Homework Set 3

Please, try to do all of the following problems. Solutions to three of them are due on Monday February 6.

Problem 1. Let $f: X \to Y$ be a morphism of schemes, and $Z \hookrightarrow Y$ a closed subscheme. Show that there is a unique closed subscheme $f^{-1}(Z) \hookrightarrow X$ (called the *inverse image of* Z) that satisfies the following property: for every morphism of schemes $g: W \to X$, $f \circ g$ factors through Z (i.e. $f \circ g$ factors as $W \xrightarrow{h} Z \hookrightarrow Y$ for some h) if and only if g factors through $f^{-1}(Z)$. Show that the support of $f^{-1}(Z)$ is the inverse image of the support of Z.

Problem 2. Show that if

$$X' \longrightarrow X$$

$$\downarrow^{f'} \qquad \downarrow^{f}$$

$$Y' \longrightarrow Y$$

is a fiber product diagram and f is separated, then so is f'.

Problem 3. Let \mathcal{P} be a property of morphisms of schemes such that

- (a) A closed immersion has \mathcal{P} .
- (b) \mathcal{P} is stable under compositions.
- (c) \mathcal{P} is stable under base extensions.

Show that the following hold:

- (i) If $f: X \to Y$ and $g: Y \to Z$ are morphisms such that $g \circ f$ has \mathcal{P} and g is separated, then f has \mathcal{P} .
- (ii) If $f: X \to Y$ has \mathcal{P} , then $f_{\text{red}}: X_{\text{red}} \to Y_{\text{red}}$ has \mathcal{P} . This applies if \mathcal{P} is one of the following properties: closed immersion, finite, affine, finite type, separated, proper.

Problem 4. Let $f: X \to Y$ be a quasicompact morphism of schemes. Show that if f(X) denotes the closed subscheme of Y that is the scheme-theoretic image of f, then for every affine open subset V of Y, the ideal corresponding to the closed subscheme $V \cap f(X)$ of V is $\ker(\mathcal{O}_Y(V) \to \mathcal{O}_X(f^{-1}(V))$.

Problem 5. A morphism $f: X \to Y$ is a locally closed immersion if it factors as $X \xrightarrow{g} U \xrightarrow{h} Y$, where g is a closed immersion and h is an open immersion.

- (i) Show that a composition $X \xrightarrow{i} W \xrightarrow{j} Y$, with i an open immersion and j a closed immersion is a locally closed immersion.
- (ii) Deduce that the class of locally closed immersions is closed under compositions.