Problem session 7

Problem 1. Let X be a Noetherian scheme. All locally free sheaves will be assumed of finite rank. The *Grothendieck group* $K^0(X)$ of vector bundles on X is the quotient of the free abelian group on the set of isomorphism classes of locally free sheaves on X, by the subgroup generated by relations of the form $[\mathcal{E}] - [\mathcal{E}'] - [\mathcal{E}'']$, where

$$0 \to \mathcal{E}' \to \mathcal{E} \to \mathcal{E}'' \to 0$$

is an exact sequence of locally free sheaves on X.

- 1) Show that $K^0(X)$ becomes a ring with respect to $[\mathcal{E}] \cdot [\mathcal{E}'] = [\mathcal{E} \otimes \mathcal{E}']$.
- 2) Show that if $f: Y \to X$ is a morphism of Noetherian schemes, then we get an induced ring homomorphism $f^*: K^0(X) \to K^0(Y)$ given by $[\mathcal{E}] \to [f^*(\mathcal{E})]$. Moreover, if $g: Z \to Y$ is another morphism, then $(f \circ g)^* = g^* \circ f^*$.
- 3) The determinant of a locally free sheaf \mathcal{E} of rank r is the sheaf $\det(\mathcal{E})$ associated to the presheaf taking the rth exterior power over the structure sheaf

$$U \to \wedge^r \mathcal{E}(U)$$

(with the obvious modification if \mathcal{E} does not have constant rank). Show that $\mathcal{E} \to \det(\mathcal{E})$ induces a group homomorphism $K^0(X) \to \operatorname{Pic}(X)$.

4) Show that if X is connected, then $[\mathcal{E}] \to \operatorname{rk}(\mathcal{E})$ gives a surjective ring homomorphism $K^0(X) \to \mathbb{Z}$.

Problem 2. Let X be a Noetherian scheme. The Grothendieck group $K_0(X)$ of coherent sheaves on X is the quotient of the free abelian group on isomorphism classes of coherent sheaves on X by the subgroup generated by relations of the form $[\mathcal{F}] - [\mathcal{F}'] - [\mathcal{F}'']$, where

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

is an exact sequence of coherent sheaves on X.

- i) Show that if k is a field and $X = \operatorname{Spec}(k)$, then $K^0(X) = K_0(X) \simeq \mathbb{Z}$.
- ii) Show that if k is a field and $X = \mathbf{A}_k^1$, then $K^0(X) = K_0(X) \simeq \mathbb{Z}$.
- iii) Show that $K_0(X)$ is a module over $K^0(X)$ with respect to the action $[\mathcal{E}] \cdot [\mathcal{F}] = [\mathcal{E} \otimes \mathcal{F}]$.
- iv) Suppose that X is projective (or more generally, proper) over a field k. Show that we get a morphisms of groups $K_0(X) \to \mathbb{Z}$ given by the Euler-Poincaré characteristic map

$$\mathcal{F} \to \chi(\mathcal{F}) = \sum_{p \ge 0} (-1)^p \dim_k H^p(X, \mathcal{F}).$$

v) Let $f: X \to Y$ be a projective morphism of Noetherian schemes. Show that we can define a group morphism $f_*: K_0(X) \to K_0(Y)$ by

$$f_*([\mathcal{F}]) = \sum_{p>0} (-1)^p [R^p f_*(\mathcal{F})]$$

(the same assertion holds for a proper morphism). If $Y = \operatorname{Spec}(k)$, then via the isomorphism in i), this is identified with the morphism defined in iv).

- v) It can be shown (using the Leray spectral sequence associated to the composition of two morphisms) that if $f: X \to Y$ and $g: Y \to Z$ are projective (more generally, proper) morphisms, then $(g \circ f)_* = g_* \circ f_*$. Prove this when either f or g is finite.
- vi) Show that if $f: X \to Y$ is a finite morphism, then we have the projection formula

$$f_*(f^*(\alpha) \cdot \beta) = \alpha \cdot f_*(\beta)$$

for every $\alpha \in K^0(Y)$ and $\beta \in K_0(X)$.

vii)* For every X we have a natural group morphism $K^0(X) \to K_0(X)$. Show that if X is nonsingular of finite dimension (this means that there is n such that all local rings of X are regular of dimension $\leq n$) and if there is an ample invertible sheaf on X, then the above morphism is an isomorphism.

Remark. Note that $K^0(X)$ behaves like a cohomology ring of X, while $K_0(X)$ behaves like an homology group. Indeed, we have a "cap-product" of $K^0(X)$ on $K_0(X)$ and both groups satisfy the usual variance properties for homology and cohomology. Moreover, note that in $K_0(X)$ we have a "fundamental class" $[\mathcal{O}_X]$ such that the isomorphism in 5) above can be interpreted as giving a version of "Poincaré duality". These K-groups play an important role in the statement of the Grothendieck-Riemann-Roch theorem.