Homework Set 6

Please, try to do all of the following problems. Solutions to five of them are due on Monday March 6.

Problem 1. Let X be a scheme. Show that the set of isomorphism classes of locally free rank one sheaves on X becomes an abelian group under the tensor product. It is called the *Picard group* of X and it is denoted by Pic(X).

Problem 2. The usual operations in multilinear algebra have a correspondent for \mathcal{O}_X -modules. Let us consider for example the case of symmetric powers. Suppose that (X, \mathcal{O}_X) is a ringed space and that \mathcal{F} an \mathcal{O}_X -module.

(1) The mth symmetric power $\operatorname{Sym}^m(\mathcal{F})$ is the sheaf associated to the presheaf

$$U \to \operatorname{Sym}_{\mathcal{O}_X(U)}^m(\mathcal{F}(U)).$$

Show that for every $x \in X$ there is a canonical isomorphism

$$\operatorname{Sym}^m(\mathcal{F})_x \simeq \operatorname{Sym}^m_{\mathcal{O}_{X,x}}(\mathcal{F}_x).$$

- (2) Show that $\operatorname{Sym}(\mathcal{F}) := \bigoplus_m \operatorname{Sym}^m(\mathcal{F} \text{ is a sheaf of } \mathcal{O}_X\text{-algebras}.$
- (3) Show that if X is a scheme and \mathcal{F} is quasi(coherent), then so is $\operatorname{Sym}^m \mathcal{F}$. Moreover, $\operatorname{Sym}(\mathcal{F})$ is a quasicoherent sheaf of \mathcal{O}_X -algebras.
- (4) Show that if $\mathcal{F} \simeq \mathcal{O}_X^n$, then $\operatorname{Sym}(\mathcal{F}) \simeq \mathcal{O}_X[T_1, \dots, T_n]$.

For more on this and similar constructions, see Exercise II.5.16 in Hartshorne.

Problem 3. This is Problem II.5.18 from Hartshorne (describing the equivalence between vector bundles and locally free sheaves).

Problem 4. Let X be a topological space. Show that if

$$0 \to \mathcal{F}' \xrightarrow{u} \mathcal{F} \xrightarrow{v} \mathcal{F}'' \to 0$$

is an exact sequence of sheaves of abelian groups on X such that \mathcal{F}' is flasque, then the following sequence is exact

$$0 \to \Gamma(X, \mathcal{F}') \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}'') \to 0.$$

(Hint: given $s'' \in \Gamma(X, \mathcal{F}'')$, consider the set

$$\{(U,s) \mid U \text{ open in } X, s \in \mathcal{F}(U), v(s) = s''|_U\}$$

ordered by $(U, s) \leq (V, t)$ if $U \subseteq V$ and $t|_{U} = s$. Show that this set has a maximal element and that if \mathcal{F}' is flasque and (V, t) is maximal, then V = X).

Problem 5. Let (X, \mathcal{O}_X) be a ringed space.

(1) If U is an open subset of X and $i: U \to X$ the inclusion, show that there is a sub- \mathcal{O}_X -module $i_!(\mathcal{O}_U)$ of \mathcal{O}_X such that $i_!(\mathcal{O}_U)(V) = \mathcal{O}_X(V)$ if $V \subseteq U$, and $i_!(\mathcal{O}_U)(V) = 0$, otherwise.

- (2) Show that if $x \in U$, then we have a canonical isomorphism $\mathcal{O}_{U,x} \simeq i_!(\mathcal{O}_U)_x$ and if $x \notin U$, then $i_!(\mathcal{O}_U)_x = 0$. The sheaf $i_!(\mathcal{O}_U)$ is called the *extension by zero* of \mathcal{O}_U .
- (3) Show that for every \mathcal{O}_X -module \mathcal{F} , we have a canonical isomorphism

$$\operatorname{Hom}_{\mathcal{O}_X}(i_!\mathcal{O}_U,\mathcal{F}) \simeq \mathcal{F}(U).$$

- (4) Deduce that if \mathcal{I} is an injective \mathcal{O}_X -module, then it is flasque.
- (5) Give an example of a scheme X and an open subset U such that $i_!\mathcal{O}_U$ is not quasicoherent.

Problem 6. This is Problem III 4.4 from Hartshorne (showing that for arbitrary sheaf of abelian groups \mathcal{F} on a topological space X, there is an isomorphism of $H^1(X, \mathcal{F})$ with the inductive limit of the groups $H^1(\mathcal{U}; \mathcal{F})$, with \mathcal{U} running over all open covers of X).

Problem 7. This is Problem III 4.5 from Hartshorne (showing that there is an isomorphism of abelian groups between Pic(X) and $H^1(X, \mathcal{O}_X^*)$.

Problem 8. This is Problem III 4.6 from Hartshorne (it relates the Picard group of a scheme X with that of a closed subscheme defined by a sheaf of ideals \mathcal{I} such that $\mathcal{I}^2 = 0$).