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CHAPTER 1

Affine and quasi-affine varieties

The main goal in this chapter is to establish a correspondence between various
geometric notions and algebraic ones. Some references for this chapter are | ,
Chapter IJ, | , Chapter I], and | , Chapter IJ.

1.1. Algebraic subsets and ideals

Let k be a fixed algebraically closed field. We do not make any assumption on
the characteristic. Important examples are C, Q, and F,, for a prime integer p.

For a positive integer n we denote by A™ the n-dimensional affine space. For
now, this is just a set, namely k™. We assume that n is fixed and denote the
polynomial ring k[x1,...,x,] by R. Note that if f € R and u = (uq,...,u,), we
may evaluate f at u to get f(u) € k. This gives a surjective ring homomorphism

kElxy,...,zn] =k, f = flu),

whose kernel is the (maximal) ideal (z1 — u1,..., 2, — Up).

Our goal in this section is to establish a correspondence between certain subsets
of A™ (those defined by polynomial equations) and ideals in R (more precisely,
radical ideals). A large part of this correspondence is tautological. The non-trivial
input will be provided by Hilbert’s Nullstellensatz, which we will be prove in the
next section.

DEFINITION 1.1.1. Given a subset S C R, the zero-locus of S (also called the
subset of A™ defined by S) is the set

V(S):={ue A" | f(u) =0 for all f e S}.
An algebraic subset of A™ is a subset of the form V' (S) for some subset S of R.

EXAMPLE 1.1.2. Any linear subspace of k" is an algebraic subset; in fact, it can
be written as V'(S), where S is a finite set of linear polynomials (that is, polynomials
of the form Y ! | a;x;). More generally, any translation of a linear subspace (that
is, an affine subspace) of k™ is an algebraic subset.

EXAMPLE 1.1.3. A union of two lines in A? is an algebraic subset (see Propo-
sition 1.1.6). For example, the union of the two coordinate axes can be written as
V(Ill’g).

EXAMPLE 1.1.4. Another example of an algebraic subset of A? is the hyperbola
{u = (u1,us) € A% | uguy = 1}.

REMARK 1.1.5. Recall that if S is a subset of R and [ is the ideal of R generated
by S, then we can write

I={g1fi+...+gmfm|m=>0,f1,....fm €S,91,...,9m € R}.

1



2 1. AFFINE AND QUASI-AFFINE VARIETIES

It is then easy to see that V(S) = V(I). In particular, every algebraic subset of
A" can be written as V(I) for some ideal I in R.

We collect in the following proposition the basic properties of taking the zero
locus.

PropPOSITION 1.1.6. The following hold:

1) V(R) = 0; in particular, the empty set is an algebraic subset.
2) V(0) = A™: in particular, A™ is an algebraic subset.

3) If I and J are ideals in R with I C J, then V(J) C V(I).

4) If (In)a is a family of ideals in R, we have

V)=V <U1a> =V (ZL) .
5) If I and J are ideals in R, then
VIOHuVv)=vInJ)=V({I-J).

PROOF. The assertions in 1)-4) are trivial to check. Note also that the inclu-
sions

VUV cvInJd)CcV({-J)
follow directly from 3). In order to show that V(I -.J) C V(I)UV(J), we argue
by contradiction: suppose that v € V(I -J)~ (V(I)UV(J)). We can thus find
f € I such that f(u) # 0 and g € J such that g(u) # 0. In this case fg € I -J and
(f9)(u) = f(u)g(u) # 0, a contradiction with the fact that k is a domain. O

An important consequence of the assertions in the above proposition is that
the algebraic subsets of A™ form the closed subsets for a topology of A™. This is
the Zariski topology on A™.

The Zariski topology provides a convenient framework for dealing with algebraic
subsets of A™. However, we will see that it has a lot less subsets than one is used
to from the case of the usual Euclidean space (over R or over C).

We now define a map in the other direction, from subsets of A™ to ideals in R.
Given a subset W of A", we put

IW):={fe€eR| f(u)=0for all u e W}.

It is straightforward to see that this is an ideal in R. In fact, it is a radical ideal:
indeed, since k is a reduced ring, if f(u)? = 0 for some positive integer ¢, then
f(u) = 0. We collect in the next proposition some easy properties of this definition.

PropPOSITION 1.1.7. The following hold:
1) I(0) = R.
2) If Wa)a is a family of subsets of A™, then I (U, Wa) =, I(Wa).
3) If Wy C Wy, then I(W3) C I(W7).

PROOF. All assertions follow immediately from definition. O

lAnideal I'in a ring R is radical if whenever f9 € I for some f € R and some positive integer

q, we have f € I. A related concept is that of a reduced ring: this is a ring such that whenever

4 = 0 for some f € R and some positive integer ¢, we have f = 0. Note that an ideal I is radical
if and only if R/I is a reduced ring.
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We have thus set up two maps between subsets of A™ and ideals in R and we
are interested in the two compositions. Understanding one of these compositions is
tautological, as follows:

ProrosSITION 1.1.8. For every subset Z of A™, the set V(I(Z)) s equal to
the closure Z of Z, with respect to the Zariski topology. In particular, if Z is an
algebraic subset of A™, then V(I1(Z)) = Z.

PRrROOF. We clearly have
Z C V(I (Z )),
and since the right-hand side is closed by definition, we have
ZC V(I (Z ))

In order to prove the reverse inclusion, recall that by definition of the closure of a

subset, we have
Z=w,
w

where W runs over all algebraic subsets of A™ that contain Z. Every such W can
be written as W = V(J), for some ideal J in R. Note that we have J C I(W),
while the inclusion Z C W gives I(W) C I(Z). We thus have J C I(Z), hence
V(I(Z)) CV(J)=W. Since V(I(Z)) is contained in every such W, we conclude
that
V(1(2)) C Z.
O

The interesting statement here concerns the other composition. Recall that if
J is an ideal in a ring R, then the set

{feR|f?eJ for some q>1}

is a radical ideal; in fact, it is the smallest radical ideal containing J, denoted

rad(J).
THEOREM 1.1.9. (Hilbert’s Nullstellensatz) For every ideal J in R, we have
I(V(J)) =rad(J).

The inclusion J C I(V(J)) is trivial and since the right-hand side is a radical
ideal, we obtain the inclusion

rad(J) C I(V(J)).

This reverse inclusion is the subtle one and this is where we use the hypothesis
that & is algebraically closed (note that this did not play any role so far). We will
prove this in the next section, after some preparations. Assuming this, we obtain
the following conclusion.

COROLLARY 1.1.10. The two maps I(—) and V(=) between the algebraic subsets
of A™ and the radical ideals in k[x1, ..., x,] are inverse, order-reversing bijections.

REMARK 1.1.11. It follows from Corollary 1.1.10 that via the above bijection,
the minimal nonempty algebraic subsets correspond to the maximal ideals in R.
It is clear that the minimal nonempty algebraic subsets are precisely the points
in A™. On the other hand, given a = (ay,...,a,) € A™, the ideal I(u) contains
the maximal ideal (1 — ai,..., 2, — ay,), hence the two ideals are equal. We thus
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deduce that every maximal ideal in R is of the form (z; — aq,...,2, — a,) for
some aq,...,a, € k. We will see in the next section that the general statement of
Theorem 1.1.9 is proved by reduction to this special case.

EXERCISE 1.1.12. Show that the closed subsets of A! are A! and its finite
subsets.

EXERCISE 1.1.13. Show that if W7 and W, are algebraic subsets of A™, then
I(Wl n WQ) = rad(I(Wl) + I(Wg))

EXERCISE 1.1.14. For m and n > 1, let us identify A™" with the set of all
matrices B € My, »(k). Show that the set

M (k) :={B € M,, (k) | tk(B) < r}

m,n

is a closed algebraic subset of My, (k).

EXERCISE 1.1.15. Show that the following subset of A3
Wy = {(t,t%, %) | t € k}
is a closed algebraic subset, and describe I(W7). Can you do the same for
Wy = {(£2,63,t*) | t € k}?

How about
W3 = {(t33t4at5) ‘ te k}?

EXERCISE 1.1.16. For an arbitrary commutative ring R, one can define the
mazimal spectrum MaxSpec(R) of R, as follows. As a set, this is the set of all
maximal ideals in R. For every ideal J in R, we put

V(J) := {m € MaxSpec(R) | J C m}
and for every subset S C MaxSpec(R), we define

1(S) = [ m.
mes
i) Show that MaxSpec(R) has a structure of topological space in which the

closed subsets are the subsets of the form V(I), for an ideal I in R.

ii) Show that for every subset S of MaxSpec(R), we have V (I(S)) = S.

iii) Show that if R is an algebra of finite type over an algebraically closed field
k, then for every ideal J in S, we have I(V(J)) = rad(J).

iv) Show that if X C A™ is a closed subset, then we have a homeomorphism
X ~ MaxSpec(R/J), where R = k[x1,...,z,] and J = I(X).

1.2. Noether normalization and Hilbert’s Nullstellensatz

The proof of Hilbert’s Nullstellensatz is based on the following result, known as
Noether’s normalization lemma. As we will see, this has many other applications.

Before stating the result, we recall that a ring homomorphism A — B is finite
if B is finitely generated as an A-module. It is straightforward to check that a
composition of two finite homomorphisms is again finite. Moreover, if A — B
is a finite homomorphism, then for every homomorphism A — C, the induced
homomorphism C' = A® 4C — B® 4 C is finite. For details about finite morphisms
and the connection with integral morphisms, see Appendix A. One property that
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we will need is that if A < B is an injective finite homomorphism, with A and B
domains, then A is a field if and only if B is a field (see Proposition A.2.1).

REMARK 1.2.1. If A — B is an injective, finite homomorphism between two
domains, and K = Frac(A) and L = Frac(B), then the induced injective homo-
morphism K < L is finite. Indeed, by tensoring the inclusion A — B with K, we
obtain a finite, injective homomorphism K < K ® 4 B between domains. Note that
K ® 4 B is a ring of fractions of B, hence the canonical homomorphism K ® 4 B — L
is injective. Since K is a field, it follows that K ® 4 B is a field, and thus K® 4 B = L.
In particular, we see that [L : K] < oo.

THEOREM 1.2.2. Let k be a field and A a finitely generated k-algebra which
is an integral domain, with fraction field K. If trdeg(K/k) = n, then there is a
k-subalgebra B of A, such that
1) B is isomorphic as a k-algebra to klxy,. .., z,], and
2) The inclusion B < A is finite.

ProOOF. We only give the proof when k is infinite. This will be enough for our
purpose, since in all our applications the field k£ will always contain an algebraically
closed (hence infinite) field. For a proof in the general case, see | ]

The fact that k is infinite will be used via the following property: for every
nonzero polynomial f € k[xy,...,x,], there is A € k" such that f(\) # 0. When
r = 1, this follows from the fact that a nonzero polynomial in one variable has
at most as many roots as its degree. The general case then follows by an easy
induction on r.

Let y1,...,ym € A be generators of A as a k-algebra. In particular, we have
K = k(y1,--.,Ym), hence m > n. We will show, by induction on m, that we can
find a change of variable of the form

Yi = Zbi’jzj, for 1 < 1 < m, with det(bi’j) 75 0,
j=1

(so that we have A = k[z1,...,2y]) such that the inclusion k[zq,...,2,] — A is
finite. Note that this is enough: if B = k[z1,...,zy,], then it follows from Re-
mark 1.2.1 that the induced field extension Frac(B) — K is finite. Therefore we
have
n = trdeg(K/k) = trdeg(k(z1, .. .,2n)/k),

hence z1,..., 2z, are algebraically independent.

If m = n, there is nothing to prove. Suppose now that m > n, hence y1, ..., ym
are algebraically dependent over k. Therefore there is a nonzero polynomial f €
klx1,...,Tm] such that f(y1,...,ym) = 0. Suppose now that we write

Y = Zb@ij, with b@j € k, det(bm-) 7é 0.

j=1
Let d = deg(f) and let us write

f=fa+ fir+...+ fo, with deg(fi)=1i or f;=0.
By assumption, we have f; # 0. If we write

f= Y carft gy

ozEZ’E"0
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then we have

0= f(yh v 7ym) = an(bl,lzl +...+ bl,rnzrn)w1 T (bm,lzl +...+ bm,mzm)am
@

= fa(b1,m, - s bm,m)zfn + lower degree terms in z,,.
Since we assume that £ is infinite, we may choose the b; ; such that
det(bi ;) - fa(bi,ms- -+, bm,m) # 0.
In this case, we see that after this linear change of variable, the inclusion

k[ylv"'aymfl] — k[yl,vym]

is finite, since the right-hand side is generated as a module over the left-hand side
by 1,Ym,- -,y . Note that by Remark 1.2.1, the induced extension

ki, oy Ym-1) = k(y1, .-, Ym)

is finite, hence trdeg(k(y1,...,¥m—1)/k) = n. By induction, we can do a linear
change of variable in y1,...,ym—1, after which the inclusion

klyi, - yn] = Elyrs - ym—i]
is finite, in which case the composition
klyi, - yn] = Kyt - ym—1] = klyn, - yml
is finite. This completes the proof of the theorem. ([
We will use Theorem 1.2.2 to prove Hilbert’s Nullstellensatz in several steps.

COROLLARY 1.2.3. If k is a field, A is a finitely generated k-algebra, and K =
A/m, where m is a mazimal ideal in A, then K is a finite extension of k.

PRrOOF. Note that K is a field which is finitely generated as a k-algebra. It
follows from the theorem that if n = trdeg(K/k), then there is a finite injective
homomorphism

k;[xl,...,xn] — K.
Since K is a field, it follows that k[z1,...,2z,] is a field, hence n = 0. Therefore
K /k is finite. O
COROLLARY 1.2.4. (Hilbert’s Nullstellensatz, weak version) If k is an alge-
braically closed field, then every mazimal ideal m in R = k[z1,...,x,] is of the
form (x1 —aq,...,x, — ay), for some ay,...,a, € k.

PrOOF. It follows from Corollary 1.2.3 that if K = R/m, the field extension
K /k is finite. Since k is algebraically closed, the canonical homomorphism k& — K
is an isomorphism. In particular, for every ¢ there is a; € R such that z; — a; € m.
Therefore we have (1 — aq,...,2, — a,) € m and since both ideals are maximal,
they must be equal. (I

We can now prove Hilbert’s Nullstellensatz, in its strong form.

PROOF OF THEOREM 1.1.9. It follows from Corollary 1.2.4 that given any
ideal a of R, different from R, the zero-locus V(a) of a is nonempty. Indeed,
since a # R, there is a maximal ideal m containing a. By Corollary 1.2.4, we have

m=(x; —ay,...,T, —a,) forsome ai,...,a, €k.
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In particular, we see that a = (a1,...,a,) € V(m) C V(J). We will use this fact in
the polynomial ring R[y] = k[z1, ..., x,,y]; this is Rabinovich’s trick.
It is clear that for every ideal J in R we have the inclusion

rad(J) C I(V(J)).

In order to prove the reverse inclusion, suppose that f € I (V(J )) Consider now
the ideal a in R[y] generated by J and by 1 — fy. If a # R[y], we have seen that
there is (ay,...,a,,b) € V(a). By definition of a, this means that g(a1,...,a,) =0
for all g € J (that is, (a1,...,ay,) € V(J)) and 1 = f(aq,...,a,)g(b). In particular,
we have f(ai,...,a,) # 0, contradicting the fact that f € I(V(J)).

We thus conclude that a = R. Therefore we can find f1,...,f, € J and
J1s-- -5 gr+1 € R[y] such that

(1.2.1) Zfl 2)gi(w,y) + (1 = f(@)y)grsa (z,y) = L.

We now consider the R-algebra homomorphism R[y| — R that maps y to . The
relation (1.2.1) gives

Zfz 2)gi(2,1/f(x)) =

and after clearing the denomlnators (recall that R is a domain), we see that there is
a positive integer N such that fv € (f1,..., f.), hence f € rad(.J). This completes
the proof of the theorem. O

1.3. The topology on the affine space

In this section we begin making use of the fact that the ring k[zq,...,2,] is
Noetherian. Recall that a (commutative) ring R is Noetherian if the following
equivalent conditions hold:

i) Every ideal in R is finitely generated.
ii) There is no infinite strictly increasing sequence of ideals of R.
iii) Every nonempty family of ideals of R has a maximal element

For this and other basic facts about Noetherian rings and modules, see Appen-
dix B. A basic result in commutative algebra is Hilbert’s basis theorem: if R is a
Noetherian ring, then R[z] is Noetherian (see Theorem B.2.1). In particular, since
a field k is trivially Noetherian, a recursive application of the theorem implies that
every polynomial algebra k[z1,...,z,] is Noetherian.

As in the previous sections, we fix an algebraically closed field k£ and a positive
integer n. The fact that the ring R = k[z1, ..., x,] is Noetherian has two immediate
consequences. First, since every ideal is finitely generated, it follows that for every
algebraic subset W C A™, there are finitely many polynomials fi, ..., f, such that
W =V(f1,..., fr). Second, we see via the correspondence in Corollary 1.1.10 that
there is no infinite strictly decreasing sequence of closed subsets in A™.

DEFINITION 1.3.1. A topological space X is Noetherian if there is no infinite
strictly decreasing sequence of closed subsets in X.

We have thus seen that with the Zariski topology A™ is a Noetherian topological
space. This implies that every subspace of A™ is Noetherian, by the following
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LEMMA 1.3.2. If X is a Noetherian topological space and'Y is a subspace of X,
then Y is Noetherian.

PROOF. If we have a infinite strictly decreasing sequence of closed subsets of

Y
Fi2F2...,
consider the corresponding sequence of closures in X:
Fi2FD....
Since Fj is closed in Y, we have F; NY = F; for all i, which implies that F; # F;,,
for every i. This contradicts the fact that X is Noetherian. O

REMARK 1.3.3. Note that every Noetherian topological space is quasi-compact:
this follows from the fact that there is no infinite strictly increasing sequence of open
subsets.

EXAMPLE 1.3.4. The real line R, with the usual Euclidean topology, is not
Noetherian.

We now introduce an important notion.

DEFINITION 1.3.5. A topological space X is irreducible if it is nonempty and
whenever we write X = X; U X5, with both X; and X5 closed, we have X; = X
or Xo = X. We say that X is reducible when it is not irreducible.

REMARK 1.3.6. By passing to complements, we see that a topological space is
irreducible if and only if it is nonempty and for every two nonempty open subsets
U and V, the intersection U NV is nonempty (equivalently, every nonempty open
subset of X is dense in X).

REMARKS 1.3.7. 1) fY is a subset of X (with the subspace topology),
the closed subsets of Y are those of the form FFNY, where F' is a closed
subset of X. It follows that Y is irreducible if and only if it is nonempty
and whenever Y C Y7 UY5, with Y7 and Y5 closed in X, we have Y C V)
orY CY5.

2) If Y is an irreducible subset of X and if Y C Y1 U...UY,., with all Y; closed
in X, then there is ¢ such that Y C Y;. This follows easily by induction
on 7.

3) If Y and F are subsets of X, with F' closed, then Y C F' if and only if
Y C F. It then follows from the description in 1) that Y is irreducible if
and only if Y is irreducible.

4) If X is irreducible and U is a nonempty open subset of X, then it follows
from Remark 1.3.6 that U is dense in X. Since X is irreducible, it follows
from 3) that U is irreducible.

In the case of closed subsets of A", the following proposition describes irre-
ducibility in terms of the corresponding ideal.

ProrosITION 1.3.8. If W C A™ is a closed subset, then W is irreducible if and
only if I(W) is a prime ideal in R.

PrOOF. Note first that W # ) if and only if (W) # R. Suppose first that W
is irreducible and let f, g € R be such that fg € I(W). We can then write

W=WnV())u(WnV(g)
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Since both subsets on the right-hand side are closed and W is irreducible, it follows
that we have either W = W NV (f) (in which case f € I(W)) or W = W N V(g)
(in which case g € I(W)). Therefore I(W) is a prime ideal.

Conversely, suppose that I(W) is prime and we write W = W; U Ws, with W
and Wy closed. Arguing by contradiction, suppose that W # W, for ¢ = 1,2, in
which case I(W) C I(W;), hence we can find f; € I(W;) ~ I(W). On the other
hand, we have f1fo € I(Wy) N I(W2) = I(W), contradicting the fact that I(W) is
prime. ([

EXAMPLE 1.3.9. Since R is a domain, it follows from the proposition that A™
is irreducible.

ExampLE 1.3.10. If L C A™ is a linear subspace, then L is irreducible. Indeed,
after a linear change of variables, we have R = k[y1,...,yn] such that I(L) =
(y1,...,yr) for some r > 1, and this is clearly a prime ideal in R.

ExAMPLE 1.3.11. The union of two lines in A2 is a reducible closed subset.

PROPOSITION 1.3.12. Let X be a Noetherian topological space. Given a closed,
nonempty subset Y, there are finitely many irreducible closed subsets Yi,...,Y,
such that

Y=YU...UY,.

We may clearly assume that the decomposition is minimal, in the sense thatY; € Y
fori # j. In this case Y1, ...,Y, are unique up to reordering.

The closed subsets Y7, ..., Y, in the proposition are the irreducible components
of Y and the decomposition in the proposition is the irreducible decomposition of
Y.

PROOF OF PROPOSITION 1.3.12. Suppose first that there are nonempty closed
subsets Y of X that do not have such a decomposition. Since X is Noetherian, we
may choose a minimal such Y. In particular, Y is not irreducible, hence we may
write Y = Y7 U Y5, with Y; and Y5 closed and strictly contained in Y. Note that
Y1 and Y5 are nonempty, hence by the minimality of Y, we may write both Y; and
Y5 as finite unions of irreducible subsets. In this case, Y is also a finite union of
irreducible subsets, a contradiction.

Suppose now that we have two minimal decompositions

Y=YU...UY, =Y{U...UY,,

with the Y; and Yj' irreducible. For every ¢ < r, we get an induced decomposition

S
Y= Jiny)),
j=1
with the Y; N Yj’ closed for all j. Since Y; is irreducible, it follows that there is
j <ssuchthat Y; =Y; N Yj’ C Yj’. Arguing in the same way, we see that there is
¢ < r such that Yj’ C Yy. In particular, we have Y; C Y, hence by the minimality
assumption, we have i = £, and therefore Y; = Yj’. By iterating this argument and
by reversing the roles of the Y, and the Yé, we see that » = s and the Y, and the
Yé are the same up to relabeling. (I
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REMARK 1.3.13. It is clear that if X is a Noetherian topological space, W is a
closed subset of X, and Z is a closed subset of W, then the irreducible decomposition
of Z is the same whether considered in W or in X.

Recall that by a theorem due to Gauss, if R is a UFD, then the polynomial ring
R[z] is a UFD. A repeated application of this result gives that every polynomial
ring k[x1,...,2,] is a UFD. In particular, a nonzero polynomial f € k[z1,...,z,]
is irreducible if and only if the ideal (f) is prime.

