lp

t p 
−1

l p
4

1
G

c1 l p
4 t p

0

mp

lp 
lp

t p 
−2

l p
5

1
G

c0 l p
5 t p

0

mp

lp 
lp

t p 
3

l p
−1

1
G

c4 l p
0 t p

−1

Force

mp

lp 
lp

t p 
2

l p
0

1
G

c4 l p
0 t p

0

Momentum
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lp

t p 
1

l p
1

1
G

c3 l p
1 t p

0

Moment

mp
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t p 
0

l p
2

1
G

c2 l p
2 t p

0

mp

lp 
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t p 
−1

l p
3

1
G

c1 l p
3 t p

0

mp

lp 
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t p 
−2

l p
4

1
G

c0 l p
4 t p

0
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lp

t p 
3

l p
−2

1
G
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0 t p

−2

Spring Constant
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2

l p
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1
G
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0 t p

−1

Impedance
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lp

t p 
1
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0

1
G
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0 t p

0
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G
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lp 
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0
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1

1
G
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1 t p

0
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lp

t p 
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l p
2

1
G
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2 t p

0
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t p 
−2

l p
3

1
G
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3 t p

0
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t p 
3

l p
−3

1
G

c2 l p
0 t p

−3

Pressure
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t p 
2

l p
−2

1
G
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0 t p

−2
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l p
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1
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Linear Density
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0
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2 t p
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3
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1
G
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0 t p
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−3

1
G
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0 t p

−3
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t p 
1

l p
−2

1
G
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0 t p

−2

Areal Density

mp
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lp

t p 
0

l p
−1

1
G
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0 t p

−1

mp

lp 
lp

t p 
−1

l p
0

1
G

c1 l p
0 t p

0

mp

lp 
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t p 
−2

l p
1

1
G

c0 l p
1 t p

0
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lp 
lp

t p 
3

l p
−5

1
G

c0 l p
0 t p

−5

mp

lp 
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t p 
2

l p
−4

1
G

c0 l p
0 t p

−4

mp

lp 
lp

t p 
1

l p
−3

1
G

c0 l p
0 t p

−3

Volumetric Density

mp

lp 
lp

t p 
0

l p
−2

1
G

c0 l p
0 t p

−2

mp

lp 
lp

t p 
−1

l p
−1

1
G

c0 l p
0 t p

−1

1
G

mp

lp 
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t p 
−2

l p
0

1
G

c0 l p
0 t p

0

Diagram 165: Canonical Planck's units on the periodic table of mechanical elements
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