Problem session 6

Problem 1. Let X be a Noetherian scheme. Show that if

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

is an exact sequence of \mathcal{O}_X -modules on X and if \mathcal{F}' and \mathcal{F}'' are (quasi)coherent, then so is \mathcal{F} .

Problem 2. Show that if $f: X \to Y$ is an affine morphism of Noetherian separated schemes, then for every quasicoherent sheaf \mathcal{F} on X and every $i \geq 0$ there is a canonical isomorphism

$$H^i(Y, f_*(\mathcal{F})) \simeq H^i(X, \mathcal{F}).$$

Problem 3. Let X be a Noetherian scheme.

- (1) Show that X is affine if and only if so is X_{red} .
- (2) Let X_1, \ldots, X_r be the irreducible components of X, with the reduced scheme structure. Show that X is affine if and only if every X_i is affine.

Problem 4. Let $X = \mathbb{A}_k^2$, where k is an algebraically closed field. If $U = X \setminus \{(0,0)\}$, use a suitable cover of U by affine open subsets to show that

$$H^1(U, \mathcal{O}_U) \simeq \bigoplus_{i,j<0} k \cdot x^i y^j.$$

In particular, it is infinite dimensional.

Problem 5. Let \mathcal{F} be a coherent sheaf on a Noetherian scheme X. Show that if the support of \mathcal{F} has dimension r, then $H^i(X,\mathcal{F})=0$ for every i>r.