ExaMPLE 1.3.14. Given a polynomial f € k[x1,...,z,] \ k, the subset V(f)
is irreducible if and only if f is a power of an irreducible polynomial. In fact, if
the irreducible decomposition of f is f = cf{"* .-+ f/r, for some ¢ € k*, then the
irreducible components of V(f) are V(f1),...,V(f).

EXERCISE 1.3.15. Let Y be the algebraic subset of A3 defined by the two
polynomials 22 — yz and zz — 2. Show that Y is a union of three irreducible
components. Describe them and find the corresponding prime ideals.

EXERCISE 1.3.16. Show that if X and Y are topological spaces, with X irre-
ducible, and f: X — Y is a continuous map, then f(X) is irreducible.

EXERCISE 1.3.17. Let X be a topological space, and consider a finite open
cover
X=U1U...UU,,
where each U; is nonempty. Show that X is irreducible if and only if the following
hold:
i) Each U; is irreducible.
ii) For every ¢ and j, we have U; N U; # 0.

EXERCISE 1.3.18. Let X be a Noetherian topological space and Y a subset
X. Show that if Y = Y; U...UY, is the irreducible decomposition of Y, then
Y =Y, U...UY, is the irreducible decomposition of Y.

EXERCISE 1.3.19. Let X be a Noetherian topological space and Y a nonempty
closed subset of X, with irreducible decomposition

Y=Y,U...UY,..

Show that if U is an open subset of X, then the irreducible decomposition of U NY
is given by
uvny = |J @wny).
3, UNY;#0
We end these general topological considerations by discussing the notion of
locally closed subsets.

DEFINITION 1.3.20. Let X be a topological space. A subset V of X is locally
closed if for every x € V, there is an open neighborhood U, of x in X such that
U, NV is closed in U,,.

REMARK 1.3.21. One should contrast the above definition with the local char-
acterization of closed subsets: V is closed in X if and only if for every x € X, there
is an open neighborhood U, of z in X such that U, NV is closed in U,,.

ProproOSITION 1.3.22. If V is a subset of a topological space X, then the follow-
ing are equivalent:
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i) V is a locally closed subset.
ii) V is open in V.
iii) We can write V.=UNF, with U open and F closed.

PROOF. If V is locally closed, let us choose for every z € V' an open neighbor-
hood U, of = as in the definition. In this case V is closed in U by Remark 1.3.21,
hence V.= U N F for some F' closed in X, proving i)=-iii). In order to see iii)=ii),
note that if if V = UNF, with U open and F closed, then V C F, hence V. =UNV
is open in V. Finally, the implication ii)=>i) is clear: if V. = W NV for some W
open in X, then for every = € V, if we take U, = W, we have U, NV closed in
Us,. O

Let X C A™ be a closed subset. We always consider on X the subspace
topology. We now introduce a basis of open subsets on X.

DEFINITION 1.3.23. A principal affine open subset of X is an open subset of
the form

Dx(f) = X\V(f) ={xe X[ f(z) # 0},

for some f € k[z1,..., 2y

Note that Dx (f) is nonempty if and only if f ¢ I(X). It is clear that Dx(f)N
Dx(g9) = Dx(fg). Every open subset of X can be written as X ~\ V(J) for some
ideal J in R. Since J is finitely generated, we can write J = (f1,..., f), in which
case

X~ V(J) = DX(fl) U...u DX(fr)-

Therefore every open subset of X is a finite union of principal affine open subsets of
X. We thus see that the principal affine open subsets give a basis for the topology
of X.

EXERCISE 1.3.24. Let X be a topological space and Y a locally closed subset
of X. Show that a subset Z of Y is locally closed in X if and only if it is locally
closed in Y.

1.4. Regular functions and morphisms

DEFINITION 1.4.1. An affine algebraic variety (or affine variety, for short) is a
a closed subset of some affine space A™. A quasi-affine variety is a locally closed
subset of some affine space A™, or equivalently, an open subset of an affine algebraic
variety. A quasi-affine variety is always endowed with the subspace topology.

The above is only a temporary definition: a (quasi)affine variety is not just
a topological space, but it comes with more information that distinguishes which
maps between such objects are allowed. We will later formalize this as a ringed
space. We now proceed describing the “allowable” maps.

DEFINITION 1.4.2. Let Y C A™ be a locally closed subset. A regular function
on Y is a map ¢: Y — k that can locally be given by a quotient of polynomial
functions, that is, for every y € Y, there is an open neighborhood U, of y in Y,
and polynomials f, g € k[z1,...,x,] such that

g(u) #0 and o¢(u) = Q) for all weU,.

g(u)
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We write O(Y) for the set of regular functions on Y. If Y is an affine variety, then
O(Y) is also called the coordinate ring of Y. By convention, we put O(Y) = 0 if
Y =0.

REMARK 1.4.3. Tt is easy to see that O(Y') is a subalgebra of the k-algebra of
functions Y — k, with respect to point-wise operations. For example, suppose that
¢1 and ¢4 are regular functions, y € Y and U; and U, are open neighborhoods of

y, and fi1, f2,91,92 € k[z1, ..., x,] are such that for all u € U, we have
fi(w) :
gi(u) =0 and ¢;(u) = for i=1,2.
(u) (u) 9i(u)
If we take U = Uy NUz and f = fig2 + f291, 9 = 9192, then for all u € U, we have
f(u)
gu) #0 and (@1 + ¢2)(u) = —/.
(u) # 6+ 62)() = 75

REMARK 1.4.4. It follows from definition that if ¢: Y — k is a regular function
such that ¢(y) # 0 for every y € Y, then the function % is a regular function, too.

ExampPLE 1.4.5. If X is a locally closed subset of A”, then the projection m;
on the i*" component, given by

7Ti(a1>---7an) =

induces a regular function X — k. Indeed, if f; = x; € k[z1,...,2,], then m;(a) =
fi(a) for all a € X.

When Y is closed in A™, one can describe more precisely O(Y). It follows by
definition that we have a k-algebra homomorphism

Elxi,...,zn] = O)

that maps a polynomial f to the function (u = f (u)) By definition, the kernel of
this map is the ideal I(Y"). With this notation, we have the following

PROPOSITION 1.4.6. The induced k-algebra homomorphism
Elxi,...,2,]/I1(Y) = O)
is an tsomorphism.

A similar description holds for principal affine open subsets of affine varieties.
Suppose that Y is closed in A™ and U = Dy (h), for some h € k[zq,...,x,]. We
have a k-algebra homomorphism

O: k[z1,...,x)n — OU),

that maps him to the map (u — f(u)/h(u)™). With this notation, we have the

following generalization of the previous proposition.

PROPOSITION 1.4.7. The above k-algebra homomorphism induces an isomor-
phism
klz1, ..o xnn/I(Y ) — O(Dy (h)).

Of course it is enough to prove this more general version.
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PROOF OF PROPOSITION 1.4.7. The kernel of ® consists of those fractions him

such that {ngg = 0 for every u € Dy (h). It is clear that this condition is satisfied if
f € I(Y). Conversely, if this condition holds, then f(u)h(u) = 0 for every u € Y.
Therefore fh € 1(Y'), hence h{” = % € I(Y),. This shows that ® is injective.
We now show that ® is surjective. Consider ¢ € O(Dy(h)). Using the hy-
pothesis and the fact that Dy (h) is quasi-compact (being a Noetherian topological

space), we can write

Dy(h):Vlu...UVT
and we have f;, g; € k[x1,...,x,] for 1 <4 < rsuch that g;(u) # 0 and ¢(u) = filw)

 gi(u)
for all w € V; and all 7. Since the principal affine open subsets form a basis
for the topology on Y, we may assume that V; = Dy (h;) for all i, for some

h; € klx1,...,2,] N I(Y). Since g;(u) # 0 for all u € Y \ V(h;), it follows from
Theorem 1.1.9 that

h; € rad (I(Y) + (g1)).

After possibly replacing each h; by a suitable power, and then by a suitable element
with the same class mod I(Y), we may and will assume that h; € (g;). Finally,
after multiplying both f; and g; by a suitable polynomial, we may assume that
gi = hz for all i.

We know that on Dy (g;) N Dy (g;) = Dy (¢:9;) we have

filw) _ i)
gi(u)  g;(w)
Applying the injectivity statement for Dy (g;g;), we conclude that

g = gj in Elxy,.. 2algg, /1Y )gg,-
Therefore there is a positive integer N such that
(9:95)~ (fig; — fig:) € I(Y) for all i,j.
After replacing each f; and g; by fig and gfv 1 respectively, we may assume that
fig; — fj9: € I(Y) forall 4,j.
On the other hand, we have

Dy (h) = U Dy (g:),

hence Y NV (h) =Y NV(g1,...,9r), and by Theorem 1.1.9, we have
rad(I(Y) + (h)) = rad(I(Y) + (g1, -- ,gr)).

In particular, we can write
T
h™ —Zaigi eI(Y) forsome m=>1 and ay,...,a, € k[zy,...,2,].
i=1

We claim that

o aifi+...+a.fr
oot
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Indeed, for u € Dy (g,), we have

fitw) _ ai(w)fi(w) +... + ar(u) fr(u)

g;(u) h(u)™
since
h(u)™ fi(u) = as(u)gi(w) f3(u) = <Z ai(U)fi(U)) g5 (u).
i=1 i=1
This completes the proof of the claim and thus that of the proposition. O

EXAMPLE 1.4.8. In general, it is not the case that a regular function admits
a global description as the quotient of two polynomial functions. Consider, for
example the closed subset W of A4 defined by x129 = x324. Inside W we have the
plane L given by zo = x3 = 0. We define the regular function ¢: W . L — k given
by
%, ifU3 75 O;
g lfUQ 7é 0.

Uz’

d(u, ug, us, ug) = {

It is an easy exercise to check that there are no polynomials P, Q € k[xy, z2, 23, 24
such that
(u)

(u

o)

Q(u) #0 and ¢(u) = forall we W \ L.

)

We now turn to maps between quasi-affine varieties. If Y is a subset of A™ and
f: X — Y is amap, then the composition X — Y — A™ is written as (f1,..., fm),
with f;: X — k. We often abuse notation writing f = (f1,..., fm)-

DEFINITION 1.4.9. If X C A™ and Y C A™ are locally closed subsets, a map
f=U1, o, fm): X = Y is a morphism if f; € O(X) for all 7.

REMARK 1.4.10. It follows from definition that f: X — Y is a morphism if
and only if the composition
X =Y =A™

is a morphism

REMARK 1.4.11. If X C A™ is a locally closed subset, then a morphism X —
Al is the same as a regular function X — k.

EXAMPLE 1.4.12. If X is a locally closed of A™, then the inclusion map ¢: X —
A" is a morphism (this follows from Example 1.4.5). This implies that the identity
map ly: X — X is a morphism.

ProproSITION 1.4.13. If X and Y are quasi-affine varieties, then every mor-
phism f: X =Y is continuous.

PROOF. Suppose that X and Y are locally closed in A™ and A™, respectively,
and write f = (f1,..., fm). We will show that if V' C Y is a closed subset, then
f71(V) is a closed subset of X. By assumption, we can write

V=YNV() forsomeideal I C k[zy,...,zp].

In order to check that f~1(V) is closed, it is enough to find for every x € X
an open neighborhood U, of x in X such that U, N f~1(V) is closed in U, (see
Remark 1.3.21). Since each f; is a regular function, after replacing X by a suitable
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open neighborhood of x, we may assume that there are P;, Q; € k[x1,...,x,] such
that
P;(u)
Qi(u)#0 and f;(u) = for all ue X.
(u) (u) 0iw)
For every h € I, there are polynomials Ay, By, € k[xy, ..., 2,] such that

for all we X.

Bp(u) #0 and h <P1(u) Pm(u)) _ Ap(w)

Qu(w)”" Qum(u))  Bn(u)
It is then clear that for u € X we have u € f~1(V) if and only if Ay (u) = 0 for all
h € I. Therefore f~1(V) is closed. O

ProroSITION 1.4.14. If f: X — Y and g: Y — Z are morphisms between
quasi-affine varieties, the composition g o f is a morphism.

PROOF. Suppose that X C A™ Y C A" and Z C A9 are locally closed
subsets and let us write f = (f1,...,fn) and g = (g1,...,94)- We need to show
that g; o f € O(X) for 1 < i < ¢q. Let us fix such 4, a point z € X, and let
y = f(z). Since g; € O(Y) is a morphism, there is an open neighborhood V, of y
and P,Q € k[z1,...,z,] such that

P(u)

Q(u) #0 and g¢;(u) = o) for all weV,.

Similarly, since f is a morphism, we can find an open neighborhood U, of x and
A;,Bj € klz1, ..., 2] for 1 <j <n such that

Aj(u)
Bj(u)

Bj(u) #0 and f;j(u) = for all w e Us.

It follows from Proposition 1.4.13 that U, N f~(V,) is open and we have
P (Al(u) An(u))

B Bi(u)’ """ Bl
giof(u)_Q(Al(u) A, (u

After clearing the denominators, we see that indeed, g; o f is a regular function in
the neighborhood of x. |

It follows from Proposition 1.4.14 (and Example 1.4.12) that we may consider
the category of quasi-affine varieties over k, whose objects are locally closed subsets
of affine spaces over k, and whose arrows are the morphisms as defined above.
Moreover, since a regular function on X is the same as a morphism X — A!, we
see that if f: X — Y is a morphism of quasi-affine varieties, we get an induced
map

fP0(Y) = 0(X), fH(@)=dof.
This is clearly a morphism of k-algebras. By mapping every quasi-affine variety X
to O(X) and every morphism f: X — Y to f#, we obtain a contravariant functor
from the category of quasi-affine varieties over k to the category of k-algebras.

DEFINITION 1.4.15. A morphism f: X — Y is an isomorphism if it is an
isomorphism in the above category. It is clear that this is the case if and only if f
is bijective and f~! is a morphism.
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The following result shows that for affine varieties, this functor induces an anti-
equivalence of categories. Let AfVar, be the full subcategory of the category of
quasi-affine varieties whose objects consist of the closed subsets of affine spaces
over k and let Cj, denote the category whose objects are reduced, finitely generated
k-algebras and whose arrows are the morphisms of k-algebras.

THEOREM 1.4.16. The contravariant functor
AfVar, — Cx

that maps X to O(X) and f: X =Y to f#: O(Y) — O(X) is an anti-equivalence
of categories.

PRrROOF. Note first that if X is an affine variety, then O(X) is indeed a reduced,
finitely generated k-algebra. Indeed, if X is a closed subset of A™, then it follows
from Proposition 1.4.6 that we have an isomorphism O(X) ~ k[xy,...,z,]/1(X),
which gives the assertion.

In order to show that the functor is an anti-equivalence of categories, it is
enough to check two things:

i) For every affine varieties X and Y, the map
Hom4fvar, (X,Y) — Home, (@(Y), O(X)), f—f*

is a bijection.
ii) For every reduced, finitely generated k-algebra A, there is an affine variety
X with O(X) ~ A.
The assertion in ii) is clear: since A is finitely generated, we can find an isomorphism
A ~ klz1,...,2m,]/J, for some positive integer m and some ideal J. Moreover,
since A is reduced, J is a radical ideal. If X = V(J) C A™, then it follows from
Theorem 1.1.9 that J = I(X) and therefore O(X) ~ A by Proposition 1.4.6.
In order to prove the assertion in i), suppose that X C A™ and Y C A™ are
closed subsets. By Proposition 1.4.6, we have canonical isomorphisms

O(X) ~klxy,...,2,]/I(X) and O) ~k[y1,...,yn]/I(Y).

If f: X — Y is a morphism and we write f = (f1,..., fn), then f#(7;) = f,. Since
f is determined by the classes fi,..., f, mod I(X), it is clear that the map in i) is
injective.

Suppose now that a: O(Y) — O(X) is a morphism of k-algebras and let f; €
k[z1,...,2m] be such that f; = a(7;) € O(X). It is then clear that f = (f1,..., fn)
gives a morphism X — A™. Its image lies inside Y since for every g € I(Y) we
have g(f1,..., fn) € I(X), hence g(f(u)) = 0 for all u € X. Therefore f gives a
morphism X — Y such that f# = a. (]

DEFINITION 1.4.17. We extend somewhat the notion of affine variety by saying
that a quasi-affine variety is affine if it is isomorphic (in the category of quasi-affine
varieties) to a closed subset of some affine space.

An important example that does not come directly as a closed subset of an
affine space is provided by the following proposition.
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PROPOSITION 1.4.18. Let X be a closed subset of A™ and U = Dx(g), for
some g € k[xy,...,x,]. If J is the ideal in k[z1,...,z,,y] generated by [(X) and
1 — g(z)y, then U is isomorphic to V(J). In particular, U is an affine variety’.

PROOF. Define ¢: U — V(J) by ¢(u) = (u,1/g(u)). It is clear that ¢(u)
lies indeed in V(J) and that ¢ is a morphism. Moreover, we also have a mor-
phism 9: V(J) — U induced by the projection onto the first n components. It is
straightforward to check that ¢ and ¢ are inverse to each other. ([

NoOTATION 1.4.19. If X is a quasi-affine variety and f € O(X), then we put

Dx(f) ={ue X | f(u) # 0}.

If X is affine, say it is isomorphic to the closed subset Y of A™, then f corresponds
to the restriction to Y of some g € k[z1,...,x,]. In this case, it is clear that Dx (f)
is isomorphic to Dy (g), hence it is an affine variety.

REMARK 1.4.20. If X is a locally closed subset of A™, then X is open in X.
Since the principal affine open subsets of X give a basis of open subsets for the
topology of X, it follows from Proposition 1.4.18 that the open subsets of X that
are themselves affine varieties give a basis for the topology of X.

EXERCISE 1.4.21. Suppose that f: X — Y is a morphism of affine algebraic
varieties, and consider the induced homomorphism f#: O(Y) — O(X). Show that
if u e O(Y), then

i) We have f~1(Dy(u)) = Dx(w), where w = f*(u).
ii) The induced ring homomorphism

O(Dy (u)) = O(Dx (w))
can be identified with the homomorphism
OY)u = O(X)w
induced by f* by localization.

EXERCISE 1.4.22. Let X be an affine algebraic variety, and let O(X) be the
ring of regular functions on X. For every ideal J of O(X), let

V(J)={pe X | f(p)=0forall feJ}
For S C X, consider the following ideal of O(X)
Ix(S):={fe€eOX)| f(p) =0 for allp € S}.
Show that for every subset S of X and every ideal J in O(X), we have
V(Ix(S)) =S8 and Ix(V(J))=rad(J).

In particular, the maps V(—) and Ix(—) define order-reversing inverse bijections
between the closed subsets of X and the radical ideals in O(X). Via this corre-
spondence, the irreducible closed subsets correspond to the prime ideals in O(X)
and the points of X correspond to the maximal ideals in O(X). This generalizes
the case X = A™ that was discussed in Section 1.1.

2This justifies calling these subsets principal affine open subsets.
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We have seen that a morphism f: X — Y between affine varieties is determined
by the corresponding k-algebra homomorphism f#: O(Y) — O(X). For such a
morphism, it follows from the above exercise that the closed subsets in X and Y
are in bijection with the radical ideals in O(X) and, respectively, O(Y). In the
next proposition we translate the operations of taking the image and inverse image
as operations on ideals.

ProPOSITION 1.4.23. Let f: X — Y be a morphism of affine varieties and
¢ = f7: OY) = O(X) the corresponding k-algebra homomorphism. For a point
x in X orY, we denote by m, the corresponding mazimal ideal.

i) Ifre X andy = f(z), then my, = ¢~ (m,).
ii) More generally, if a is an ideal in O(X) and W =V (a), then Iy (f(W)) =
o~ (Ix(W)). N
iii) In particular, we have Iy (f(X)) = ker(¢). Therefore f(X) =Y if and
only if ¢ is injective.
iv) If b is an ideal in O(Y) and Z =V (b), then f~1(Z) =V (b- O(X)).

PROOF. The assertion in i) is a special case of that in ii), hence we begin by
showing ii). We have

Iy (f(W)) = Iy (f(W)) = {g € O(Y) | g(f(2)) = 0 for all z € W}

={geOY)|¢(g) € Ix(W)} = ¢~ (Ix(W)).

By taking W = X, we obtain the assertion in iii)
Finally, if b and Z are as in iv), we see that

fH2)={z e X |g(f(z)) =0forall g €b} =V (b-O(X)).
]
REMARK 1.4.24. If f: X — Y is a morphism of affine varieties, then f#: O(Y) —

O(X) is surjective if and only if f factors as X -4+ Z - Y, where Z is a closed
subset of Y, ¢ is the inclusion map, and ¢ is an isomorphism.

EXERCISE 1.4.25. Let Y C A? be the cuspidal curve defined by the equation
22 —y3 = 0. Construct a bijective morphism f: A' — Y. Is it an isomorphism ?

EXERCISE 1.4.26. Suppose that char(k) = p > 0, and consider the map
f: A™ — A™ given by f(ai,...,a,) = (a},...,aP). Show that f is a morphism of
affine algebraic varieties, and that it is a homeomorphism, but it is not an isomor-
phism.

EXERCISE 1.4.27. Use Exercise 1.3.16 to show that the affine variety
My, (k) :={B € My n(k) [ rk(B) <1}
is irreducible.

EXERCISE 1.4.28. Let n > 2 be an integer.
i) Show that the set

ag ai ... Qp_
B, = {(ag,al,...,an) c A" rank( o n-l ) < 1}
a1 Qs ... Qy

is a closed subset of A™t!,
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ii) Show that
B, ={(s",s" 7 't,...t") | s,t € k}.
Deduce that B,, is irreducible.

EXERCISE 1.4.29. In order to get an example of a quasi-affine variety which
is not affine, consider U = A% \ {0}. Show that the canonical homomorphism
O(A?) — O(U) is an isomorphism and deduce that U is not affine.

EXERCISE 1.4.30. Show that A is not isomorphic to any proper open subset
of itself.

EXERCISE 1.4.31. Show that if X is a quasi-affine variety such that O(X) = k,
then X consists of only one point.

1.5. Local rings and rational functions
Let X be a quasi-affine variety and W an irreducible closed subset of X.
DEFINITION 1.5.1. The local ring of X at W is the k-algebra
Ox.w = hg o).
UNW #£0

Here the direct limit is over the open subsets of X with U N W # (), ordered by
reverse inclusion, and where for U; C Us,, the map O(Us) — O(U;) is given by
restriction of functions.

REMARK 1.5.2. Note that the poset indexing the above direct limit is filtering:
given any two open subsets U; and U; that intersect W nontrivially, we have U; N
Uy NW # () (we use here the fact that W is irreducible). Because of this, the
elements of Ox w can be described as pairs (U, ¢), where U is open with WNU # ()
and ¢ € O(U), modulo the following equivalence relation:

(U, 1) ~ (U2, ¢2)
if there is an open subset U C Uy N Uz, with U N W # ), such that ¢1|y = ¢2lu.
Operations are defined by restricting to the intersection: for example, we have
(U1, ¢1) + (U, 2) = (U1 N Uz, ¢1lu,nv, + d2lvn0s)-
In order to describe Ox w, we begin with the following lemma.

