Homework Set 5

Please, try to do all of the following problems. Solutions to three of them are due on Monday February 20.

Problem 1. Let X be a Noetherian scheme and \mathcal{F} a coherent sheaf on X. Show that if \mathcal{G} is a quasicoherent (or coherent) sheaf on X, then so is $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$.

Problem 2. Let (X, \mathcal{O}_X) be a ringed space and \mathcal{E} a locally free sheaf on X of finite rank. The *dual* of \mathcal{E} is defined by $\mathcal{E}^{\vee} := \mathcal{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{O}_X)$.

- (i) Show that there is a canonical isomorphism $(\mathcal{E}^{\vee})^{\vee} \simeq \mathcal{E}$.
- (ii) For every \mathcal{O}_X -module \mathcal{F} there is a canonical isomorphism of \mathcal{O}_X -modules

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F}) \simeq \mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathcal{F}.$$

Problem 3. Recall that the *support* of a sheaf \mathcal{F} on a topological space X is the set

$$\operatorname{Supp}(\mathcal{F}) = \{ x \in X \mid \mathcal{F}_x \neq 0 \}.$$

Show that if M is a finitely generated module over a ring R, then the support of \widetilde{M} is $V(\operatorname{Ann}_R(M))$. Deduce that the support of a coherent sheaf on a Noetherian scheme X is closed.

Problem 4. Let \mathcal{F} be a coherent sheaf on a Noetherian scheme X.

- (i) Show that if for some $x \in X$ the stalk \mathcal{F}_x is a free $\mathcal{O}_{X,x}$ -module of rank r, then the same property holds for all points in a neighborhood of x.
- (ii) Show that \mathcal{F} is locally free of rank r if and only if for every $x \in X$, the stalk \mathcal{F}_x is a locally free module of rank r over $\mathcal{O}_{X,x}$.
- (iii) Show that \mathcal{F} is locally free of rank one on X if and only if there is a coherent sheaf \mathcal{G} such that $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G} \simeq \mathcal{O}_X$ (this is why rank one locally free sheaves are called *invertible*).

Problem 5. Let \mathcal{F} be a coherent sheaf on a Noetherian scheme X. Define the function $\phi \colon X \to \mathbb{N}$ by $\phi(x) = \dim_{k(x)} \mathcal{F}_x \otimes_{\mathcal{O}_x} k(x)$, where k(x) is the residue field of X at x. Use Nakayama's Lemma to prove the following:

- (i) For every m, the set $\{x \in X \mid \phi(x) \geq m\}$ is closed in X.
- (ii) If \mathcal{F} is locally free and X is connected, then ϕ is constant on X.
- (iii) Conversely, show that if X is reduced and ϕ is constant, then \mathcal{F} is locally free.