LEMMA 1.5.3. If W is an irreducible closed subset of X and V is an open subset
of X with VW # 0, we have a canonical k-algebra isomorphism

Oxw ~ Ov,wnv.
PROOF. The assertion follows from the fact that the following subset
{UCV |Uopen,UNW #0} C{U C X | U open,UNW # 0}
is final. Explicitly, we have the morphism
Ovwnv = Oxw, (U,¢) — (U, 9),

with inverse

Oxw — Ovwav, (U,¢) = (UNV,¢luav).
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Given a quasi-affine variety X, the open subsets of X that are affine varieties
give a basis for the topology of X (see Remark 1.4.20). By Lemma 1.5.3, we see
that it is enough to compute Ox 1 when X is an affine variety. This is the content
of the next result.

PROPOSITION 1.5.4. Let X be an affine variety and W an irreducible closed
subset of X. If p C O(X) is the prime ideal corresponding to W, then we have a
canonical isomorphism

OX,W ~ O(X)p
In particular, Ox w is a local ring, with mazimal ideal consisting of classes of pairs
(U, ¢), with ¢UﬂW =0.

PROOF. Since the principal affine open subsets of X form a basis for the topol-
ogy of X, we obtain using Proposition 1.4.7 a canonical isomorphism

OX,W >~ H_;}nO(X)f,

where the direct limit on the right-hand side is over those f € O(X) such that
Dx(f) "W = . This condition is equivalent to f & p and it is straightforward to
check that the maps O(X); — O(X), induce an isomorphism

lim O(X) s ~ O(X),.
7

The last assertion in the proposition follows easily from the fact that O(X), is a
local ring, with maximal ideal pO(X), O

There are two particularly interesting cases of this definition. First, if we take
W = {z}, for a point € X, we obtain the local ring Ox , of X at x. Its elements
are germs of reqular functions at x. This is a local ring, whose maximal ideal
consists of germs of functions vanishing at x. As we will see, this local ring is
responsible for the properties of X in a neighborhood of z. If X is an affine variety
and m is the maximal ideal corresponding to z, then Proposition 1.5.4 gives an
isomorphism

OX@ ~ O(X)m

EXERCISE 1.5.5. Let f: X — Y be a morphism of quasi-affine varieties, and let
Z C X be a closed irreducible subset. Recall that by Exercise 1.3.16, we know that
W := f(Z) is irreducible. Show that we have an induced morphism of k-algebras

g: Oy,w — Ox z

and that g is a local homomorphism of local rings (that is, it maps the maximal
ideal of Oy, inside the maximal ideal of Ox z). If X and Y are affine varieties,
and

p=1Ix(2) and q=Iy(W)=(f")""(p),
then via the isomorphisms given by Proposition 1.5.4, g gets identified to the ho-
momorphism

OY)q = O(X)p

induced by f# via localization.

EXERCISE 1.5.6. Let X and Y be quasi-affine varieties. By the previous exer-
cise, if f: X — Y is a morphism, p € X is a point, and f(p) = ¢, then f induces a
local ring homomorphism ¢: Oy 4 = Ox p.
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i) Show that if f': X — Y is another morphism with f/(p) = ¢, and induced
homomorphism ¢': Oy, = Ox , then ¢ = ¢ if and only if there is an
open neighborhood U of p such that f|y = g|u.

i) Show that given any local morphism of local k-algebras ¢: Oy, = Ox p,
there is an open neighborhood W of p, and a morphism ¢g: W — Y with
g9(p) = ¢, and inducing .

ili) Deduce that Ox, and Oy, are isomorphic as k-algebras if and only if

there are open neighborhoods W of p and V of ¢, and an isomorphism
h: W — V, with h(p) = q.

Another important example of local ring of X occurs when X is an irreducible
variety and we take W = X. The resulting local ring is, in fact, a field, the field
of rational functions k(X) of X. Indeed, if U C X is an affine open subset, then
it follows from Lemma 1.5.3 and Proposition 1.5.4 that k(X) is isomorphic to the
field of fractions of the domain O(X). The elements of k(X)) are rational functions
on X, that is, pairs (U, ¢), where U is a nonempty open subset of X and ¢: U — k
is a regular function, where we identify two such pairs if the two functions agree
on some nonempty open subset of their domains (in fact, as we will see shortly, in
this case they agree on the intersection of their domains). We now discuss in more
detail rational functions and, more generally, rational maps.

LEMMA 1.5.7. If X and Y are quasi-affine varieties and f1 and fa are two
morphisms X — Y, then the subset

{ac X[ fila) = f2la)} € X

is closed.

PrOOF. IfY is a locally closed subset in A", then we write f; = (fi1,..., fin)
for ¢ = 1,2. With this notation, we have

{ae X | fila) = f2(a)} = ﬁ{a € X | (fuj = faj)(a) = 0},

hence this set is closed in X, since each function fi ; — f2; is regular, hence con-
tinuous. (]

DEFINITION 1.5.8. Let X and Y be quasi-affine varieties. A rational map
f: X --» Y is given by a pair (U, ¢), where U is a dense, open subset of X and
¢: U — Y is a morphism, and where we identify (Uy, ¢1) with (Us, ¢2) if there is
an open dense subset V' C Uy N Us such that ¢1|y = ¢2]y. In fact, in this case we
have ¢1|y,nu, = ¢2|u,nu, by Lemma 1.5.7. We also note that since U; and U, are
dense open subsets of X, then also U; N Us is a dense subset of X.

REMARK 1.5.9. If f: X --» Y is a rational map and (U;, ¢;) are the repre-
sentatives of f, then we can define a map ¢: U = |J,U; = Y by ¢(u) = ¢;(u) if
u € U;. This is well-defined and it is a morphism, since its restriction to each of the
U, is a morphism. Moreover, (U, ¢) is a representative of f. The open subset U,
the largest one on which a representative of f is defined, is the domain of definition

of f.

DEFINITION 1.5.10. Given a quasi-affine variety X, the set of rational functions
X --» k is denoted by k(X). Since the intersection of two dense open sets is again
open and dense, we may define the sum and product of two rational functions. For
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example, given two rational functions with representatives (Uy, ¢1) and (Us, ¢2),
we define their sum by the representative

(U1 N U2, ¢1lvinu, + O2luine,),

and similarly for the product. It is straightforward to see that using also scalar
multiplication, k(X) is a k-algebra. Note that when X is irreducible, we recover
our previous definition.

EXERCISE 1.5.11. Let X be a quasi-affine variety, and let Xi,..., X, be its
irreducible components. Show that there is a canonical isomorphism

E(X) ~k(Xy) x -+ x k(X,).

EXERCISE 1.5.12. Let W be the closed subset in A2, defined by z2 + 3% = 1.
What is the domain of definition of the rational function on W given by 1_Ty?

Our next goal is to define a category in which the arrows are given by rational
function. For simplicity, we only consider irreducible varieties.

DEFINITION 1.5.13. A morphism f: X — Y is dominant if Y = f(X). Equiv-
alently, for every nonempty open subset V C Y, we have f~1(V) # (). Note that
if U is open and dense in X, then f is dominant if and only if the composition

U < X L5 ¥ is dominant. We can thus define the same notion for rational
maps: if f: X --» Y is a rational map with representative (U, ¢), we say that f is
dominant if ¢: U — Y is dominant.

Suppose that X, Y, and Z are irreducible quasi-affine varieties and f: X --» Y
and g: Y --+ Z are rational maps, with f dominant. In this case we may define the
composition go f, which is a rational map; moreover, if g is dominant, too, then go f
is dominant. Indeed, choose a representative (U, ¢) for f and a representative (V, )
for g. Since the morphism ¢: U — Y is dominant, it follows that W := ¢~ 1(V) is
nonempty. We then take go f to be the rational function defined by the composition

wiwy oz

It is straightforward to see that this independent of the representatives for f and
g. Moreover, if g is dominant, then g o f is dominant: if Z’ is a nonempty open
subset of Z, then 1~1(Z’) is nonempty and open since g is dominant and therefore
gb’l(q/)’l(Z’)) is nonempty, since f is dominant.

It is clear that the identity map is dominant. Moreover, composition of dom-
inant rational map is associative. We thus obtain a category in which the objects
are the irreducible quasi-affine varieties over k and the set Hom,.t (X, Y") of arrows
from X to Y consists of the dominant rational maps X --+ Y, with the composition
defined above. We are then led to the following important concept.

DEFINITION 1.5.14. A rational dominant map f: X --+ Y between irreducible
quasi-affine varieties is birational if it is an isomorphism in the above category.
More precisely, this is the case if there is a dominant rational map ¢g: Y --+ X such
that

gof:lx and ng:ly.
A birational morphism is a morphism which is birational as a rational map. Two

irreducible quasi-affine varieties X and Y are birational if there is a birational map
X --»Y.
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This notion plays a fundamental role in the classification of algebraic varieties.
On one hand, birational varieties share interesting geometric properties. On the
other hand, classifying algebraic varieties up to birational equivalence turns out to
be a more reasonable endeavor than classifying varieties up to isomorphism.

EXAMPLE 1.5.15. If U is an open subset of the irreducible quias-affine variety
X, then the inclusion map i: U < X is a birational morphism. Its inverse is given
by the rational map represented by the identity morphism of U.

EXAMPLE 1.5.16. An interesting example, which we will come back to later, is
given by the morphism

fr A" = A" f(z,..,2n) = (X1, 2129, ..., T1Tp).

Note that the linear subspace given L = (x; = 0) is mapped to 0, but f induces an
isomorphism
A"NL=f1A"NL)— A"\ L,

with inverse given by g(y17 .o ,yn) = (yla y2/y17 .o 7yn/y1)

EXAMPLE 1.5.17. Let X be the closed subset of A? (on which we denote the
coordinates by = and y), defined by 2% —y? = 0. Let f: A — X be the morphism
given by f(t) = (t3,t?). Note that f is birational: if g: X \ {(0,0)} — A is the
morphism given by g(u,v) = %, then g gives a rational map X --» A that is
an inverse of f. Note that since f~1(0,0) = {0}, it follows that the morphism f
is bijective, However, f is not an isomorphism: otherwise, by Theorem 1.4.16 the
induced homomorphism

f#:0(X) = Kla,yl/(2® — ) = klt],  fF(2) =, [ (y) = ¢
would be an isomorphism. However, it is clear that ¢ is not in the image.

If f: X --» Y is a rational, dominant map, then by taking Z = A!, we see
that by precomposing with f we obtain a map

k(YY) — k(X).
It is straightforward to see that this is a field homomorphism.

THEOREM 1.5.18. We have an anti-equivalence of categories between the cate-
gory of irreducible quasi-affine varieties and dominant rational maps and the cate-
gory of finite type field extensions of k and k-algebra homomorphisms, that maps a
variety X to k(X) and a rational dominant map f: X --»Y to f#: k(Y) — k(X).

PROOF. It is clear that we have a contravariant functor as described in the
theorem. Note that if X is an irreducible quasi-affine variety, then k(X) is a finite
type extension of k: indeed, if U is an affine open subset of X, then we have
k(X) ~ k(U) ~ Frac(O(U)).

In order to show that this functor is an anti-equivalence, it is enough to prove
the following two statements:

i) Given any two quasi-affine varieties X and Y, the map
Hom,,+(X,Y) — Homk,alg(k(Y), k(X))
is bijective.
ii) Given any finite type field extension K/k, there is an irreducible quasi-
affine variety X such that k(X) ~ K.
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The assertion in ii) is easy to see: if K = k(aq,...,a,), let A = kfay,...,a,].
We can thus write A ~ k[z1, ..., 2,]/P for some (prime) ideal P and if X = V(P) C
A", then X is irreducible and k(X) ~ K.

In order to prove i), suppose that X and Y are locally closed in A™ and,
respectively, A”. Since X and Y are open in X and Y, respectively, by Proposi-
tion 1.3.22, and since inclusions of open subsets are birational, it follows that the
inclusions X < X and Y — Y induce an isomorphism

Hom,,¢(X,Y) ~ Hom,.(X,Y),
and also isomorphisms

E(X)~k(X) and Kk(Y)~ k(Y).

We may thus replace X and Y by X and Y, respectively, in order to assume that
X and Y are closed subsets of the respective affine spaces.
It is clear that

Homyat (X,Y) = | J Homaom(Dx(9),Y),
geO0(X)
where each set on the right-hand side consists of the dominant morphisms Dx(g) —
Y. Moreover, since O(Y') is a finitely generated k-algebra, we have
Homy—aig (k(Y), k(X)) = (] Homin; (O(Y),0(X),),
geO(X)

where each set on the right-hand side consists of the injective k-algebra homomor-
phisms O(Y) — O(X),. Since the map f — f# gives a bijection

Homaom (Dx(9),Y) ~ Homiy; (O(Y), O(X),)
by Theorem 1.4.16 and Proposition 1.4.23, this completes the proof. (I

COROLLARY 1.5.19. A dominant rational map f: X — Y between irreducible

quasi-affine varieties X andY is birational if and only if the induced homomorphism
7 k(Y) = k(X) is an isomorphism.

REMARK 1.5.20. A rational map f: X --» Y between the irreducible quasi-
affine varieties X and Y is birational if and only if there are open subsets U C X
and V C Y such that f induces an isomorphism U ~ V. The “if” assertion is clear,
so we only need to prove the converse. Suppose that f is defined by the morphism
¢: X' — Y and its inverse g is defined by the morphism ¢: Y/ — X where X' C X
and Y/ C Y are open subsets. The equality fog = 1y as rational functions implies
by Lemma 1.5.7 that the composition

pHX) S XSy
is the inclusion. In particular, we deduce that
P~ HX) Co (v H(X) ST HY).
Similarly, the equality of rational functions g o f = 1x shows that the composition
oY) Ly X
is the inclusion; in particular, we obtain

¢(o7H(Y") C ¥~ H(X).
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It is now clear that ¢ and v induce inverse morphisms between ¢~1(Y’) and
PHX).

EXERCISE 1.5.21. Let X C A" be a hypersurface defined by an equation
f(z1,...,2,) =0, where f = fq_1+ fa, with f4_1 and fgq nonzero, homogeneous of

degrees d — 1 and d, respectively. Show that if X is irreducible, then X is birational
to A"~ 1L,

1.6. Products of (quasi-)affine varieties

We begin by showing that for positive integers m and n, the Zariski topology
on A™ x A" = A™*" ig finer than the product topology.

ProprosITION 1.6.1. If X C A™ and Y C A" are closed subsets, then X xY
is a closed subset of A™T™,

PRrROOF. The assertion follows from the fact that if X = V(I) and Y = V(J),
for ideals I C k[z1,...,2y] and J C [y, ..., yn], then

XXY=V(I-R+J-R),
where R =k[Z1,...,Zm, Y1, -+ Yn]- O

COROLLARY 1.6.2. If X C A™ and Y C A™ are open (respectively, locally
closed) subsets, then X XY is an open (respectively, locally closed) subset of A™+™ =
A" x A™. In particular, the topology on A™ x A™ is finer than the product topology.

PROOF. The assertion for open subsets follows from Proposition 1.6.1 and the
fact that

AT X XY = (A" x (A" NY)) U ((A™ N X) x A™).

The assertion for locally closed subsets follows immediately from the assertions for
open and closed subsets. (I

COROLLARY 1.6.3. Given any quasi-affine varieties X and Y, the topology on
X xY is finer than the product topology.

PRrROOF. If X and Y are locally closed subsets of A™ and A™, respectively,
then X x Y is a locally closed subset of A™*™. Since the topology on A™*" is
finer than the product topology by the previous corollary, we are done. (I

EXAMPLE 1.6.4. The topology on A™ x A™ is strictly finer than the product
topology. For example, the diagonal in A x Al is closed (defined by x—y € k[x,y]),
but it is not closed in the product topology.

REMARK 1.6.5. If X C A™ and Y C A" are locally closed subsets, then
X xY C A™" is a locally closed subset, and the two projections induce morphisms
p: XXY — X and g: XxXY — Y. These make X xY the product of X and Y in the
category of quasi-affine varieties over k. Indeed, given two morphisms f: Z — X
and g: Z — Y, it is clear that there is a unique morphism ¢: Z — X X Y such
that po ¢ = f and qo ¢ = g, namely ¢ = (f, g).

This implies, in particular, thatif f: X — X’ and g: Y — Y’ are isomorphisms,
then the induced map X x Y — X’ x Y’ is an isomorphism.
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PrOPOSITION 1.6.6. If X C A™ and Y C A" are locally closed subsets, then
the two projections p: X xY = X and ¢: X xY =Y are open®.

PrOOF. We show that p is open, the argument for ¢ being entirely similar.
Note first that by Remark 1.6.5, we may replace X and Y by isomorphic quasi-
affine varieties. Moreover, if we write X = J, X; and Y = Uj Y;, then for any open
subset W of X x Y, we have

pW)=p | UWNn(X:ixY)) |,
,J
hence if order to show that p is open, it is enough to show that each projection
X; xY; = X; is open. By Remark 1.4.20, both X and Y can be covered by open
subsets that are affine varieties. We may thus assume that X C A™ and Y C A"
are closed subsets. Let k[z1,...,2,,] and k[yi, ..., y,] be the rings corresponding
to A™ and A", respectively. Using again the fact that every open subset of X x Y
is a union of principal affine open subsets, we see that it is enough to show that
p(W) is open in A™ for a nonempty subest W = Dxxy (h), where h € k[z,y].
Let us write

(1.6.1) h= Z fi(2)gi(y)-

We may and will assume that for the given set W, h and the expression (1.6.1) are
chosen such that r is minimal. Note that in this case, the classes g7,...,g, in O(Y)
are linearly independent over k. Indeed, if this is not the case and >.\_, \ig; =
P(y) € 1(Y), such that A; # 0 for some j, then we may take b’/ = h—/\j_lfj () P(y);
we then have Dx«y (h') = Dxxy(h) and we can write

W= (filz) = NN () gi(y),
1,177
contradicting the minimality of 7.

Suppose now that u € p(W). This implies that u € X such that thereisv € Y,
with h(u,v) # 0. In particular, there is j such that f;(u) # 0. It is enough to
show that in this case Dx(f;), which contains u, is contained in p(W). Suppose,
arguing by contradiction, that there is v’ € Dx(f;) ~ p(W). This implies that for
every v € Y, we have >\, fi(u')g;(v) = 0, hence >_._, fi(u')g; € I(Y). Since
fj(u') # 0, this contradicts the fact that the classes g7, ...,g, in O(Y) are linearly
independent over k. ([l

COROLLARY 1.6.7. If X andY are irreducible quasi-affine varieties, then X XY
is irreducible.

PrROOF. We need to show that if U and V are nonempty, open subsets of
X xY, then UNYV is nonempty. Let p: X XY — X and q: X xY — Y be the
two projections. By the proposition, the nonempty subsets p(U) and p(V) of X
are open. Since X is irreducible, we can find a € p(U) Np(V). In this case, the
subsets {b € Y | (a,b) € U} and {b € Y | (a,b) € V} of Y are nonempty. They
are also open: this follows from the fact that the map Y — X x Y, y — (a,y) is

3Recall that a continuous map ¢: Z1 — Zs is open if for every open subset U of Z1, its image
¢(U) is open in Za.
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a morphism, hence it is continuous. Since Y is irreducible, these two subsets must
intersect, hence there is a point (a,b) e UNV. O

Our next goal is to describe the ideal defining the product of two affine varieties.
Suppose that X C A" and Y C A™ are closed subsets. We have seen in the proof of
Proposition 1.6.1 that if I(X) C O(A™) and I(Y) C O(A™) are the ideals defining
X and Y, respectively, then X x Y is the algebraic subset of A™*" defined by

J:=I1(X) - OA™™) + I(Y) - O(A™T™).
We claim that, in fact, J is the ideal defining X x Y, that is, J is a radical ideal.

Note that O(A™*T™) is canonically isomorphic to O(A™) @ O(A™) and by the
right-exactness of the tensor product, we have

O(A™) /] ~ O(X) &), O(Y).

The assertion that J is a radical ideal (or equivalently, that O(A™%™)/.J is a reduced
ring is the content of the following

PROPOSITION 1.6.8. If X and Y are affine varieties, then the ring O(X)
O(Y) is reduced.

Before giving the proof of the proposition, we need some algebraic preparations
concerning separable extensions.

LEMMA 1.6.9. If k is any field and K/k is a finite, separable field extension,
then for every field extension k'/k, the ring K Q@ k' is reduced.

PROOF. Since K/k is finite and separable, it follows from the Primitive Element
theorem that there is an element v € K such that K = k(u). Moreover, separability
implies that if f € k[z] is the minimal polynomial of u, then all roots of f in some
algebraic closure of k are distinct. The isomorphism K ~ k[z]/(f) induces an
isomorphism

K @i k' ~ K'[z]/(f).
If g1,..., gr are the irreducible factors of f in k'[z], any two of them are relatively
prime (otherwise f would have multiple roots in some algebraic closure of k). It
then follows from the Chinese Remainder theorem that we have an isomorphism

K @ K ~ [ ¥[2]/(9:)-
i=1
Since each factor on the right-hand side is a field (the polynomial g; being irre-
ducible), the product is a reduced ring. a

LEMMA 1.6.10. If k is a perfect* field and K/k is a finitely generated field
extension, then there is a transcendence basis x1,...,x, of K over k such that K
is separable over k(xy,...,2y,).

PROOF. Of course, the assertion is trivial if char(k) = 0, hence we may assume
that char(k) = p > 0. Let us write K = k(x1,...,%,,). We may assume that
Z1,...,%, give a transcendence basis of K/k, and suppose that z,41,..., T, are
not separable over K’ := k(x1,...,z,), while z,4r41,...,%, are separable over
K'. If r = 0, then we are done. Otherwise, since x,11 is not separable over K’,

4Recall that a field k is perfect if char(k) = 0 or char(k) = p and k = kP. Equivalently, a
field is perfect if every finite extension K/k is separable.
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it follows that there is an irreducible polynomial f € K'[T] such that f € K'[T?]
and such that f(z,4+1) = 0. We can find a nonzero u € kfzy,...,z,] such that
g=uf € k[zy,...,x,,TP].

We claim that there is ¢« < n such that a%gi # 0. Indeed, otherwise we have
g € k[z},... 2P TP], and since k is perfect, we have k = kP, hence g = h? for some
h € k[z1,...,zy,T]; this contradicts the fact that f is irreducible.

After relabeling the variables, we may assume that ¢ = n. The assumption on
i says that z,, is (algebraic and) separable over K" := k(x1,...,%n—1,Zn+1). Note
that since x,, is algebraic over K” and K is algebraic over k(x1,...,%n_1,%yn), it
follows that K is algebraic over K", and since all transcendence bases of K over
k have the same number of elements, we conclude that zi,...,2,_1,Z,4+1 is a
transcendence basis of K over k. We may thus switch z,, and z,,41 to lower r.
After finitely many steps, we obtain the conclusion of the lemma. O

PROPOSITION 1.6.11. If k is a perfect field, then for every field extensions K/k
and k' [k, the ring K ®y k' is reduced.

PROOF. We may assume that K is finitely generated over k. Indeed, we can
write

K =lin K;,

where the direct limit is over all k C K; C K, with K;/k finitely generated. Since
we have an induced isomorphism

K ®; k'~ thz Rk kl,

and a direct limit of reduced rings is reduced, we see that it is enough to prove the
proposition when K/k is finitely generated.

In this case we apply Lemma 1.6.10 to find a transcendence basis z1, ..., z, of
K /k such that K is separable over K; := k(x1,...,z,). We have

Kepk = K ®K, K1 ®k K.
Since K7 ®y k' is a ring of fractions of k'[z1,...,z,], we have an injective homo-
morphism
Kl R K — K2 = k’l(l’l, .. .,:Z?n).
By tensoring with K, we get an injective homomorphism
K®pk — K ®k, Ks.

Since K/K; is a finite separable extension, we deduce from Lemma 1.6.9 that
K ®k, K5 is reduced, hence K ®j k" is reduced. O

We can now prove our result about the coordinate ring of the product of two
affine varieties.

PROOF OF PROPOSITION 1.6.8. We will keep using the fact that the tensor
product over k is an exact functor. Note first that we may assume that X and
Y are irreducible. Indeed, let Xy,..., X, be the irreducible components of X and
Y1,...,Ys the irreducible components of Y. Since X = X; U...U X,, it is clear
that the canonical homomorphism

O(X) — ﬁ O(Xi)



1.6. PRODUCTS OF (QUASI-)AFFINE VARIETIES 29

is injective. Similarly, we have an injective homomorphism
S
o)~ Jow)
j=1

and we thus obtain an injective homomorphism

O(X) @, O(Y) = [[O(Xs) @k O(Y5).

The right-hand side is a reduced ring if each O(X;) ®; O(Y;) is reduced, in which
case O(X) @, O(Y) is reduced. We thus may and will assume that both X and Y
are irreducible.

We know that in this case O(X) and O(Y") are domains and let £(X) and k(Y)
be the respective fraction fields. Since k is algebraically closed, it is perfect, hence
kE(X) ®k k(Y) is a reduced ring by Proposition 1.6.11. The inclusions

O(X) = k(X) and OY) <= k(Y)
induce an injective homomorphism
O(X) ®, OY) — k(X) ®; k(Y),
which implies that O(X) ®; O(Y) is reduced. O

We now give another application of Lemma 1.6.10. We first make a definition.

DEFINITION 1.6.12. A hypersurface in A”™ is a closed subset of the form
{ue A" | f(u) =0} forsome f€klry,...,zs] k.

PROPOSITION 1.6.13. Ewvery irreducible variety is birational to an (irreducible)
hypersurface in an affine space A™.

ProOOF. Let X be an irreducible variety, with function field K = k(X). By
Lemma 1.6.10, we can find a transcendence basis z1,...,z, of K/k such that K
is separable over k(z1,...,2,). In this case, it follows from the Primitive Element
theorem that there is u € K such that K = k(z1,...,zn,u). If f € k(x1,...,2p)][t]
is the minimal polynomial of u, then

K ~k(zq,...,2,)[t]/(f).

It is easy to see that after multiplying u by a suitable nonzero element of k[z1, . .., x,],
we may assume that f € k[z1,...,2,,t] and f is irreducible. In this case, we see
by Theorem 1.5.18 that X is birational to the affine variety V(f) C A"*L. O

We end this section with some exercises about linear algebraic groups. We
begin with a definition.

DEFINITION 1.6.14. A linear algebraic group over k is an affine variety G over k
that is also a group, and such that the multiplication p: G x G — G, u(g, h) = gh,
and the inverse map ¢: G — G, 1(g) = ¢! are morphisms of algebraic varieties.
If Gy and G2 are linear algebraic groups, a morphism of algebraic groups is a
morphism of affine varieties f: G; — G2 that is also a group homomorphism.

Linear algebraic groups over k form a category. In particular, we have a notion
of isomorphism between linear algebraic groups: this is an isomorphism of affine
algebraic varieties that is also a group isomorphism.
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EXERCISE 1.6.15. i) Show that (k,+) and (k*,-) are linear algebraic
groups.

ii) Show that the set GL,, (k) of n x n invertible matrices with coeflicients in
k has a structure of linear algebraic group.

ili) Show that the set SL, (k) of n X n matrices with coefficients in k and with
determinant 1 has a structure of linear algebraic group.

iv) Show that if G and H are linear algebraic groups, then the product G x H
has an induced structure of linear algebraic group. In particular, the (al-
gebraic) torus (k*)™ is a linear algebraic group with respect to component-
wise multiplication.

DEFINITION 1.6.16. Let G be a linear algebraic group and X a quasi-affine
variety. An algebraic group action of G on X is a (say, left) action of G on X such
that the map G x X — X giving the action is a morphism of algebraic varieties.

EXERCISE 1.6.17. Show that GL, (k) has an algebraic action on A™.

EXERCISE 1.6.18. Let G be a linear algebraic group acting algebraically on an
affine variety X. Show that in this case G has an induced linear action on O(X)

given by

(g-¢)(w) = o(g7 ().
While O(X) has in general infinite dimension over k, show that the action of G on
O(X) has the following finiteness property: every element f € O(X) lies in some
finite-dimensional vector subspace V of O(X) that is preserved by the G-action
(Hint: consider the image of f by the corresponding k-algebra homomorphism
O(X) — O(G) @ O(X)).

EXERCISE 1.6.19. Let G and X be as in the previous problem. Consider a
system of k-algebra generators f1, ..., fi, of O(X), and apply the previous problem
to each of these elements to show that there is a morphism of algebraic groups
G — GLy(k), and an isomorphism of X with a closed subset of AV, such that
the action of G on X is induced by the standard action of GLy (k) on AN. Use a
similar argument to show that every linear algebraic group is isomorphic to a closed
subgroup of some GLy (k).

EXERCISE 1.6.20. Show that the linear algebraic group GL,, (k) x GL, (k) has
an algebraic action on the space M,y, (k) (identified to A™"), induced by left and
right matrix multiplication. What are the orbits of this action ? Note that the
orbits are locally closed subsets of M,, (k) (as we will see later, this is a general
fact about orbits of algebraic group actions).

1.7. Affine toric varieties

In this section we discuss a class of examples of affine varieties that are associ-
ated to semigroups.

DEFINITION 1.7.1. A semigroup is a set S endowed with an operation + (we
will use in general the additive notation) which is commutative, associative and
has a unit element 0. If S is a semigroup, a subsemigroup of S is a subset S’ C S
closed under the operation in S and such that Og € S’ (in which case, S’ becomes a
semigroup with the induced operation). A map ¢: S — S’ between two semigroups
is a semigroup morphism if ¢(u1 + u2) = ¢(u1) + ¢(ug) for all u; and ug, and if

$(0) = 0.
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ExXAMPLE 1.7.2. i) Every Abelian group is a semigroup.
ii) The field k, endowed with the multiplication, is a semigroup.
iii) The set N of non-negative integers, with the addition, is a semigroup.
iv) The set {m € N | m # 1} is a subsemigroup of N.
) If S; and S5 are semigroups, then S7 x S5 is a semigroup, with component-
wise addition.

v

Given a semigroup S, we consider the semigroup algebra k[S]. This has a basis
over k indexed by the elements of S. We denote the elements of this basis by x",
for u € S. The multiplication is defined by x*“! - y“2 = x“1*“2 (hence 1 = x"). This
is a k-algebra. Note that if ¢: S; — S5 is a morphism of semigroups, then we get
a morphism of k-algebras k[S;] — Kk[Ss] that maps x* to x?(*).

ExaMPLE 1.7.3. We have an isomorphism
EIN"] ~ k[z1,...,z.], X% — a4,

where e; is the tuple that has 1 on the i*" component and 0 on all the others. We
similarly have an isomorphism

K[Z") ~ klzy, 7Y . 2, 2 Y.

EXAMPLE 1.7.4. In general, if S; and S5 are semigroups, we have a canonical
isomorphism

k[S1 X SQ] ~ k‘[Sl] Rk k[SQ]

We will assume that our semigroups satisfy two extra conditions. First, we will
assume that they are finitely generated: a semigroup S satisfies this property if it
has finitely many generators us,...,u, € S (this means that every element in S
can be written as >_._, a;u;, for some ay,...,a, € N). In other words, the unique
morphism of semigroups N” — S that maps e; to u,; for all 7 is surjective. Note
that in this case, the induced k-algebra homomorphism

klz,..., 2] = k[N"] — k[S]

is onto, hence k[S] is finitely generated.

We will also assume that S is integral, that is, it is isomorphic to a subsemigroup
of a finitely generated, free Abelian group. Since we have an injective morphism
of semigroups S < Z", we obtain an injective k-algebra homomorphism k[S] —
Elzy, 27, ..., 2., 27 1]. In particular, k[S] is a domain.

EXERCISE 1.7.5. Suppose that S is the image of a morphism of semigroups
¢: N" — Z™ (this is how semigroups are usually described). Show that the kernel
of the induced surjective k-algebra homomorphism

kElx1,...,2.] = E[N"] = E[S]
is the ideal
(z* — 2" | a,b € N, ¢(a) = ¢(b)).
We have seen that if S is an integral, finitely generated semigroup, then k[S] is
a finitely generated k-algebra, which is also a domain. Therefore it corresponds to
an irreducible affine variety over k, uniquely defined up to canonical isomorphism.

We will denote this variety® by TV(S). Its points are in bijection with the maximal
ideals in k[S], or equivalently, with the k-algebra homomorphisms k[S] — k. Such

5This is not standard notation in the literature.
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homomorphisms in turn are in bijection with the semigroup morphisms S — (k, -).
Via this bijection, if we consider ¢: S — (k,-) as a point in TV(S) and x* € k[S],
then
X"(¢) = ¢(u) € k.

Given a morphism of finitely generated, integral semigroups S — S’, the k-algebra
homomorphism k[S] — k[S’] corresponds to a morphism TV(S’) — TV(S).

The affine variety TV (S) carries more structure, induced by the semigroup S,
which we now describe. First, we have a morphism

TV (S) x TV (S) — TV(S)
corresponding to the k-algebra homomorphism
k[S] = K[S] @k K[S], X" = X" @ X"
At the level of points (identified, as above, to semigroup morphisms to k), this is
given by
(¢.4) = ¢, where (¢-1)(u) =o(u) - P(u).

It is clear that the operation is commutative, associative, and has an identity ele-
ment, given by the morphism S — k that takes constant value 1.

REMARK 1.7.6. If S — S’ is a morphism between integral, finitely generated
semigroups, it is clear that the induced morphism of affine varieties TV(S’) —
TV(S) is compatible with the operation defined above.

ExXaMPLE 1.7.7. If S = N”, then the operation that we get on TV(S) = A" is
given by
(al, Ce 7(ln) . (bl, . ,bn) = (albl,. .. ,anbn).

In particular, note that TV(S) is not a group.

ExXAMPLE 1.7.8. With the operation defined above, TV(Z) is a linear algebraic
group isomorphic to (k*,-). In general, if M is a finitely generated, free Abelian
group, then the above operation makes TV (M) a linear algebraic group. In fact,
we have M ~ Z7, for some r, and therefore TV(M) is isomorphic, as an algebraic
group, to the torus (k*)" (see Exercise 1.6.15 for the definition of the algebraic tori).
It follows from the lemma below that we can recover M from TV (M), together with
the group structure, as

M ~ Homalg,gp(TV(M), k*)
LEMMA 1.7.9. For every finitely generated, free Abelian groups M and M’, the

canonical map
Homgz (M, M") — Homaig_g, ( TV(M'), TV(M))
is a bijection.
PROOF. A morphism of algebraic groups TV(M') — TV(M) is given by a
k-algebra homomorphism f: k[M] — k[M’] such that the induced diagram

kM) —— s kM)

J{Ol M J{a M/’

kM) ® k[M] L25 k(M) @ kM),
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is commutative, where ajp; and ay are the k-algebra homomorphisms inducing
the group structure. Given u € M, we see that if f(x") = >, cpp Guw X", then

Z CLu,u’Xu, X XUI = Z au,u’au,’u’xul & XU/'
u'eM’ u’ v’ eM’
First, this implies that if v/, v' € M’ are distinct, then @y - @y, = 0. Therefore
there is a unique v’ € M’ such that a, . # 0 (note that x* € k[M] is invertible,
hence f(x*) # 0). Moreover, for this u’ we have a ,, = @y, hence ay . = 1.
This implies that we have a (unique) map ¢: M — M’ such that f is given by
fix") = x?® . Since f is a ring homomorphism, we see that ¢ is a semigroup

morphism. This shows that the map in the lemma is bijective. O

EXERCISE 1.7.10. Given an integral semigroup S, show that there is an injec-
tive semigroup morphism ¢: S — S8P. where S®P is a finitely generated Abelian
group, that satisfies the following universal property: given any semigroup mor-
phism h: S — A, where A is an Abelian group, there is a unique group morphism
g: S8 — A such that g ov = h. Hint: if S — M is an injective semigroup mor-
phism, where M is a finitely generated, free Abelian group, then show that one can
take S®P to be the subgroup of M generated by S. Note that it follows from this
description that S8P is finitely generated (since M is) and S®P is generated as a
group by S.

Suppose now that S is an arbitrary integral, finitely generated semigroup. The
semigroup morphism ¢: S — SP induces a k-algebra homomorphism k[S] — k[S&P]
and correspondingly a morphism of affine algebraic varieties j: TV(S8P) — TV(S).

LEMMA 1.7.11. With the above notation, the morphism j: TV(S8) — TV(S)
is an isomorphism onto a principal affine open subset of TV(S).

PROOF. Suppose that ui,...,u, is a finite system of generators of S. In this
case S®P is generated as a semigroup by wi,...,u,, and —(uj + ... + w,). This
shows that we can identify the homomorphism k[S] — k[S&P] with the localization
homomorphism of k[S] at y“1+--Tus, O

Since the morphism TV(S8P) — TV(S) is compatible with the operations on
the two varieties, we conclude that in particular, the action of the torus TV (S8P),
considered as an open subset of TV(S), extends to an action of TV(S&P) on TV(S).
We are thus led to the following

DEFINITION 1.7.12. An affine toric variety is an irreducible affine variety X,
together with an open subset T that is (isomorphic to) a torus, such that the action
of the torus on itself extends to an action of T of X.

We note that in the literature, it is common to require an affine toric variety
to be normal, but we do not follow this convention. For the definition of normality
and for the description in the context of toric varieties, see Definition 1.7.26 and
Proposition 1.7.30 below.

We have seen that for every (integral, finitely generated) semigroup S, we
obtain a toric variety TV(S). The following proposition shows that, in fact, every
affine toric variety arises in this way.

ProOPOSITION 1.7.13. Let X be an irreducible affine variety, T C X an open
subset which is a torus such that the action of T on itself extends to an action on
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X. Then there is a finitely generated, integral semigroup S and an isomorphism
X ~ TV(S) which induces an isomorphism of algebraic groups T ~ TV (S8P), and
which is compatible with the action.

PROOF. Let M = Homig—gp(7T, k*), so that we have a canonical isomorphism
T ~ TV(M). The dominant inclusion morphism 7" — X induces an injective
k-algebra homomorphism f: O(X) — O(T) = k[M], hence we may assume that
O(X) is a subalgebra of k[M]. The fact that the action of T on itself extends to
an action of T on X is equivalent to the fact that the k-algebra homomorphism

K[M] — E[M] @k k[M],  x" = X" ©x"

induces a homomorphism O(X) — k[M]®,O(X). Inother words, if f =3 )/ aux
lies in O(X), then > .\ aux” ® x* lies in k[M] ®, O(X). This implies that
for every u € M such that a, # 0, we have x* € O(X). It follows that if
S={ue M| x*e OX)}, then O(X) = k[S]. It is clear that S is integral
and since k[S] is a finitely generated k-algebra, it follows easily that S is a finitely
generated semigroup. In order to complete the proof of the proposition, it is enough
to show that M = S8P.

It follows from Exercise 1.7.10 that we may take S&P to be the subgroup of M
generated by S. By hypothesis, the composition

TV (M) - TV(S#P) 5 X = TV(S)

is an isomorphism onto an open subset of X. Since we also know that A is an
isomorphism onto an open subset of X, it follows that g gives is an isomorphism
onto an open subset of TV(S8P). In particular, this implies that g is injective. We
now show that M = S8P.

Since M is a finitely generated, free Abelian group, we can find a basis ey, ..., e,
of M such that S®P has a basis given by ajeq,...,are,, for some r < n and some
positive integers aq, . ..,a,. In this case g gets identified to the morphism

(k)" = ()", (t1,.. . tn) = (77, .. t0).

Since g is injective, we see that » = n. Moreover, if a; > 1 for some j, then
char(k) = p > 0 and for every i we have a; = p for some nonnegative integer e;.
It is easy to see that in this case g is surjective (cf. Exercise 1.4.26). Since we know
that it gives an isomorphism of TV (M) with an open subset of TV (S58P), it follows
that g is an isomorphism. However, this implies a; = 1 for all i. Therefore we have
SeP = M. |

We now turn to the description of toric morphisms. Suppose that X and Y are
affine toric varieties, with tori Tx C X and Ty C Y.

DEFINITION 1.7.14. With the above notation, a toric morphism X — Y is a
morphism of algebraic varieties f: X — Y that induces a morphism of algebraic
groups g: Tx — Ty.

REMARK 1.7.15. Note that if f: X — Y is a toric morphism as above, then f
is a morphism of varieties with torus action, in the sense that
fit-x)=g9(t)- f(x) foreveryteTx,xe€ X.

Indeed, this follows by Lemma 1.5.7 from the fact that we have this equality for
(t,CE) eTxy xTx.
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If ¢: S; — 5o is a semigroup morphism between two integral, finitely generated
semigroups, we get an induced group morphism Si¥ — SSP. We then obtain an
induced morphism f: TV(Sz) — TV(S1) that restricts to a morphism of algebraic
groups TV(S5P) — TV(S$P); therefore f is a toric morphism. The next propo-
sition shows that all toric morphisms arise in this way, from a unique semigroup
homomorphism.

ProrosiTiON 1.7.16. If S1 and Sy are finitely generated, integral semigroups,
then the canonical map

Homsemigp(Sl, SQ) — Homtoric ( TV(SQ), TV(Sl))
is a bijection.

PROOF. By definition, a toric morphism TV(S;) — TV(S;) is given by a
k-algebra homomorphism k[S;] — k[S2] such that the induced homomorphism
[ k[SP] — K[SSP] gives a morphism of algebraic groups TV(S5") — TV(S;P).
It follows from Lemma 1.7.9 that we have a group morphism ¢: S§* — S5P such
that f(x*) = x?™ for every u € S®°. Since f induces a homomorphism k[S;] —
k[Sa], we have ¢(S1) C So, hence ¢ is induces a semigroup morphism S; — So.
This shows that the map in the proposition is surjective and the injectivity is
straightforward. O

REMARK 1.7.17. We can combine the assertions in Proposition 1.7.13 and
1.7.16 as saying that the functor from the category of integral, finitely generated
semigroups to the category of affine toric varieties, that maps S to TV(S), is an
anti-equivalence of categories.

ExAMPLE 1.7.18. If S = N", then TV(S) = A", with the torus (k*)" C A"
acting by component-wise multiplication.

ExaMpPLE 1.7.19. If S = {m € N | m # 1}, then S8 = Z. If we embed X in
A? as the curve with equation u® — v? = 0, then the embedding T ~ k* — X is
given by A — (A2, A3). The action of T on X is described by - (u,v) = (A\2u, A\3v).

EXERCISE 1.7.20. Show that if X and Y are affine toric varieties, with tori
Tx C X and Ty C Y, then X x Y has a natural structure of toric variety, with
torus Tx X Ty. Describe the semigroup corresponding to X X Y in terms of the
semigroups of X and Y.

EXERCISE 1.7.21. Let S be the sub-semigroup of Z3 generated by e1,es,e3
and e; + e — e3. These generators induce a surjective morphism f: k[N*] =
klt1,...,ts] — k[S]. Show that the kernel of f is generated by 1t — t3ts. We
have S8 = Z3  the embedding of T = (k*)3 — X is given by (A1, A2, A3) —
(A1, A2, A3, A A2/ A3), and the action of T on X is induced via this embedding by
component-wise multiplication.

The following lemma provides a useful tool for dealing with torus-invariant
objects. Consider X = TV(S) and let T' = TV(S5%P) be the corresponding torus.
As in the case of any algebraic group action, the action of 7" on X induces an action
of T on O(X) (see Exercise 1.6.18). Explicitly, in our setting this is given by

é-x" =d(u) Iy forall ueS ¢ec Homy, (58P, k™).
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LEMMA 1.7.22. With the above notation, a subspace V. C k[S] is T-invariant
(that is, t - g € V for every g € V') if and only if it is S-homogenous, in the sense

that for every g =3, cqauX" €V, we have x* € V' whenever a, # 0.

PRrROOF. We only need to prove the “only if” part, the other direction being
straightforward. By definition, V' is T-invariant if and only if for every group

morphism ¢: S8 — k* and every g = Y s a.x" € V, we have

S ()" e V.

uesS
Iterating, we obtain

(1.7.1) Z a,(u)"™x* €V forall m>1.

ues
Claim. Given pairwise distinct ui,...,uq € S, we can find ¢ € T such that
d(ui) # d(uyr) for i # /. Indeed, let us choose an isomorphism S8 ~ Z" so
that each u; corresponds to (a;1,...,ain). After adding to each (a;1,...,a;,) the
element (m,...,m) for m > 0, we may assume that a; ; > 0 for all ¢ and j. Since
each polynomial

n n

a ay .

Qi = I I z;" = I I z; 07, for i #1
=1 =1

is nonzero, it follows that the open subset U; ;; defined by @); ;s # 0 is a nonempty
subset of A™. Since A" is irreducible, it follows that the intersection

(k)" n ﬂ Ui
i/
is nonempty, giving the claim.
By applying the claim to those u € S such that a, # 0, we deduce from (1.7.1)
and from the formula for the Vandermonde determinant that x* € V for all u such
that a,, # 0. (]

In the next two exercises we describe the torus-invariant subvarieties of TV(S)
and the orbits of the torus action. We begin by defining the corresponding concept
at the level of the semigroup.

DEFINITION 1.7.23. A face F' of a semigroup S is a subsemigroup such that
whenever uq, us € S have u; + us € F, we have u; € F and us € F.

Note that if F' is a face of S, then S \ F is a subsemigroup of S. Moreover, if
S is generated by uq,...,u,. then a face F' of S is generated by those u; that lie in
F'. In particular, if S is an integral, finitely generated semigroup, then S has only
finitely many faces, and each of these is an integral, finitely generated semigroup.

EXERCISE 1.7.24. Let X = TV(S) be an affine toric variety, with torus T' C X.
A subset Y of X is torus-invariant if t - Y C Y for every t € T.
i) Show that a closed subset Y of X is torus-invariant if and only if each
irreducible component of Y is torus-invariant.
ii) Show that the torus-invariant irreducible closed subsets of X are precisely
the closed subsets defined by ideals of the form

P kx

ueESN\F



1.7. AFFINE TORIC VARIETIES 37

where F'is a face of S.
iii) Show that if Y is the closed subset defined by the ideal in ii), then we
have O(Y') ~ k[F], hence Y has a natural structure of affine toric variety.

EXERCISE 1.7.25. Let X = TV(S) be an affine toric variety, with torus Tx C

i) Show that if M < M’ is an injective morphism of finitely generated, free
Abelian groups, then the induced morphism of tori TV(M') — TV (M) is
surjective.

ii) Show that if F' is a face of S with corresponding closed invariant subset
Y, then the inclusion of semigroups F' C S induces a morphism of toric
varieties fy: X — Y, which is a retract of the inclusion ¥ < X. Show
that the torus Or in Y is an orbit for the action of Tx on X.

iii) Show that the map F' — Op gives a bijection between the faces of S and
the orbits for the T'x-action on X.

We now discuss normality for the varieties we defined. Recall that if R — S is
a ring homomorphism, then the set of elements of S that are integral over R form
a subring of S, the integral closure of R in S (see Proposition A.2.2).

DEFINITION 1.7.26. An integral domain A is integrally closed if it is equal to its
integral closure in its field of fractions. It is normal if, in addition, it is Noetherian.
An irreducible, affine variety X is normal if O(X) is a normal ring.

REMARK 1.7.27. If A is an integral domain and B is the integral closure of A
in its fraction field, then B is integrally closed. Indeed, the integral closure of B in
K is integral over A (see Proposition A.2.3), hence it is contained in B.

ExamMpPLE 1.7.28. Every UFD is integrally closed. Indeed, suppose that A
is a UFD and u = § lies in the fraction field of A and it is integral over A.
We may assume that a and b are relatively prime. Consider a monic polynomial

f=am4cia™ ' 4+ .. ¢, € A[z] such that f(u) = 0. Since
a™ = —b-(cia™ 4. ™Y,

it follows that b divides a™. Since b and a are relatively prime, it follows that b is
invertible, hence u € A.

In particular, we see that every polynomial ring k[zi,...,x,] is integrally
closed.

DEFINITION 1.7.29. An integral, finitely generated semigroup S is saturated if
whenever mu € S for some u € S8 and some positive integer m, we have u € S.

ProrosiTiON 1.7.30. If S is an integral, finitely generated semigroup, the va-
riety TV(S) is normal if and only if S is saturated.

PRrOOF. The rings k[S] C k[S®P] have the same fraction field, and k[S8P] ~
k[t ... '] for some n, so k[S®P] is normal, being a UFD. Therefore k[S] is
normal if and only if it is integrally closed in k[S®P].

Suppose first that k[S] is normal. If w € S8 and if mu € S, then (x*)™ € k[S]
and x" € k[S®P]. As k[S] is integrally closed in k[S&P], it follows that x* € k[S], so
ues.

Conversely, let us assume that S is saturated, and let R be the integral closure
of k[S] in k[S®P]. It is clear that R is a torus-invariant linear subspace of k[S®P],
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hence it follows from Lemma 1.7.22 that it is S8P-homogeneous. In order to show
that R = k[S] it is thus enough to check that for every x* € R, we have u € S. By
assumption, y* satisfies an equation of the form

()™ +ar ()" amx =0,

for a positive integer m and ay,...,a, € k[S]. By only considering the scalar
multiples of x™", we may assume that in fact a; = ¢;x"* for some ¢; € k and
v; € S. It follows that v; + (m — i)u = mu if a; # 0, hence tu = v;. Since some
a; must be nonzero, we have iu € S for some i > 1, and because S is saturated we
deduce u € S. O

EXERCISE 1.7.31. We have seen in Exercise 1.7.24 that if X is an affine toric
variety and Y is a torus-invariant irreducible subset, then Y has a natural structure
of toric variety. Show that if X is normal, then every such Y is normal.



CHAPTER 2

General algebraic varieties

In this chapter we introduce general algebraic varieties. Roughly speaking,
these are objects obtained by gluing finitely many affine algebraic varieties and by
imposing an analogue of the Hausdorff condition. The gluing could be expressed in
terms of atlases (as in differential geometry), but the usual language for handling
this is that of ringed spaces and we take this approach, following | ]. We thus
begin with a brief discussion of sheaves that is needed for the definition of algebraic
varieties. A more detailed treatment of sheaves will be given in Chapter 8.

2.1. Presheaves and sheaves

Let X be a topological space. Recall that associated to X we have a category
Cat(X), whose objects consist of the open subsets of X and such that for every open
subsets U and V of X, the set of arrows U — V contains precisely one element if
U CV and it is empty, otherwise.

DEFINITION 2.1.1. Given a topological space X and a category C, a presheaf
on X of objects in C is a contravariant functor F: Cat(X) — C. Explicitly, this
means that for every open subset U of X, we have an object F(U) in C, and for
every inclusion of open sets U C V', we have a restriction map

PV,U: .F(V) — ]:(U)
that satisfies:
i) puu = Idz @) for every open subset U C X, and
ii) pvu o pw,v = pwu for every open subsets U CV C W of X.

It is common to denote py 7 (s) by s|y. The elements of F(U) are the
sections of F over U. A common notation for F(U) is I'(U, F).

The important examples for us are when C is the category of R-modules or
the category of commutative R-algebras (where R is a fixed commutative ring). In
particular, when R = Z, we have the category of Abelian groups and the category
of rings.

We now introduce sheaves: these are presheaves in which the sections can be
described locally. For the sake of concreteness, whenever dealing with sheaves, we
assume that C is a subcategory of the category of sets and that a morphism in C
is an isomorphism if and only if it is bijective (note that this is the case for the
categories mentioned above).

DEFINITION 2.1.2. Let X be a topological space. A presheaf F on X of objects
in C is a sheaf if for every family of open subsets (U;);ecr of X, with U = J,; Us,
given s; € F(U;) for every i such that

iel

silvinu; = sjlu,nu;  for every 4,5 €1,

39
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there is a unique s € F(U) such that s|y, = s; for all ¢ € T.

REMARK 2.1.3. A special case of the condition in the definition of a sheaf is
that when I = ): in this case it says that F(0) has exactly one element.

ExaMPLE 2.1.4. If X is a topological space, then we have a presheaf Cx g of
R-algebras on X, where Cx g (U) is the R-algebra of continuous functions U — R,
with the restriction maps given by restriction of functions. It is clear that this is a
sheaf, the sheaf of continuous functions on X.

ExXAMPLE 2.1.5. If X is a C°°-manifold, then we have a sheaf of R-algebras
C¥gr on X, where C¥g(U) is the R-algebra of C* functions U — R, with the
restriction maps being given by restriction of functions.

ExXAMPLE 2.1.6. If X is a quasi-affine variety over an algebraically closed field k&,
then we have a sheaf Ox of k-algebras, such that Ox (U) is the k-algebra of regular
functions U — k, with the restriction maps given by restriction of functions. This
is the sheaf of reqular functions on X.

ExXAMPLE 2.1.7. Given a continuous map f: X — Y of topological spaces, we
have a sheaf of sets F on Y such that F(U) is the set of sections of f over U,
that is, of continuous maps s: U — X such that f(s(y)) =y for all y € U; the
restriction maps given by restriction of functions.

REMARK 2.1.8. If C is the category of R-modules, for a ring R, it is sometimes
convenient to rewrite the sheaf condition for F as follows: given an open cover
U = J,; Ui, we have an exact sequence

0 — F(U) - [[Fw) L Fuinuy),

where
a(s) = (slv,): and  B((si)ier) = (si

DEerFINITION 2.1.9. If F and G are presheaves on X of objects in C, a mor-
phism of presheaves ¢: F — G is given by a functorial transformation between the
two contravariant functors. Explicitly, for every open subset U C X, we have a
morphism ¢y : F(U) = G(U) in C such that if U C V are open subsets of X, then

du(slu) = dv(s)lu  for every se F(V).

The same definition applies for sheaves to give the notion of morphism of sheaves.

quﬂUJ‘ - Sj Ul‘ﬁU]’)’L‘,jEI'

It is clear that morphisms of presheaves can be composed and in this way
the presheaves on X of objects in C form a category. We also have the category
of sheaves on X of objects in C, that forms a full subcategory of the category
of presheaves. In particular, we may consider isomorphisms of presheaves or of
sheaves.

DEFINITION 2.1.10. Given a presheaf F on X (of objects in some category C)
and an open subset W of X, we obtain a presheaf F|y on W such that for every
open subset U of W, we take F|w (U) = F(U), with the restriction maps given by
those for F. This presheaf is the restriction of F to W. It is clear that if F is a
sheaf, then F|w is a sheaf. If ¢: F — G is a morphism of presheaves on X, then
we obtain in the obvious way an induced morphism ¢|w : F|lw — Glw. We thus
get a functor from the category of presheaves on X of objects in C to the category
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of presheaves on U of objects in C and a similar functor between the corresponding
categories of sheaves.

From now on we assume, for simplicity, that the category C is either the category
of R-modules or the category of R-algebras, where R is a commutative ring.

DEFINITION 2.1.11. If F is a presheaf on X (of R-modules or of R-algebras),

then the stalk of F at a point « € X is
Fp = hAl FU),
Usx
where the direct limit is over all open neighborhoods of x, ordered by reverse
inclusion. Note that both categories we consider have direct limits. More generally,
if W is an irreducible, closed subset of X, then the stalk of F at W is
Fw = lim F(U),
UNW #0

where the direct limit is over all open subsets U of X, with U N W # 0.

ExAMPLE 2.1.12. If Oy is the sheaf of regular functions on a quasi-affine variety
X and W is an irreducible closed subset of X, then the stalk of Ox at W is the local
ring Ox w of X at W. On general topological spaces, we typically only consider
the stalks at the points of X, but in the case of algebraic varieties, it is sometimes
natural to also consider the more general stalks.

REMARK 2.1.13. As in the case of a quasi-affine variety, we see that in general,
the poset in the definition of Fy is filtering: given two open subsets U and V with
UNW # (0 and VNW # 0, we have (UNV)NW # (), by the irreducibility of W.
As a result, we may describe Fy as the set of all pairs (U, s), for some open subset
U with UNW # () and some s € F(U), modulo the equivalence relation given by
(U,s) ~ (U', ') if there is an open subset V. C U NU’', with VN W # () and such
that s|y = §|v. If s € F(U), for some open subset U with U N W # (), we write
sw for the image of s in Fyy.

REMARK 2.1.14. Note that if ¢: F — G is a morphism of presheaves on X,
then for every irreducible closed subset W C X, we have an induced morphism
dw: Fw — Gw, that maps (U, s) to (U, #(s)). We thus obtain a functor from the
category of sheaves on X with values in C to C.

REMARK 2.1.15. If F is a sheaf on X and s,t € F(U) are such that s, = t,
for every z € U, then s = t.

DEFINITION 2.1.16. Let F be a presheaf of R-modules or R-algebras on a
topological space X. A subpresheaf of F is a presheaf G such that for every open
subset U of X, G(U) is a submodule (respectively, an R-subalgebra) of F(U) and
such that the restriction maps for G are induced by those for F. In this case we
write F C G. It is clear that in this case the inclusion maps define a morphism of
presheaves G — F. If both F and G are sheaves, we say that G is a subsheaf of F.

EXAMPLE 2.1.17. If X is a C*°-manifold, then C¥ g is a subsheaf of Cx r.

DEFINITION 2.1.18. Let C be a category. If f: X — Y is a continuous map
between two topological spaces and F is a presheaf on X of objects in C, then we
define the presheaf f,JF on Y by

LFU) = F (1)),
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with the restriction maps being induced by those of 7. Moreover, if ¢: F — G is a
morphism of presheaves on X, we clearly get a morphism f.F — f.G of presheaves
on Y, so that we have the push-forward functor from the category of presheaves on
X to the category of presheaves on Y. It is easy to see that if F is a sheaf on X,
then f.F is a sheaf on Y.

ExAMPLE 2.1.19. If f: X — Y is a continuous map between topological spaces,
then we have a morphism of sheaves

Cyr = [{Cxr, Cyr(U)3>¢ — dofelxr(f1()).

The following exercises illustrate the advantages of working with sheaves, as
opposed to presheaves.

EXERCISE 2.1.20. Show that if ¢: F — G is a morphism of sheaves, then the
following are equivalent:
i) The morphism ¢ is an isomorphism.
ii) There is an open cover X = |J, U; such that ¢|y, is an isomorphism for
all <.
iii) For every x € X, the induced morphism ¢, is an isomorphism.

EXERCISE 2.1.21. Let F be a sheaf and F; and F5 be subsheaves of F.

i) Show that if there is an open cover X = |J,_; U; such that Fi|y, C Falv,
for every i, then F; C Fo.
ii) Show that if 71 , C Fy , for every € X, then F; C Fs.

icl

EXERCISE 2.1.22. (Gluing morphisms of sheaves) Let X be a topological space
and F and G be sheaves on X (of objects in some subcategory C that satisfies our
usual requirements). If we have an open cover X = (J;.; U; and for every i € I we
have a morphism of sheaves ¢;: F|y, — G|y, such that for every i,j € I we have
bilu.nu; = ¢jlvinu;, then there is a unique morphism of sheaves ¢: F — G such
that ¢|y, = ¢; for all i € I.

EXERCISE 2.1.23. (Gluing sheaves). Let X be a topological space and suppose
that X = J;c; Us is an open cover. Suppose that for every i € I we have a sheaf
Fi on U; (of objects in some subcategory C of the category of sets) and for every
1,7 € I we have isomorphisms

Gyt Fi
that satisfy the following compatibility conditions:

U,; ]:j|Uij7 where Uij =U;N Uj

i) We have ¢;; = Idg|, for every i€ I, and
ii) We have
P j
where Uyj,, = U; NU; N Ug. In this case there is a sheaf 7 on X with
isomorphisms ¢;: F|y, — F; for all i € I, such that
(2.1.1) i 0 Gilu, = bjlo,, forall i jel.

Moreover, if G is another such sheaf, with isomorphisms ¢;: G — F|y, for
every ¢ € I that satisfy the compatibility conditions (2.1.1), then there is
a unique morphism «a: F — G such that 9; o a|y, = ¢; for all i € I.

Uijr © ¢j,i Uij — (bk,i Uijk for all 1, ], kel,
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2.2. Prevarieties

Let k be a fixed algebraically closed field. Given a topological space X and an
open subset U of X, we consider the k-algebra Funx (U) of functions U — k, with
point-wise operations. It is clear that this gives a sheaf Funx of k-algebras on
X, with the restriction maps being induced by restriction of functions. Note that
if f: X — Y is a continuous map of topological spaces, then we have a canonical
morphism of sheaves

Funy — foFunyx, mapping Funy(U)>d ¢ — dof¢€ ]-"unx(ffl(U)).

We begin by defining a category Top; of topological spaces endowed with a
sheaf of k-algebras, whose sections are functions on the given topological space.
More precisely, the objects of this category are pairs (X, Ox), with X a topological
space and Ox a sheaf of k-algebras on X which is a subsheaf of Funy. The sheaf
Ox is the structure sheaf. A morphism in this category f: (X,0x) — (Y, Oy) is
given by a continuous map f: X — Y such that the morphism of sheaves Funy —
f«Funyx induces a morphism Oy — f,Ox; in other words, for every open subset
U of Y and every ¢ € Oy (U), we have ¢ o f € Ox (¢ 1(U)). It is clear that
composition of continuous maps induces a composition of morphisms that makes
Top, a category.

EXAMPLE 2.2.1. Let (X,Ox) be an object in Top,. If U is an open subset of
X, then we obtain another object (U, Oy) in Top,,, where Oy = Ox|y. Note that
the inclusion map induces a morphism (U, Oy) — (X, Ox) in Top,.

REMARK 2.2.2. Let (X,0x) and (Y,Oy) be two objects in Top,. If X =
U,er Ui is an open cover and a;: U; — X is the inclusion map, then a map f: X —
Y is a morphism if and only if each f o «; is a morphism. Indeed, this follows from
the fact that continuity is a local property and the fact that Ox is a sheaf.

EXAMPLE 2.2.3. An isomorphism (X, Ox) — (Y, Oy) in Top,, is a homeomor-
phism f: X — Y such that for every open subset U of Y and every ¢: U — k, we
have ¢ € Oy (U) if and only if ¢o f € Ox (f~1(U)).

EXAMPLE 2.2.4. If X is a locally closed subset of some A™, then (X,Ox) is
an object in Top,. Note that if U is an open subset of X, then Oy = Ox|y.

ExaMPLE 2.2.5. If X and Y are locally closed subsets of A™ and A", re-
spectively, then a morphism f: X — Y as defined in Chapter 1 is the same as a
morphism (X,0x) — (Y,0Oy) in Top;,. Indeed, we know that if f: X - Y is a
morphism, then f is continuous and for every open subset U in Y and every regular
function ¢: U — k, the composition ¢ o f is regular (see Propositions 1.4.13 and
1.4.14). Conversely, if f: X — Y gives a morphism in Top, and if p;: Y — k is
induced by the i** projection A" — k, then it follows from definition that p; o f
is a regular function on X for every i; therefore f is a morphism as defined in
Chapter 1.

We enlarge one more time our notion of affine variety, as follows.

DEFINITION 2.2.6. We say that an object (X,Ox) in Top, is an affine variety
if it is isomorphic to (V, Oy ) for some closed subset of an affine space A"™. We say
that (X, Ox) is a quasi-affine variety if it is isomorphic to (V, Oy ) for some locally
closed subspace of an affine space A™.
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DEFINITION 2.2.7. An algebraic prevariety over k (or simply prevariety) is a
pair (X,0x), with X a topological space and Ox of subsheaf of k-algebras of
Funx, such that there is a finite open covering X = (J;_, U;, with each (U;, Oy,)
being an affine variety.

EXAMPLE 2.2.8. A quasi-affine variety (V, Oy ) is a prevariety. Indeed, we may
assume that V is a locally closed subset of some A™ and we know that there is a
finite cover by open subsets V' = Vi,...,V, such that each (V;, Oy;) is isomorphic
to an affine variety (see Remark 1.4.20).

NoTATION 2.2.9. By an abuse of notation, we often denote a prevariety (X, Ox)
simply by X.

DEFINITION 2.2.10. The category of algebraic prevarieties over k is a full sub-
category of Top,. In other words, if (X,0x) and (Y,Oy) are prevarieties, then
a morphism of prevarieties (X,0x) — (Y,0Oy) is a continuous map f: X — Y
such that for every open subset U of Y and every ¢ € Oy (U), we have ¢ o f €
Ox (f~1(U)).

REMARK 2.2.11. While strictly speaking we have enlarged our notion of quasi-
affine varieties, in fact our old category of quasi-affine varieties and the new one
are equivalent.

PROPOSITION 2.2.12. Every prevariety X s a Noetherian topological space. In
particular, it is quasi-compact.

PROOF. By assumption, we have a finite open cover X = U; U ... U U,, such
that each U; is Noetherian. Given a sequence

FLDF,D. ..
of closed subsets of X, for every i, we can find n; such that F, NU; = F,11 NU;
for all n > n;. Therefore we have F,, = Fj, 1 for every n > max; n;, and we thus
see that X is Noetherian. O

REMARK 2.2.13. For every prevariety (X, Ox), the sheaf Ox is a subsheaf of
Cx, where Cx(U) is the k-algebra of continuous functions U — k. Indeed, this
assertion can be checked locally, and thus follows from the fact that it holds on
affine varieties.

REMARK 2.2.14. For every prevariety X, the affine open subsets of X give a
basis for the topology of X. Indeed, this follows from the definition of a prevariety
and the fact that the assertions holds if X is affine.

REMARK 2.2.15. If (X,Ox) is a prevariety and ¢ € Ox(U), for some open
subset U of X, then the set
Vi={xeU]|¢px)+#0}
is an open subset of X and the function é lies in Ox (V). Indeed, this follows from

the fact that the assertion holds on affine varieties.

REMARK 2.2.16. If X is a prevariety and W is an irreducible closed subset of
X, then we can define Ox w as in Chapter 1. This is, in fact, equal to the stalk
of Ox at W. If U is an affine open subset with UNW # () and p C Ox(U) is the
corresponding ideal, then we have canonical isomorphisms

Ox.w ~ Opvnw =~ Ox (U)y.
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We know that the functor mapping X to O(X) gives an equivalence of cate-
gories between the category of affine varieties over k and the category of reduced,
finite type k-algebras. The following exercise gives an explicit construction of the
inverse functor. This point of view is useful in several instances, for example when
discussing the Proj construction.

EXERCISE 2.2.17. Recall that if R is any commutative ring, then we have
the maximal spectrum MaxSpec(R), a topological space with the underlying space
consisting of all maximal ideals in R (see Exercise 1.1.16). Suppose now that R
is an algebra of finite type over an algebraically closed field k. Recall that in this
case, for every m € MaxSpec(R), the canonical homomorphism k& — R/m is an
isomorphism. For every open subset U of MaxSpec(R), let O(U) be the set of
functions s: U — k such that for every o € U, there is an open neighborhood
U, CU of z and a,b € R such that for every m € U,, we have

bgm and sm)=a-b
where we denote by u € k ~ R/m the class of u € R.

1) Show that O is a sheaf such that the pair (MaxSpec(R),O) defines an
element in Top, that, by an abuse of notation, we denote by MaxSpec(R),
too.

2) Show that given a homomorphism of reduced, finite type k-algebras R —
S, we have an induced morphism MaxSpec(S) — MaxSpec(R) in T opy,, so
that we get a functor from the category of reduced, finite type k-algebras
to Topy,.

3) Show that for every R as above, MaxSpec(R) is an affine variety. More-
over, the functor MaxSpec is an inverse of the functor from the category
of affine varieties to the category of reduced, finite type k-algebras, that
maps X to O(X).

2.3. Open and closed immersions

DEFINITION 2.3.1. Let (X, Ox) be an object in Top,. If Z is a locally closed
subset of X, then we define a subsheaf Oz of Cz, as follows. Given an open
subset U of Z, a function ¢: U — k lies in Oz(U) if for every « € U, there is
an open neighborhood V of z in X and ¢ € Ox(V) such that ¢(u) = ¢(u) for
u e VNX CU. It is clear that restriction of functions makes Oz a presheaf of
k-algebras. Moreover, since the condition in the definition is local, Oz is a sheaf,
hence (Z,Oz) is an object in Topy,.

REMARK 2.3.2. If X and Z are as in the above definition and Y is a locally

closed subset of Z, then it follows from the definition that the sheaves on Y defined
from (X,Ox) and from (Z,0yz) are equal.

ExaMpLE 2.3.3. If Z is open in X, then the sheaf Oy defined above is just
Ox|z.

ExXAMPLE 2.3.4. If X is a locally closed subset in A", then the sheaf Ox on X
defined from (A", Oan) is the sheaf of regular functions on X. This is an immediate
consequence of the definition of regular functions on locally closed subsets of A™.

PROPOSITION 2.3.5. For every prevariety (X, Ox) and every locally closed sub-
set Z of X, the pair (Z,0z) is a prevariety.
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PrOOF. Note that by assumption, we have an open cover X = V; U... UV,
such that each (V;,Oy,) is an affine variety. Since it is enough to show that each
(VinZ,0z|v,nz) is a prevariety and Ogz|y,nz is the sheaf defined on Z NV, as
a locally closed subset of V; (see Remark 2.3.2), it follows that we may and will
assume that X is a closed subset of A™ and Ox is the sheaf of regular functions
on X. In this case, it follows from Example 2.3.4 that Z is a quasi-affine variety,
hence a prevariety by Example 2.2.8. O

DEFINITION 2.3.6. A locally closed subvariety of a prevariety (X,Ox) is a
prevariety (Z,0z), where Z is a locally closed subset of X and Oy is the sheaf
defined in Definition 2.3.1. By the above proposition, this is indeed a prevariety. If
Z is in fact open or closed in X, we say that we have an open subvariety, respectively,
closed subvariety of X.

DEFINITION 2.3.7. Note that if Z is a locally closed subvariety of X, then the
inclusion map i: Z — X is a morphism of prevarieties. A morphism of prevarieties
f: X =Y is alocally closed (open, closed) immersion (or embedding) if it factors
as A

XL z-5y,
where ¢ is an isomorphism and ¢ is the inclusion of a locally closed (respectively,
open, closed) subvariety.

PROPOSITION 2.3.8. If f: X = Y is a locally closed immersion, then for every
map g: W — Y, there is a morphism h: W — X such that g = f o h if and only if
g(W) C f(X). Moreover, in this case h is unique.

PROOF. It is clear that if we have such h, then g(W) = f(h(W)) C f(X),
hence it is enough to prove the converse. Moreover, since we may replace X by
an isomorphic variety, we may assume that f is the inclusion of a locally closed
subvariety. Since f is injective, it is clear that if g(W) C f(X), then there is
a unique map h: W — X such that foh = g. We need to prove that h is a
morphism. Note first that since X is a subspace of Y, the map h is continuous.
Furthermore, if Y = V3 U... UV, is an open cover such that each V; is affine, in
order to show that h is a morphism it is enough to show that each induced map
R~ (f~1(Vi)) — f~(V) is a morphism (see Remark 2.2.2). Therefore we may
assume that Y is an affine variety, in which case the assertion is clear. O

ProrosiTiON 2.39. If f: X — Y is a morphism of prevarieties, then the
following are equivalent:
i) The morphism f is a closed immersion.
ii) For every affine open subset U of Y, its inverse image f~1(U) is affine,
and the induced k-algebra homomorphism Oy (U) — Ox (f~*(U)) is sur-
Jective.
iii) There is a finite cover Y = Uy U...UU, by affine open subsets such that
for every i, the inverse image f~1(U;) is affine, and the induced k-algebra
homomorphism Oy (U;) = Ox (f~1(U;)) is surjective.

PrOOF. We first prove the implication i)=-ii). Suppose that f factors as
x4 z-4y,
with g an isomorphism and ¢ the inclusion map of a closed subvariety. If U C Y is
an affine open subset, then U N Z is a closed subvariety of an affine variety, hence
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it is affine, and the restriction map induces a surjection O(U) — O(U N Z). Since
the induced morphism f~!(U) — UN Z is an isomorphism, we obtain the assertion
in i).

Since the implication ii)=+iii) is trivial, in order to complete the proof it is
enough to show iii)=-1). With the notation in iii), we see that each induced mor-
phism f~1(U;) — U; is a closed immersion. In particular, it is a homeomorphism
onto its image, which is a closed subset of Y. This easily implies that f is a home-
omorphism onto its image, which is a closed subset of Y. Let Z be the closed
subvariety of Y with underlying set f(X). We need to show that the inverse map
¢: Z — X is a morphism. Since X = |J, f~1(U;), it follows from Remark 2.2.2
that it is enough to check that each ¢~ (f~*(U;)) — f~'(U;) is a morphism. This
is clear, since f~1(U;) — U; is a closed immersion. O

REMARK 2.3.10. A morphism f: X — Y is a locally closed immersion if and

only if there is an open subset U of Y such that f factors as X —» U REIN Y, with
g a closed immersion and j the inclusion morphism.

One way to construct algebraic prevarieties is by glueing. This is the content
of the next exercise.

EXERCISE 2.3.11. Let X1, ..., X, be prevarieties and for every i and j, suppose
that we have open subvarieties U; ; C X; and isomorphisms ¢; ;: U; ; — Uj;,; such
that

i) We have U, ; = X; and ¢, ; = Idx, for every i, and

ii) @)k o di; = @ik on U ;N ¢ZJ‘1(Uj,k) C Ui k-
In this case, there is a prevariety X and an open cover X = U; U...UU, and
isomorphisms f;: U; — X; such that for every i and j, we have

UiﬂUj:ffl(Ui,j) and ¢;j0fi=f; on U NUj.

Moreover, if Y is another such prevariety with an open cover ¥ = V; U... UV,
and isomorphisms g;: V; — X; that satisfy the same compatibility condition, then
there is a unique isomorphism h: X — Y such that A(U;) = V; and g; o h = f; for
1<i<r.

EXAMPLE 2.3.12. Let X and Y be two copies of Alandlet UC X andV CY
be the complement of the origin. We can apply the previous exercise to construct
a prevariety Wy by glueing X and Y along the isomorphism U — V given by the
identity. This prevariety is the affine line with the origin doubled. On the other
hand, we can glue X and Y along the isomorphism U — V corresponding to the
k-algebra isomorphism

klz, 271 = k[z,27'], = — 2t
As we will see in Chapter 4, the resulting prevariety is the projective line P!,

EXERCISE 2.3.13. Show that if f: X — Y and ¢g: Y — Z are locally closed
(respectively open, closed) immersions, then g o f is a locally closed (respectively
open, closed) immersion.

We end this section by extending to arbitrary prevarieties some properties that
we proved for affine varieties. We then apply these properties to prove a sufficient
criterion for a variety to be affine.
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PROPOSITION 2.3.14. For every prevarieties X and Y, with X affine, the map
Hom(Y, X) = Homy a1, (Ox (X), Oy (Y))
that maps f to the homomorphism taking ¢ to ¢ o f is a bijection.

PrROOF. Recall that we know this result if Y is affine, too (see Theorem 1.4.16).
We denote the map in the proposition by ay. We first show that ay is injective
for all Y. Suppose that f,¢g: Y — X are morphisms such that ay (f) = ay(g).
Consider an affine open cover ¥ = U2=1 U;. For every i, the composition

O0x(X) 0 0, (v) 25 0y (Uy),

where f3; is given by restriction of functions, is equal to ay, (f
tion holds for g. Our assumption of f and g thus gives

ay;, (f

for all 4, and since the U; are affine, we conclude that f
that f = g, completing the proof of injectivity.

We now prove the surjectivity of ay for every Y. Let ¢: Ox(X) — Oy (Y) be
a k-algebra homomorphism. We consider again the affine open cover Y = JI_, U;
and consider ¢; = f3; o ¢. Since each U; is affine, there are morphisms f;: U; — X
such that ay, (f;) = ¢; for all i.
Claim. For every i and j, we have f;|y, , = fj|Ui7j, where U; j = U; NUj. Indeed,
ay, ;(filu, ;) is equal to the composition

U,). A similar asser-

Ui) = an(g Ui)

u; = glu,- This implies

Ox(X) i) Oy(Y) — Oy(Ui,j),

where the second map is given by restriction of functions, and the same holds for
ay, ;(f;lu,,;). Since we already know that ay, ; is injective, we obtain the assertion
in the claim.

We deduce from the claim that we have a morphism f: Y — X such that
flu;, = fi for all 4. This implies that ay (f) = ¢: indeed, since the morphism

Oy(Y) — IL[ Oy (U;)

is injective, it is enough to note that
Bio¢=d;=ay(fi) =Bioay(f)
for all 4. This completes the proof of the proposition. (]
PROPOSITION 2.3.15. Let X be a prevariety and f € T'(X,Ox). If

Dx(f) ={z € X | f(z) # 0},
then the restriction map

I'(X,0x) = T'(Dx(f),0x)
induces a k-algebra isomorphism

(X, 0x); ~T'(Dx(f), Ox).
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PRrOOF. Since f(x) # 0 for every x € Dx(f), it follows that f|p, (s is invert-
ible (see Remark 2.2.15). By the universal property of localization, we see that the
restriction map induces a k-algebra homomorphism

TX,f* F(X, Ox)f — F(Dx(f), OX)

We will show that this is an isomorphism. Recall that we know this when X is
affine (see Proposition 1.4.7).

Consider an affine open cover X = Uy U...UU,. Since Ox is a sheaf, we have
exact sequences of I'(X, Ox )-modules

0— I'(X,0x) = PT(U;, 0x) - PT(U; N U;, Ox)
i i
and
0—T(Dx(f),0x) = T (Uin Dx(f),0x) = EPT(U; N U; N Dx(f), Ox).
i i,
By localizing the first sequence at f, we obtain again an exact sequence, and we
thus get a commutative diagram

0 ——TI'(X,0x)y ILT Ui, Ox)y [L,; TU:iNU;,0x)y

0 ——T(Dx(f),0x) —= L, T(Dx(f)NU;,O0x) —[1, ; T (Dx(f) N U; N U;,0x)

with exact rows, where

Y= (Tv,.flv,)i and = (Tv,nu;, fluinu; i-

Note that since each Uj; is affine, we know that 7 is an isomorphism. This implies
that 7x s is injective. Since this holds for all (X, f), applying the assertion for
(Us NUj, flu,nu; ), we conclude that ¢ is injective. An easy diagram chase then

implies that 7x ; is surjective. This completes the proof of the proposition. O

PROPOSITION 2.3.16. Let X be a prevariety and let f1,..., fr € I'(X,Ox) such
that the ideal they generate is T'(X,Ox). If Dx(fi) is an affine variety for every i,
then X is an affine variety.

PrROOF. We put R = T'(X,0x). This is clearly a reduced k-algebra. By
assumption, we can write

Zfl-gi =1 for some g¢gi,...,9- € R.
i=1
We begin by showing that R is a finitely generated k-algebra. Since each
Dx(f;) is affine, we know that I‘(DX(fi), OX) is a finitely generated k-algebra. By
Proposition 2.3.15, we have a canonical isomorphism

Ry, ~T(Dx(f:),0x),
hence each Ry, is a finitely generated k-algebra. For each Ry,, we choose finitely
many generators of the form f‘fiﬁj , for suitable a; ; € Rand m; ; € Z>p. Let SC R

be the k-algebra generated b}if the a; ;, by the f;, and by the g;. It follows that
S is a finitely generated k-algebra, with fi,..., f, € S, such that they generate
the unit ideal in S. Moreover, we have Sy, = Ry, for all 4. This implies that if
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M is the S-module R/S, we have My, = 0 for all 4, and therefore M = 0 (see
Proposition C.3.1). Therefore R = S, hence R is a finitely generated k-algebra.

Recall that we have the functor MaxSpec on the category of reduced, finitely
generated k-algebras, with values in the category of affine varieties that is the inverse
of the functor that maps Y to I'(Y, Oy) (for what follows, the choice of an inverse
functor does not actually play a role). Since R is finitely generated, it follows from
Proposition 2.3.14 that we have a canonical morphism px : X — MaxSpec(R) such
that the induced k-algebra homomorphism

R~ I‘(MaxSpec(R), OMaxSpcc(R)) - T'(X,0x)

is the identity. We show that px is an isomorphism.
In fact, it is easy to see explicitly what the map px: for every z € X, we have

px(x) ={¢p € R|$(x) =0}
This follows from the fact that the bijection in Proposition 2.3.14 is functorial,
applied to the inclusion {z} < X. The elements f; € R define open subsets

U; = {m € MaxSpec(R) | f; € m}
and since f1,..., f, generate the unit ideal in R, it follows that MaxSpec(R) =
U; Ui. On the other hand, it follows from the description of px that p)_(l(Ul-) =
Dx(f;) and via the isomorphism Ry =~ F(Dx(fi),(’)x) provided by Proposi-
tion 2.3.15, the induced map p)_(l(Ui) — U; gets identified to

pDX(fi): DX(fi) — MaXSpeC(F(Dx(fi), ODX(fi)))’
which is an isomorphism since Dx(f;) is affine. Since each induced morphism
p;(l(Ui) — U, is an isomorphism, it follows that px is an isomorphism, hence X is
affine. ([l

2.4. Products of prevarieties

We now show that the category of prevarieties has fibered products. We begin
with the case of direct products.

PROPOSITION 2.4.1. The category of prevarieties over k has direct products.

PrROOF. We show that given two prevarieties X and Y, there is a topology on
the set X x Y and a subsheaf of k-algebras Ox«y C Funxxy that make X x Y,
together with the two projections, the direct product in the category of prevarieties.
Let us consider open covers X = Uy U...UU, and Y =V, U... UV, with all U;
and V; affine varieties. We can thus write

XxY = JUuixV;.
i
Note that each U; x V; has the structure of an affine variety; in particular, it is
a topological space, with a topology that is finer than the product topology (see
Corollary 1.6.2). Note that for every two pairs (i1, j1) and (s, j2), we have a priori
two structures of algebraic prevariety on

(2'4'1> (Uil X VJ1) N (Ui2 X ij)’
one coming from U;, x Vj, and the other one from U;, x V;,. However, they are

the same, both being equal to the structure of prevariety on the quasi-affine variety
(Ui, NU;,) x (V3, NV;,). This follows from the fact that if A and B are affine (or,
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more generally, quasi-affine) varieties and if Uy C A and Ug C B are open subsets,
then the open subvariety Us x U of A x B is the product of U4 and Up in the
category of quasi-affine varieties, which characterizes it uniquely, up to a canonical
isomorphism.

It is then easy to see that if we declare that a subset W of X x Y is open if and
only if W N (U; x V;) is open for all ¢ and j, then this gives a topology on X x Y
such that the topology on each U; x V; is the subspace topology. Note that the
topology on X X Y is finer than the product topology. Moreover, if given an open
subset W C X x Y and a function ¢: W — k, we put ¢ € Oxxy (W) when

dlwnw.xv;) € Ovixv; (W N (U x V;))  for all i, 4,

then Oxyy is a subsheaf of Funxyy such that Ox«y
and j.

We now show that with this structure, the two projections p: X x Y — X
and ¢: X XY — Y make X x Y the direct product of X and Y in the category
of prevarieties. Note first that since X x Y is covered by the affine open subsets
U; x Vj, it follows that X x Y is a prevariety. Second, both projections p and ¢ are
morphisms: for example, for p this follows from the fact that each projection U; x
V; — U, is a morphism (see Remark 2.2.2). Given a prevariety Z and morphisms
f:Z — X and g: Z — Y, there is a unique map h: Z — X XY such that poh = f
and g o h = g, namely h(z) = (f(z),g(z)) for every z € Z. In order to check that
this is a morphism, note first that for every ¢ and j, the subset

WU x V) = fHU) g™ N (V)

is open in Z. Moreover, the restriction of h to this subset is a morphism: by
Remark 2.2.2, in order to check this, it is enough to show that the restriction of h
to the subsets in an affine open cover of h=(U; x V;) is a morphism; this follows
from the fact that U; x Vj is the direct product of U; and Vj in the category of
affine varieties. This completes the proof of the proposition. O

U;xV; = OUin/j for all ¢

REMARK 2.4.2. It follows from the proof of the proposition that the product
of two prevarieties X and Y has as underlying set the Cartesian product X x Y
and the topology is finer than the product topology.

EXERCISE 2.4.3. Show that if f: Z — X and g: W — Y are locally closed
(open, closed) immersions, then we have an induced locally closed (respectively,
open, closed) immersion

ZxW = XxY, (z,w)—= (f(z),9w)).

REMARK 2.4.4. If X and Y are irreducible prevarieties, then X x Y is irre-
ducible.

Proor. Consider affine open covers
X=UU...UlU, and Y=V U...UV,.

Since each U; x Vj is irreducible by Corollary 1.6.7, it is enough to note that each
intersection

(U % V) 0 (U 0 Vi) = (U: N U) x (V; 1 V)
is nonempty (see Exercise 1.3.17). O
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DEFINITION 2.4.5. Given a morphism of prevarieties f: X — Y, the graph
morphism of f is the morphism js: X — X x Y given by js(z) = (:c,f(:r)) Note
that this is indeed a morphism by the universal property of the product. The graph
of f is the image I'y of j;. When f = idx, the graph of f is the diagonal Ax of
X x X.

PROPOSITION 2.4.6. For every morphism f: X — Y, the graph morphism
Jr: X = X XY is a locally closed embedding.

PRrOOF. For every z € X, let V,, CY be an affine open neighborhood of f(z)
and U, C f~1(V,) an affine open neighborhood of . If U = Usex Uz x Vg, then
it is clear that the image of j; is contained in U. Therefore it is enough to show
that the induced morphism j}: X — U is a closed immersion. We also note that
since U is quasi-compact, the union in the definition of U can be taken over a finite
subset of X. Since (%)™ (Uy x Vi) = U, is affine, in order to complete the proof of
the proposition, it is enough to show that when X and Y are affine, the morphism
jjﬁé: O(X xY) — O(X) is surjective. We may assume that X is a closed subset of
A™ and Y is a closed subset of A™. We denote by z1,...,z, the coordinates on
A™ and by yi, ...,y the coordinates on A™. Let us write f = (f1,..., fn), with
fi € O(X) for 1 <i < n. In this case, j;fﬁ is given by

]?(ml)zxz and jf(yj):fj for 1<i<m,1<j<n.

and it is clear that this is surjective. (I

We now prove the existence of fibered products in the category of prevarieties.

PRrROPOSITION 2.4.7. Let f: X — Z and g: Y — Z be morphisms of prevari-
eties. If

W ={(z,y) e X xY | f(z) =g(y)},

then W is a locally closed subset of X x'Y and (W,Ow), with the restrictions of
the two projections is the fiber product X X z Y in the category of prevarieties.

ProoOF. Consider the morphism h: X x Y — Z x Z given by h(z,y) =
(f(x),g(y)). It follows from Proposition 2.4.6 that the diagonal Ay C Z x Z
is locally closed in Z x Z, hence W = h™1(Ay) is locally closed in X x Y. We now
consider on W the structure of locally closed subvariety of X x Y. Let p: W — X
and g: W — Y be the restrictions of the two projections to W. We need to
show that given a prevariety 7" and morphisms «: T'— X and g: T — Y such that
foa = gopf, there is a unique morphism ~: T" — W such that poy = « and goy = .
Uniqueness of v as a map is clear: in fact, we need to have v(t) = («(t), 5(t)) for
all t € T. In order to check that this is a morphism, note that the composition
T — W < X XY is a morphism since X X Y is the direct product of X and Y,
and thus 7y is a morphism by Proposition 2.3.8. O
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ExXAMPLE 2.4.8. If f: X — Y is a morphism of prevarieties and Z is a locally
closed subset of Y, then we have a Cartesian diagram®

FHW)
)

in which ¢ and j are the inclusion morphisms. Indeed, the assertion is an immediate
application of Proposition 2.3.8.

REMARK 2.4.9. Given a Cartesian diagram
XxzY —X

|

with X, Y, and Z are affine varieties, it follows that X xy Z is affine too: this
follows from the fact that it is a closed subvariety of X xY. Moreover, the canonical
homomorphism
O(X) ®o(y) O(Z) = O(X xy Z)

is surjective, with the kernel being the nil-radical of O(X)®¢(y)O(Z). This follows
from the anti-equivalence of categories between affine varieties over k and reduced,
finitely generated k-algebras, by noting that the tensor product gives the push-out
in the category of k-algebras, hence the reduced tensor product gives the push-out
in the category of reduced k-algebras.

2.5. Algebraic varieties

Algebraic varieties are prevarieties that satisfy an analogue of the Hausdorff
condition. Note that the Zariski topology is almost never Hausdorff: if X is an
irreducible prevariety, then any two nonempty open subsets intersect nontrivially.
The right condition is suggested by the following observation: if X is an arbitrary
topological space and if we consider on X x X the product topology, then X is
Hausdorff if and only if the diagonal Ax is closed in X x X.

DEFINITION 2.5.1. An algebraic prevariety X is separated if the diagonal Ax
is a closed subset of the prevariety X x X. An algebraic variety over k (or simply,
a variety) is a separated algebraic prevariety.

REMARK 2.5.2. It follows from Proposition 2.3.8 that the diagonal map X —
X x X, given by  — (x, ) is always a locally closed immersion for every prevariety
X. Hence X is separated if and only if this map is a closed immersion.

REMARK 2.5.3. If f,g: X — Y are morphisms of prevarieties and Y is sepa-
rated, then the set
{re X | f(x) =g(x)}
is closed in X. Indeed, this is just the inverse image of the diagonal Ay CY x Y
by the morphism X — Y x Y, that maps x to (f(z),g(z)). Because of this, the

1Recall that this means that it is a commutative diagram such that the induced morphism
F~1(W) — X xy W given by the universal property of the fiber product is an isomorphism.
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considerations in Section 1.5 about the domain of rational maps extend to the case
of arbitrary algebraic varieties.

ProrosITION 2.5.4. The following hold:

i) If Z is a subvariety of the prevariety X and X is separated, then Z is
separated. In particular, quasi-affine varieties are separated.

i) If f: X = Y is a morphism of prevarieties and Y is separated, then the
graph morphism j: X — X xY, given by j¢(z) = (x,f(m)) is a closed
immersion.

iii) If X andY are algebraic varieties, so is X XY . More generally, if f: X —
Z and g:' Y — Z are morphisms of varieties, then X Xz Y is a closed
subvariety of X XY, and therefore it is a variety.

PRrROOF. If Z is a locally closed subvariety of X, then Z x Z is a locally closed
subvariety of X x X and Ay = (Z x Z) N Ax. It follows that if Ax is closed in
X x X, then Az is closed in Z x Z. Note now that if X = A™, with coordinates
T1,...,Tyn, then Ax is the closed subset of A™ x A™ defined by 1 —y1,...,Tn —Yn-
We thus conclude that every quasi-affine variety is separated.

Under the assumptions in ii), we know that j; is a locally closed embedding by
Proposition 2.4.6. Its image is the inverse image of Ay by the morphism h: X XY —
Y x Y given by h(z,y) = (f(ac),y)7 hence it is closed in X x Y. Therefore is is a
closed immersion.

Suppose now that X and Y are varieties. If

Pra3: (X XY)X (X xY)=>XxX and pog: (X xY)x (X xY)=>Y xY
are the projections given by

p1,3(T1, Y1, T2, y2) = (1,22) and  paa(x1,y1,22,y2) = (Y1,%2),

then Axxy = pié(Ax)ﬂpi}l(AY) and it is thus a closed subset of (X xY)x (X xY).
This shows that X x Y is a variety. Moreover, it follows from Proposition 2.4.7
that the fiber product X xz Y is a locally closed subvariety of X x Y, hence it is
a variety by i). In fact it is a closed subvariety, since its underlying subset is the
inverse image of Az via the morphism

X XY = Zx2Z, (x,y) = (f(x),9(y)).

The following property is sometimes useful:

ProrosITION 2.5.5. If X is an algebraic variety and U, V are affine open
subvarieties of X, then U NV is affine, too.

Proor. Consider the closed immersion i: X — X x X given by the diagonal
map. If U and V are affine variety, then U x V is affine. Since UNV =i~}(U x V),
we see that U NV is affine by Proposition 2.3.9. (I

PROPOSITION 2.5.6. Let X be a prevariety and suppose that we have an open
cover X = Uy U...UU, by affine open subsets. Then X is separated if and only if
for every i and j, the intersection U; N U; is an affine variety and the homomor-
phism O(U;) @, O(U;) — O(U; NU;) induced by the restriction homomorphisms is
surjective.
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ProoOF. We know that X is separated if and only if the diagonal morphism
i: X = X x X is a closed immersion. The assertion in the proposition is now an
immediate consequence of the description of closed immersions in Proposition 2.3.9,
using the fact that the canonical homomorphism

is an isomorphism (see Section 1.6). O

ExXAMPLE 2.5.7. Let us consider the two examples in Example 2.3.12. If X is
obtained by glueing two copies of A! along the identity automorphism of A~ {0},
then X is covered by two affine open subsets U and V such that U ~ Al ~ V|
UNV >~ A< {0}, and the morphism

E[z,y] = O(U x V) = O(UNV) = k[t,t 7]

maps both z and y to ¢. This is clearly not surjective, hence X is not separated. On
the other hand, if Y is obtained by glueing two copies of A! along the automorphism
of A'~ {0} given by t — ¢t~1, then Y is also covered by two affine open subsets U
and V such that U ~ A ~V, UNV ~ Al < {0}, but now the morphism

klz,y) = OU x V) = OUNV) = k[t,t™]
maps z to t and y to t~ . This is surjective, hence Y is separated.

EXERCISE 2.5.8. i) Show that if X5,..., X,, are algebraic varieties, then
on the disjoint union X = | |I”, X; there is a unique structure of algebraic
variety such that each inclusion map X; < X is an open immersion .

ii) Show that every variety X is a disjoint union of connected open subvari-
eties; each of these is a union of irreducible components of X.

ili) Show that if X is an affine variety and R = O(X), then X is disconnected
if and only if there is an isomorphism R ~ R; X R, for suitable nonzero
k-algebras R, and Rs.

EXERCISE 2.5.9. Let f: X --» Y be a rational map between the irreducible
varieties X and Y. The graph I'y of f is defined as follows. If U is an open subset
of X such that f is defined on U, then the graph of f|y is well-defined, and it is
a closed subset of U x Y. By definition, I'; is the closure of the graph of f|y in
X xY.

i) Show that the definition is independent of the choice of U.

ii) Let p: T'y — X and ¢: I'y — Y be the morphisms induced by the two
projections. Show that p is a birational morphism, and that ¢ is birational
if and only if f is.

iii) Show that if the fiber p~!(z) does not consist of only one point, then f is
not defined at = € X.






CHAPTER 3

Dimension theory

In this chapter we prove the main results concerning the dimension of algebraic
varieties. We begin with some general considerations about Krull dimension in
topological spaces. We then discuss finite morphisms between affine varieties and
show that they are closed maps and preserve the dimension of closed subsets. We
then give a proof of the Principal Ideal theorem that relies on Noether normalization
and use this to deduce the main properties of dimension for algebraic varieties.
The last two sections are devoted to the behavior of the dimension of the fibers of
morphisms and to the Chevalley constructibility theorem.

3.1. The dimension of a topological space

DEFINITION 3.1.1. Let X be a nonempty topological space. The dimension
(also called Krull dimension) of X, denoted dim(X), is the supremum over the
non-negative integers r such that there is a sequence

Zo221...2 Zy,
with all Z; closed, irreducible subsets of X. We make the convention that if X is
empty, then dim(X) = —1.

In particular, we may consider the dimension of quasi-affine varieties, endowed
with the Zariski topology. Note that in general we could have dim(X) = oo, even
when X is Noetherian, but this will not happen in our setting.

DEFINITION 3.1.2. Let R # 0 be a commutative ring. The dimension (also
called Krull dimension) of R, denoted dim(R), is the supremum over the non-
negative integers r such that there is a sequence

PoGpP1 G &P
with all p; prime ideals in R. We make the convention that dim(R) = —1 when
R=0.

REMARK 3.1.3. It follows from Corollary 1.1.10 and Proposition 1.3.8 that if
X is an affine variety, we have dim(X) = dim (O(X )) More generally, for every
commutative ring R one can interpret the dimension of R as the dimension of a
topological space, as shown in the following exercise.

EXERCISE 3.1.4. Let R be a commutative ring and consider the spectrum of R:
Spec(R) := {p | p prime ideal in R}.
For every ideal J in R, consider
V(J) ={p € Spec(R) | J C p}.
Show that the following hold:

57
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i) For every ideals Jy, Jo in R, we have
V(W) UV (Jy) =V (JiNJy) =V (Jy - Ja).

ii) For every family (J4), of ideals in R, we have

OV(JQ) =V (Za: Ja> :

iii) We have
V(0) = Spec(R) and V(R) = 0.

iv) Deduce that Spec(R) has a topology (the Zariski topology) whose closed
subsets are the V(J), with J an ideal in R.

v) Show that V(J) C V(J’) if and only if rad(J’) C rad(J). In particular,
V(J') =V (J) if and only if rad(J’) = rad(J).

vi) Show that the closed irreducible subsets in Spec(R) are those of the form
V(P), where P is a prime ideal in R. Deduce that

dim(R) = dim (Spec(R)).

The following easy two lemmas show that the notion of dimension behaves as
expected when it comes to some basic operations.

LEMMA 3.1.5. IfY is a subspace of X, then
dim(Y) < dim(X).
ProOOF. Given a sequence of irreducible closed subsets in Y
202222 ...2 Zy,
by taking closures we obtain a sequence of closed subsets in X
%2%2...27,

(the fact that the inclusions are strict follows from Z; = Z;NY for all i). This gives
the inequality in the lemma. ([l

LEMMA 3.1.6. If X is a topological space, Y1,...,Y, are closed subsets of X,
andY =Y, U...UY,, then

dim(Y) = mialx dim(Y;).

This applies, in particular, if X is Noetherian, and Y1,...,Y, are the irreducible
components of Y.

ProOOF. After replacing X by Y, we may assume that X =Y. The inequality
“>” follows from Lemma 3.1.5. The opposite inequality follows from the fact that
given any sequence

Z02721...2 Z,

of irreducible, closed subsets of X, there is ¢ such that Z; C Y;, in which case
dim(Y;) > r. O

The next lemma will allow us to reduce understanding the dimension of quasi-
affine varieties to the case of affine varieties.
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LEMMA 3.1.7. If X is a topological space and X = Uy U...UU,, with U; open
subsets of X, then

mmm:@@m@)

PROOF. Again, the inequality “>” follows from Lemma 3.1.5. In order to prove
the opposite inequality, consider a sequence

Z0271...2 7,

of irreducible, closed subsets of X. Let 7 be such that Z. NU; # 0. Since each
Z; NU; is irreducible and dense in Z; (see Remarks 1.3.7), we obtain the following
sequence of irreducible closed subsets of Us;:

ZoNU; 2 Z2,NU;... 2 Z.NUj,
hence dim(U;) > r. This completes the proof of the lemma. O
DEFINITION 3.1.8. If X is a topological space and Y is a closed, irreducible

subset of X, then the codimension of Y in X, denoted codimx (Y), is the supremum
over the non-negative integers r for which there is a sequence

2027212 ...24, =Y,
with all Z; closed and irreducible in X.
DEFINITION 3.1.9. Given a prime p in a commutative ring R, the codimension

(also called height) of p, denoted codim(p), is the supremum over the non-negative
integers r such that there is a sequence

R e L
with all p; prime ideals in R.

REMARK 3.1.10. It follows from Exercise 1.4.22 that if X is an affine variety
and Y is an irreducible closed subset, defined by the prime ideal p C O(X), we
have

codim(p) = codimx (V).
Note also that if q is a prime ideal in the commutative ring R and Z = V(q) C
W = Spec(R) is the corresponding irreducible closed subset, then
codim(q) = codimy (Z).
REMARK 3.1.11. Using arguments similar to the ones in the proofs of Lemma 3.1.5

and Proposition 3.1.7, we see that if Y is an irreducible closed subset of a topological
space X and U is an open subset of X such that UNY ## ), then

codimy (U NY) = codimx (V).

REMARK 3.1.12. If X is a Noetherian topological space, with irreducible com-
ponents X1,...,X,, and Y is an irreducible, closed subset of X, then

codimx (V) = max{codimx, (V) | Y C X;}.
Indeed, given any chain
Y=YCYV1C...CY,CX

of irreducible, closed subsets of X, by irreducibility of Y,., there is ¢ such that
Y, C X;. This gives the inequality “<” and the opposite inequality is obvious.
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3.2. Properties of finite morphisms

In order to prove the basic results concerning the dimension of affine algebraic
varieties, we will make use of Noether’s Normalization lemma. In order to exploit
this, we will need some basic properties of finite morphisms. In this chapter we
only discuss such morphisms between affine varieties; we will consider the general
notion in Chapter 5.

DEFINITION 3.2.1. A morphism of affine varieties f: X — Y is finite if the
corresponding ring homomorphism f#: O(Y) — O(X) is finite.

EXAMPLE 3.2.2. Let Y be an affine variety and aq,...,a, € O(Y). If
X ={(u,t) €Y x A' | t" + a1 (w)t" ' + ... 4+ an(u) =0},

then X is a closed subset of Y x A!, and the composition
XSy xAl 2y,

where ¢ is the inclusion and p is the projection onto the first component, is finite.
In fact, O(X) is free over O(Y'), with a basis given by the classes of 1,¢,...,¢" L.

EXAMPLE 3.2.3. Given an irreducible closed subset X C A%, with trdeg(k(X)/k) =
n, it follows from Theorem 1.2.2 (and its proof) that after a linear change of
coordinates y; = 2?21 a; ;x5, with det(a; ;) # 0, the inclusion homomorphism
Ely1,...,yn] < O(X) is finite. In other words, there is a linear automorphism
¢: AN — AN such that if i: X < AY is the inclusion, and p: AN — A" is the
projection p(ui,...,un) = (u1,...,uy), the composition

X & ANy AN Ty An
is a finite morphism.

ExaMpPLE 3.2.4. If X is an affine variety and Y is a closed subset of X, then Y
is an affine variety and the inclusion map Y < X is finite. Indeed, the morphism
O(X) — O(Y) is surjective, hence finite.

REMARK 3.2.5. It is straightforward to see that if f: X - Y and g: Y — Z
are finite morphisms between affine varieties, then the composition g o f is finite.

EXAMPLE 3.2.6. If X is an affine variety and Y consists of one point, then
the unique morphism f: X — Y is finite if and only if X is a finite set. Indeed,
note first that if X consists of r points, then O(X) = k*", hence O(X) is clearly a
finitely generated k-vector space. For the converse, if X1, ..., X, are the irreducible
components of X, then for every 4, the composition X; — X — Y is finite by
Remark 3.2.5 and Example 3.2.4. Since it is enough to show that each X; consists
of one point, we may assume that X is irreducible. In this case, the canonical
injective homomorphism & — O(X) is finite, and since k is a field and O(X) is
an integral domain, we conclude that O(X) is a field. The finite field extension
k — O(X) must be an isomorphism, since k is algebraically closed.

REMARK 3.2.7. If f: X — Y is a finite morphism of affine varieties and Z C X
and W C Y are closed subsets such that f(Z) C W, then the induced morphism
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g: Z — W is finite. Indeed, we have a commutative diagram

o) s o(x)

L

ow) L= o0(2).
Since f# is a finite homomorphism and the vertical homomorphisms in the diagram
are surjective, it follows that g is finite as well.
In particular, using also Example 3.2.6, we see that if f: X — Y is finite, then
for every y € Y, the fiber f~1(y) is finite.

We collect in the next proposition some basic properties of finite ring homo-
morphisms (in fact, the same properties hold for integral homomorphisms).

PRrROPOSITION 3.2.8. Let ¢: A — B be a finite ring homomorphism.

i) If q is a prime ideal in B and p = ¢~1(q), then q is a mazimal ideal if
and only if p is a maximal ideal.

ii) If q1 C q2 are prime ideals in B, then ¢~ 1(q1) # ¢~ (q2).

ili) If ¢ is injective, then for every prime ideal p in A, there is a prime ideal
q in B such that ¢~1(q) = p.

iv) Given prime ideals p1 C po in A and a prime ideal q; in B such that
¢~ Y(q1) = p1, there is a prime ideal q2 in B such that q1 C qo and
¢~ (d2) = p2-

PRrROOF. Under the assumption in i), note that we have a finite, injective ho-
momorphism of integral domains

A/p — B/q.

In this case, A/p is a field if and only if B/q is a field (see Proposition A.2.1). This
gives 1).

In order to prove ii), we first recall that the map q — qB,/pB, gives a bijection
between the primes q in B with ¢~'(q) = p and the primes in the ring By /pBy.
Since ¢ is finite, the induced homomorphism

Ap/pAp = B®a Ap/pAy = By /pBy

is again finite. Given q; and qs as in ii), suppose that ¢~1(q1) = p = ¢~ (q2). In
this case, it follows from i) that both q; B, /pB, and q2B,/pB, are maximal ideals.
Since the first one is strictly contained in the second one, we obtain a contradiction.

We now prove iii). Since B is a finitely generated A-module, we see that B,
is a finitely generated Ay-module, and it is nonzero since it contains A,. It thus
follows from Nakayama’s lemma (see Proposition C.1.1) that B, # pB,. Since the
ring By, /pB, is nonzero, it contains a prime ideal and every such prime ideal is of
the form qBy/pBy, for some prime ideal q in B, with ¢~!(q) = p.

Finally, suppose that p1, po, and q; are as in iv). The induced homomorphism

@: A/p1 — B/q

is finite and injective. We may thus apply iii) to find a prime ideal in B/q; whose
inverse image via ¢ is pa/p;. This ideal is of the form q2/q;, for some prime ideal
g2 containing ¢; and it is clear that ¢~1(q2) = pa. O
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We now reformulate geometrically the properties of finite homomorphisms in
the above proposition.

COROLLARY 3.2.9. Let f: X = Y be a finite morphism of affine varieties and
® = f# the corresponding homomorphism O(Y) — O(X).

1) The map f is closed, that is, f(Z) is closed in'Y for every closed subset
Z of X. In particular, the map f is surjective if and only if ¢ is injective.

2) If Zy C Zs are irreducible closed subsets of X, then f(Z1) C f(Z3) are
irreducible closed subsets of Y.

3) If f is surjective, then given any irreducible, closed subset W of Y, there
is an irreducible, closed subset Z in X such that f(Z)=W.

4) If Zy is an irreducible, closed subset of X and W1 D Wy are irreducible,
closed subsets of Y, with Wy = f(Z1), then there is Zy C Z7 irreducible
and closed such that f(Z3) = W.

PROOF. Let Z be a closed subset in X. In order to show that f(Z) is closed,
after writing Z as the union of its irreducible components, we see that it is enough
to prove the assertion when Z is irreducible. Let ¢ C O(X) be the prime ideal
corresponding to Z. Recall that by Proposition 1.4.23, we have

F(Z) =V (6™ (@)-
If m is a maximal ideal in O(Y') containing ¢~1(q), we deduce from assertions iv)

and i) in the proposition that there is a maximal ideal n in O(X) such that ¢ C n
and ¢~ !(n) = m. Therefore

V(') = f(2)
and therefore f(Z) is closed. In order to prove the second assertion in 1), recall
that by Proposition 1.4.23, we know that ¢ is injective if and only if f(X) =Y.
Since f(X) is closed, we obtain the assertion.
The assertions in 2), 3), and 4) now follow from assertions ii), iii), and respec-

tively iv) in the proposition using the above description of the images of closed
subsets of X. ([

COROLLARY 3.2.10. If f: X — Y s a finite, surjective morphism of affine
varieties, then
dim(X) = dim(Y).
Moreover, if Z is a closed, irreducible subset of X, then
codimy (Z) = codimy (f(Z)).

Proor. If
202 %Zy...2 Zy
is a sequence of irreducible closed subsets in X, then it follows from assertions 1)
and 2) in Corollary 3.2.9 that we have the following sequence of irreducible closed
subsets in Y
F(Z0) 2 F(Z1) 2 ... 2 £(Z,).

This gives dim(Y) > dim(X).

Suppose now that

Wo 2 Wi2...2 W,

is a sequence of irreducible closed subsets in Y. Assertion 3) in Corollary 3.2.9
gives an irreducible closed subset Ty C X such that f(7p) = Wy. Using repeatedly
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assertion 4) in Corollary 3.2.9, we obtain a sequence of irreducible closed subsets
in X

To2T12...2T;
such that f(T;) = W; for all i. We thus have dim(X) > dim(Y") and by combining
the two inequalities we get dim(X) = dim(Y"). The proof of the second assertion is
entirely analogous, so we leave it as an exercise. O

3.3. Main results of dimension theory

The following result, the Principal Ideal theorem, is the starting point of dimen-
sion theory. A similar statement holds for prime ideals in an arbitrary Noetherian
ring, but we will only be concerned with our geometric setting. The proof we give
follows closely [ ].

THEOREM 3.3.1. (Krull) If X is an algebraic variety, f € O(X), and Y is an
irreducible component of

V(f) ={uve X[ f(u) =0}
then codimyx (Y) < 1.
We begin with some comments about the statement.

REMARK 3.3.2. If X5,..., X, are the irreducible components of X and f|x, # 0
for all 4, then codimy (Y) > 1. Indeed, since Y is irreducible, there is ¢ such that
Y C X;, and our assumption on f implies that this inclusion is strict.

REMARK 3.3.3. With notation as in the theorem, if U is an open subset of X
with UNY # 0, it is enough to prove the assertion in the theorem for U, f|y, and
Y NU. Indeed, it follows from Remark 3.1.11 that

codimx (Y) = codimy (U NY),

while Exercise 1.3.19 implies that U N'Y is an irreducible component of V(f|y) =
V(f)NU CU.

REMARK 3.3.4. It is enough to prove the theorem when X is affine and irre-
ducible and Y = V(f). First, note that if we have a sequence

202212 22 =Y,

with all Z; irreducible closed subsets of X, then codimg,(Y) > 2 and Y is an
irreducible component also for V/(f|z,) = V(f)NZy C Zy. This shows that we may
assume that X is irreducible. Second, let us choose an affine open subset U C X
that meets Y, but does not meet the other irreducible components of V(f). By the
previous remark, it is enough to prove the theorem for U, f|y, and Y NU, and by
our choice of U, we have UNY =V (f|v).

REMARK 3.3.5. The theorem is easy to prove when X is affine and O(X) is
a UFD. Indeed, the assertion is clearly true when f = 0 (in which case ¥ = X
and codimy(Y) = 0). Suppose now that f # 0. In this case, it follows from
Example 1.3.14 that if the prime decomposition of f is f = uf{"* -+ 7, with u
invertible, then there is ¢ such that Y = V(f;). If there is an irreducible closed
subset Z with Y € Z C X and Ix(Z) = p, then p C (f;). Let h € p be any
nonzero element and let m be the exponent of f; in the prime decomposition of h
is minimal. If we write h = f/™h/, since p is prime and f; € p, we have b’ € (f;),
contradicting the definition of m.
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The proof of the theorem makes use of Noether’s Normalization lemma to re-
duce the general case to that treated in Remark 3.3.5. We will also need some basic
facts about norm maps for finite field extensions, for which we refer to Appendix D.

PrOOF OF THEOREM 3.3.1. As we have seen in Remark 3.3.4, we may assume
that X is affine and irreducible and Y = V(f). Let A = O(X) and put K = k(X).
By Noether’s Normalization lemma, if n = trdeg; (K), we can find a k-subalgebra
B ~ k[z1,...,zy,] of Asuch that the inclusion map B < A is finite (hence integral,
see Proposition A.1.3). We denote by L the fraction field of B, so that the field
extension K/L is finite (see Remark 1.2.1). We denote by p C A the prime ideal
corresponding to Y and let q =p N B.

Let h = Nk, (f). Note that h # 0. Moreover, since A is an integral extension
of B, f € A, and B is integrally closed (see Example 1.7.28), we have h € q by
Proposition D.2.1.

In fact, we have q¢ = rad(h). Indeed, suppose that u € g. Since p = rad(f), it
follows that we can find a positive integer m and w € A such that u™ = fw. By
the multiplicative property of the norm and the behavior of Nk /7, on elements in
L (for both properties, see Proposition D.1.1), we deduce

um L = Ngyp(u)™ =h- Ng,p(w) € (h).

Since B is a UFD, we deduce from Remark 3.3.5 that codim(q) < 1. On the
other hand, since the morphism B < A is finite and injective, it follows from
Proposition 3.2.10 that codim(p) = codim(q). This completes the proof of the
theorem. O

REMARK 3.3.6. If X is an affine variety with irreducible components X1, ..., X,
and f € O(X) is a non-zero-divisor, then f|x, # 0 for every i. Indeed, let p; =
Ix(X;) and suppose that we have f € p;. Let us choose g; € p; \ p; for j > 2.
Since p; is prime, if g = HjZQ g;, then g & py. In particular, g # 0. However,
faeNn i>1 P55 hence fg = 0, contradicting the fact that f is a non-zero-divisor. For
a more general assertion, valid in arbitrary Noetherian rings, see Proposition E.2.1.

We thus see, by combining Theorem 3.3.1 and Remark 3.3.2, that if f is a non-
zero-divisor in O(X), for an affine variety X, then every irreducible component of
V(f) has codimension 1 in X.

We now deduce from Theorem 3.3.1 the basic properties of dimension of alge-
braic varieties. We begin with a generalization of the theorem to the case of several
functions.

COROLLARY 3.3.7. If X is an algebraic variety and f1,..., f, are regular func-
tions on X, then for every irreducible component Y of
V(fi, .- fr) ={ue X | filu) =... = fr(u) =0},

we have codimy (V) < r.

PrROOF. We do induction on r, the case r = 1 being a consequence of the
theorem. Arguing as in Remarks 3.3.3 and 3.3.4, we see that we may assume that
X is affine and Y = V(f1,..., fr). We need to show that for every sequence

Y=YyCYV1 C...CY,

of irreducible closed subsets of X, we have m < r. By Noetherianity, we may
assume that there is no irreducible closed subset Z, with Y C Z C Y;.
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By assumption, there is ¢ (say, ¢ = 1) such that Y1 ¢ V(f;). Since there are
no irreducible closed subsets strictly between Y and Y7i, it follows that Y is an
irreducible component of Y3 N V(f1). After replacing X by an affine open subset
meeting Y, but disjoint from the other components of Y3 NV (f1), we may assume
that in fact ¥ = Y1 NV (f1), hence Ix(Y) =rad(Ix (Y1) + (f1)). It follows that for
2 <4 <r, we can find positive integers ¢; and g; € Ix (Y1) such that

(3.3.1) [ —gi e (fr)

We will show that Y7 is an irreducible component of V(gs,...,g,). If this is
the case, then we conclude by induction that m —1 < r — 1, hence we are done.
Note first that (3.3.1) gives

Y = V(fla"'afr) = V(flag%"'agr)~
If there is an irreducible closed subset Z such that
Yl ,Q Z g V(927-"7g7")a

then Y = ZNV(f1), and the theorem implies codimz(Y) < 1, contradicting the
fact that we have Y C Y; C Z. Therefore Y7 is an irreducible component of
V(ga,...,gr), completing the proof of the corollary. O

COROLLARY 3.3.8. For every positive integer n, we have dim(A™) = n.

PROOF. It is clear that dim(A™) > n, since we have the following sequence of
irreducible closed subsets in A™:

V(.’L‘l,...,l‘n) g V(.CL‘]_,...,J}nfl) g ce g V(.’E1> g A",

In order to prove the reverse inequality, it is enough to show that for every point p =
(a1,...,an) € A™, we have codimx ({p}) < n. This follows from Corollary 3.3.7,
since Y =V (x1 —ay,...,Tn — ay). O

COROLLARY 3.3.9. If X is an irreducible variety, then
dim(X) = trdeg, k(X).
In particular, we have dim(X) < oco.

PRrROOF. By taking a finite cover by affine open subsets and using Lemma 3.1.7,
we see that it is enough to prove the assertion when X is affine. It follows from
Noether’s Normalization lemma that if n = trdeg,k(X), then there is a finite,
surjective morphism f: X — A"™. The assertion then follows from the previous
corollary via Corollary 3.2.10. O

REMARK 3.3.10. It follows from the previous corollary and Lemma 3.1.6 that
for every algebraic variety X, we have dim(X) < oc.

REMARK 3.3.11. Another consequence of Corollary 3.3.9 is that if X is an

irreducible quasi-affine variety, then for every nonempty open subset U of X, we
have dim(U) = dim(X).

DEFINITION 3.3.12. If X is a Noetherian topological space, we say that X has
pure dimension if all its irreducible components have the same dimension.

COROLLARY 3.3.13. If X is an algebraic variety, then the following hold:
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i) If Y C Z are closed irreducible subsets, then every saturated' chain
Y=YyCV1C...CY, =27

of irreducible closed subsets has length r = codimz(Y).
i) If X has pure dimension, then for every irreducible closed subset Y C X,
we have
dim(Y) + codimx (V) = dim(X).

PROOF. We begin by showing the following statement: given irreducible, closed
subsets Y C Z, with codimz(Y) = 1, we have dim(Y") = dim(Z) — 1. For this, we
may of course assume that X = Z. Note also that in light of Remark 3.3.11, we
may replace Z by any open subset U with UNY # (), since dim(U) = dim(Z) and
dim(U NY) = dim(Y). In particular, after replacing Z by an affine open subset U
with UNY # 0, we may assume that Z is affine.

Let f € Iz(Y) ~ {0}. Since codimz(Y) = 1, we see that Y is an irreducible
component of V(f). After replacing Z by an affine open subset that intersects
Y, but does not intersect the other components of V(f), we may assume that
Y = V(f). We now make use of the argument in the proof of Theorem 3.3.1.
Noether’s Normalization lemma gives a finite, surjective morphism p: Z — A™ and
we have seen that p(V(f)) = V/(h), for some nonzero h € O(A™), hence the ideal
I(p(Y)) C k[z1,...,xy] is principal, say generated by a polynomial g. This implies
that dim (p(Y)) = n—1: indeed, arguing as in the proof of Noether’s Normalization
lemma, we see that after a suitable linear change of coordinates, we may assume
that ¢ is a monic polynomial in z,, with coefficients in k[xy,...,z,—1], in which
case the morphism

klz1,...,en_1] < klz1,...,2.]/(9)
is finite and injective, hence we get the assertion via Corollaries 3.2.10 and 3.3.8.
Since Corollary 3.2.10 gives dim(Z) = n and dim(Y) = dim (p(Y)) = n — 1, this
completes the proof of our initial statement.

This assertion implies that given any saturated chain

Y=YoCYiC...CY,=Z

of irreducible, closed subsets, we have dim(Y;) = dim(Y;_1)+1 for 1 <4 < r, hence
dim(Z) = dim(Y’) 4+ r. In particular, all such chains have the same length. Since
there is such a chain of length codimy(Y'), we obtain the assertion in i), as well as
the assertion in ii) when X is irreducible.

Suppose now that we are in the setting of ii). Using Remark 3.1.12, the assertion
when X is irreducible, and the fact that X is pure dimensional, we obtain

codimx (V) = max{codimy, (V) | Y C X;}
= max{dim(X;) — dim(Y) | Y C X;} = dim(X) — dim(Y"),
completing the proof of the proposition. ([l

REMARK 3.3.14. if X is an algebraic variety, and p is a point on X, then
dim,(X) = dim(Ox,p) is equal to the largest dimension of an irreducible com-
ponent of X that contains p. Indeed, it follows from definition that dim,(X) =

IThis means that for every ¢, with 1 <4 < r, there is no closed, irreducible subset Z, with
Y;_1 € Z C Y;; equivalently, we have codimy;, (Y;_1) = 1.
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codimy ({p}) and we deduce from Corollary 3.3.13 that if X;,..., X, are the irre-
ducible components of X that contain p, then

dim,(X) = mgilx codimy, ({p}) = mialx dim(X5;).

REMARK 3.3.15. Suppose that X is an algebraic variety, f € O(X) is a non-
zero-divisor, and
Y={reX]| f(z)=0}.
In this case, for every x € Y, we have
(3.3.2) dim(Oy,) = dim(Ox ) — 1.

In order to see this, we use the interpretation of the two dimensions given by the
previous remark. Note first that it follows from Remark 3.3.6 that f does not
vanish on any irreducible component of X. If Y’ is an irreducible component of
Y that contains x and if X’ is an irreducible component of X that contains Y,
then it follows from Theorem 3.3.1 that codimx/(Y’) = 1 and Corollary 3.3.13
implies dim(Y’) = dim(X’) — 1. This gives the inequality “<” in (3.3.2). On the
other hand, given any irreducible component Z of X that contains x, then every
irreducible component W of Y N Z that contains x satisfies codimy (Z) = 1 by
Theorem 3.3.1. Using again Corollary 3.3.13, we obtain

dim(Oy,;) > dim W = dim(Z) — 1,
hence we get the inequality “>" in (3.3.2).
We end this section with the following partial converse to Corollary 3.3.7.

PROPOSITION 3.3.16. Let X be an algebraic variety. If Y is an irreducible
closed subset with codimx (Y) = r > 1, then there are fi,..., fr € O(X) such that
Y is an irreducible component of V(f1,..., fr)-

PRrROOF. Let X,..., Xn be the irreducible components of X. Note that there
is f1 € Ix(Y) such that X; € V(f1) for all i. Indeed, otherwise

N
Ix(Y) € | Ix (X))
i=1

Since all Ix(X;) are prime ideals and Ix(Y) € Ix(X;) (recall that » > 1), this
contradicts the Prime Avoidance lemma (see Lemma E.1.1).

For such f1, we have codimy ;)Y < r — 1. Iterating, we find f1,..., f, €
Ix(Y') such that codimy (g, .. r)(Y) = 0, that is, Y is an irreducible component of

V(fl,...,fr). O

REMARK 3.3.17. In general, if X and Y are as in the proposition, it might not
be possible to find f1,..., f, such that Y = V(f1,..., fi) (not even if we are willing
to restrict to affine open neighborhoods of a given point). Consider, for example

X =V(z129 — x324) € A* and Y = V(21,z3).

In this case we have dim(X) = 3 and dim(Y) = 2, hence codimx(Y) = 1 by
Corollary 3.3.13. However, for every affine open neighborhood U of the origin,
there is no f € O(U) such that V(f) =Y. Can you prove this?

EXERCISE 3.3.18. Show that if X and Y are algebraic varieties, then

dim(X xY) = dim(X) + dim(Y).
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EXERCISE 3.3.19. Show that if X is an algebraic variety and Z is a locally
closed subset of X, then

dim(Z) = dim(Z) > dim(Z \ Z).

EXERCISE 3.3.20. Show that if X is an affine variety such that O(X) is a UFD,
then for every closed subset Y C X, having all components of codimension 1, the
ideal Ix(Y') defining Y is principal.

EXERCISE 3.3.21. Show that if X and Y are irreducible closed subsets of A",
then every irreducible component of X NY has dimension > dim(X) +dim(Y) —n
(Hint: describe X NY as the intersection of X x Y C A™ x A" with the diagonal
A={(z,z) | x € A"}).

3.4. Dimension of fibers of morphisms

We now discuss the main results concerning the dimensions of fibers of a mor-
phism between algebraic varieties. More generally, we will be interested in the
dimension of f~1(Z), where Z is a closed subset of Y.

We fix a dominant morphism f: X — Y between irreducible algebraic varieties
and let k(Y) < k(X) be the induced extension of function fields. We put

r = trdegy,y)k(X) = dim(X) — dim(Y).

THEOREM 3.4.1. With the above notation, if W is an irreducible component of
f~Y(2) that dominates Z, then

codimx (W) < codimy (Z), or equivalently, dim(W) > dim(Z) + r.

In particular, for every point y in the image of f, all irreducible components of
f~Y(y) have dimension > r.

PrROOF. Note that if U is an open subset such that Z N U # (), since f(W) =
Z, we have W N f=Y(U) # 0. By Corollary 3.3.11, we may thus replace f by
f~Y(U) — U. In particular, we may and will assume that Y is affine. In this case, if
s = codimy (Z), it follows from Proposition 3.3.16 that there are g1,...,gs € O(Y)
such that Z is an irreducible component of V(gy,...,gs). Since W C f=1(Z), we
have W C W' =V (f#(q1),..., 7 (gs)).

In fact, W is an irreducible component of W': if W C W"” C W', with W”
closed and irreducible, we have

Z=fW)CfW")CV(gi,...,gs)

Since Z is an irreducible component of V(g1,...,gs), we deduce that Z = f(W").
In particular, we have W C f~1(Z), and since W is an irreducible component of
f71(Z), we conclude that W = W”. Therefore W is an irreducible component of
W’. Corollary 3.3.7 then implies that codimx (W) < s. O

THEOREM 3.4.2. With the above motation, there is a monempty open subset
V of Y such that V C f(X) and for every irreducible, closed subset Z C'Y with
ZNV #0, and every irreducible component W of f~1(Z) that dominates Z, we
have

codimx (W) = codimy (Z), or equivalently, dim(W) = dim(Z) + r.

In particular, for everyy € V., every irreducible component of f~(y) has dimension
r.
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PROOF. It is clear that we may replace f by f~1(U) — U for any nonempty
open subset, hence we may and will assume that Y is affine. We show that we may
further assume that X is affine, too. Indeed, if we know the theorem in this case,
we consider an open cover by affine open subsets

X=UU...UU,

and let V; C Y be the nonempty open subset constructed for the morphism U; — Y.
In this case it is straightforward to check that V' =, V; satisfies the conditions in
the theorem.

Suppose now that X and Y are irreducible affine varieties and let f#: O(Y) —
O(X) be the induced homomorphism. This is injective, since f is dominant. We
consider the k(Y')-algebra S = O(X) ®o(y) k(Y). This is a domain with fraction
field k(X). By Noether’s Normalization lemma, we can find y1,...,y, € S that are
algebraically independent over k(Y) and such that the inclusion

a: k(Y)[yr, ... yr] = S

is finite. After replacing each y; by some a;y;, for a suitable nonzero a; € O(Y),
we may assume that y; € O(X) for all i.
Claim. There is a nonzero s € O(Y') such that the inclusion

OY)s[y1s-- - yr] = O(X)s

is finite. In order to see this, let us choose generators xy,...,xx of O(X) as a
k-algebra. Since « is finite, it follows that each x; satisfies a monic equation of the
form:

" gt
If s € OY) ~ {0} is such that sa;,; € O )[y1,...,y,| for all ¢ and j, then it
follows that each x; is integral over O(Y)s[y1, ..., ¥y, hence O(X), is finite over
O(Y)s[y1,-- -, yr], proving the claim.

After replacing f by Dx (f#(s)) = f~'(Dy(s)) — Dy (s), we may thus assume
that f factors as

+...4+aim, =0 forsome a;;€kY)|[yr,...,yr)

X -LyxAr Ly,
where p is the first projection and g is finite and surjective. It is clear that in this

case f is surjective. Moreover, if Z and W are as in the statement of the theorem,
then g(W) C Z x A", and using Corollary 3.2.9, as well as Exercise 3.3.18, we have

dim(W) = dim (g(W)) < dim(Z x A") = dim(Z) + 7.
Since the opposite inequality follows by Theorem 3.4.1, we have in fact equality. O

COROLLARY 3.4.3. If f: X — Y is a morphism of algebraic varieties such that

all fibers of f have dimension r (in particular, f is surjective), then dim(X) =
dim(Y) +r.

PrROOF. If Y7,...,Y,, are the irreducible components of Y, each morphism
F71(Y:) — Y; has all fibers of dimension r. Since

dim(X) = mTalx dim (f7'(¥;)) and dim(Y) = mTalx dim(Y;),

we see that it is enough to prove the assertion in the corollary when Y is irreducible.
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Suppose now that Xy,..., X, are the irreducible components of X. It follows
from Theorem 3.4.2 that for every ¢, if we put

d; == dim(X;) — dim (F(X3)),

then there is an open subset U; of f(X;) such that every fiber of X; — f(X;) over
a point in U; has dimension d;. The hypothesis implies that d; < r for every i;
moreover, there is iy such that d;;, = r and f(X;) =Y. The former fact implies
that for every 7, we have

dim(X;) < dim (f(XZ)) +r <dim(Y) +r,

hence dim(X) < dim(Y) + r. On the other hand, the latter fact implies that
dim(X;,) = dim(Y) + r, hence dim(X) > dim(Y’) 4 r, completing the proof of the
corollary. 0

EXAMPLE 3.4.4. Let a, b, and ¢ be positive integers and let
f: A3 = A3 givenby f(u,v,w) = (uv’w, uv, u).
This is birational, with inverse
9:V ={(z,y,2) € A’ | yz # 0} — A®
given by
g9(x,y,2) = (2,92~ wy =27,

Therefore f induces an isomorphism f~(V) — V. In particular, for P € V, the
fiber f~1(P) is a point.

On the other hand, if P = (z¢, y0,0), then

V(u)~ A% if zg=1yo=0;
Py = ,
0, otherwise
If P =(0,0,2), with 29 # 0, then
{ V(v,u—z9) ~ A, if x¢=0;

0, otherwise

f7i(p) =

3.5. Constructible subsets and Chevalley’s theorem

DEFINITION 3.5.1. A subset of a topological space X is constructible if it is a
finite union of locally closed subsets.

PROPOSITION 3.5.2. If X is a topological space, the set of constructible subsets
of X is the smallest set that contains the open subsets of X and is closed under
finite unions, finite intersections, and complements.

ProOOF. The fact that a finite union of constructible sets is constructible is
clear. Suppose now that A and B are constructible and let us show that AN B is
constructible. We can write

A:Alu...UAr and B:Blu...UBs,
with the A; and B; locally closed. In this case we have

ANB = JAinBy).

,J



3.5. CONSTRUCTIBLE SUBSETS AND CHEVALLEY’S THEOREM 71

Since the intersection of two locally closed sets is locally closed, we see that AN B
is constructible.

If A is constructible and we write A = A;U...UA,, with the A; locally closed,
we have

X~NA= m(X\Ai).
i=1
Since each A; is locally closed, we can write it as U; N F;, with F; closed and U;
open. In this case

XNA =X \NU)UX\NE)

is the union of a closed set with an open set, hence it is constructible. Since we
have already seen that a finite intersection of constructible sets is constructible, we
conclude that X \ A is constructible.

The minimality statement in the proposition is straightforward: given a set C
of subsets of X as in the statement, this contains the open subsets by assumption,
hence it also contains the closed sets, since we assume that C is closed under com-
plements. Therefore C also contains the locally closed subsets (since it is closed
under finite intersections) and therefore contains all constructible subsets (since it
is closed under finite unions). (]

This notion is important because of the following result, due to Chevalley.

THEOREM 3.5.3. If f: X — Y is a morphism between algebraic varieties, the
image f(X) is constructible. More generally, for every constructible subset A of X,
its image f(A) is constructible.

PrOOF. If A is constructible in X, we write A = A; U...U A,., with all A;
locally closed in X. Since f(A) = f(A1)U...Uf(A,), it is enough to show that the
image of each composition A; < X — Y is constructible. Therefore it is enough
to consider the case A = X.

We prove that f(X) is constructible by induction on dim(X). If X = X; U
... U X, is the decomposition of X in irreducible components, we have

f(X) = f(X)U...Uf(X),

hence it is enough to show that each f(X;) is irreducible. We may thus assume
that X is irreducible and after replacing Y by f(X), we may assume that Y is
irreducible, too, and f is dominant (note that a constructible subset of f(X) is
constructible also as a subset of Y'). By Theorem 3.4.2, there is an open subset V'

of Y such that V' C f(X). We can thus write

(3.5.1) f(X)=VugX'),

where X’ = X ~ g71(V) is a closed subset of X, with dim(X’) < dim(X). By
induction, we know that g(X’) is constructible, and we deduce from (3.5.1) that
f(X) is constructible. U

EXERCISE 3.5.4. i) Show that if Y is a topological space and A is a
constructible subset of Y, then there is a subset V' of A that is open and
dense in A (in particular, V' is locally closed in Y).
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ii) Use part i) and Chevalley’s theorem to show that if G is an algebraic
group? having an algebraic action on the algebraic variety X, then every
orbit is a locally closed subset of X. Deduce that X contains closed orbits.

2An algebraic group is defined like a linear algebraic group, but the variety is not necessarily
affine.



CHAPTER 4

Projective varieties

In this chapter we introduce a very important class of algebraic varieties, the
projective varieties.

4.1. The Zariski topology on the projective space

In this section we discuss the Zariski topology on the projective space, by build-
ing an analogue of the correspondence between closed subsets in affine space and
radical ideals in the polynomial ring. As usual, we work over a fixed algebraically
closed field k.

DEFINITION 4.1.1. For a non-negative integer n, the projective space P = P7
is the set of all 1-dimensional linear subspaces in k"*1.

For now, this is just a set. We proceed to endow it with a topology and
in the next section we will put on it a structure of algebraic variety. Note that
a l-dimensional linear subspace in k"*! is described by a point (ag,...,a,) €
A" {0}, with two points (ag, . . .,a,) and (bg, ..., b,) giving the same subspace
if and only if there is A € k* such that Aa; = b; for all 7. In this way, we identify
P" with the quotient of the set A"*! <\ {0} by the action of k* given by

A (agy...,an) = (Aag, ..., Aay).

Let m: A1 {0} — P" be the quotient map. We denote the image in P" of a
point (ag, ..., a,) € A1 < {0} by [ao, ..., an)].

Let S = k[zg, ..., x,]. The relevant structure on S, for the study of P, is that
of a graded k-algebra. Recall that a graded (commutative) ring R is a commutative
ring that has a decomposition as an Abelian group

R= P Rn
meZ

such that R; - R; C R;1; for all 4 and j. We say that R is N-graded if R,,, = 0 for
m < 0.

Note that the definition implies that if R is a graded ring, then Ry is a subring
of R and each R,, is an Rp-module, making R an Rg-algebra. We say that R
is a graded A-algebra, for a commutative ring A, if R is a graded ring such that
Ry is an A-algebra (in which case R becomes an A-algebra, too). If R and S are
graded rings, a graded homomorphism ¢: R — S is a ring homomorphism such that
¢(Rm) C Sy, for all m € Z.

The polynomial ring S is an N-graded k-algebra, with S,, being the set of
homogeneous polynomials of degree m. In general, if R is a graded ring, a nonzero
element of R, is homogeneous of degree m. By convention, 0 is homogeneous of

73
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degree m for every m. Given an arbitrary element f € R, if we write
f= me with  f; € R;,
i

then the f; are the homogeneous componenets of f.

REMARK 4.1.2. Note that the action of k* on A"\ {0} is an algebraic action:
in fact, it is induced by the algebraic action of k* on A™*! corresponding to the
homomorphism

S = kit,t7 @k S, f— f(twy,... tx,).

EXERCISE 4.1.3. For an ideal I in a graded ring R, the following are equivalent:
i) The ideal I can be generated by homogeneous elements of R.
ii) For every f € I, all homogeneous components of f lie in I.
iii) The decomposition of R induces a decomposition I =P, ., (I N Ry,).

An ideal that satisfies the equivalent conditions in the above exercise is a ho-
mogeneous (or graded) ideal. Note that if I is a homogeneous ideal in a graded ring
R, then the quotient ring R/I becomes a graded ring in a natural way:

R/T =P R /(INRyy).
meZ
We now return to the study of P". The starting observation is that while it
does not make sense to evaluate a polynomial in S at a point p € P™, it makes sense
to say that a homogeneous polynomial vanishes at p: indeed, if f is homogeneous
of degree d and A € k*, then

fhag, ..., Aa,) = . flag,...,an),

hence f(Xag,...,Aa,) = 0 if and only if f(ag,...,a,) = 0. More generally, given
any f € S, we say that f vanishes at p if every homogeneous component of f
vanishes at p.

Given any homogeneous ideal I of S, we define the zero-locus V(I) of I to be
the subset of P™ consisting of all points p € P™ such that every polynomial f in I
vanishes at p. Like the corresponding notion in the affine space, this notion satisfies
the following basic properties. The proof is straightforward, hence we leave it as
an exercise.

PRrROPOSITION 4.1.4. The following hold:
1) V(S) = 0.
2) V(0) =P".
3) If I and J are ideals in S with I C J, then V(J) C V(I).
4) If (In)a is a family of ideals in S, we have

V)=V (Z Ia> :
5) If I and J are ideals in S, then
VUV =V(INJ)=V({-J).

It follows from the proposition that we can put a topology on P™ (the Zariski
topology) in which the closed subsets of P™ are the subsets of the form V/(I), where
I is a homogeneous ideal in S.
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REMARK 4.1.5. A closed subset Y C A™*! is invariant by the k*-action (that
is, A\-Y =Y for every A € k*) if and only if the ideal Ia~»(Y) C S is homogeneous
(cf. Lemma 1.7.22). Indeed, if f is homogeneous, then for every A € k* and every
u € A" we have f(\u) = 0 if and only if f(u) = 0. We thus see that if I is
a homogeneous ideal, then its zero-locus in A"*! is k*-invariant. In particular, if
Ian(Y) is homogeneous, then Y is k*-invariant. Conversely, if Y is k*-invariant
and f € Ia»(Y), let us write f = >, f;, with f; € S;. For every v € Y and every
A € k*, we have A\u € Y, hence

0=f(u) =Y N fi(u).
i>0
It is easy to see that since this property holds for infinitely many A, we have
fi(u) = 0 for all i, hence Ia~(Y") is homogeneous.

REMARK 4.1.6. The topology on P™ is the quotient topology with respect to
the k*-action on A"\ {0}. In other words, if 7: A1\ {0} — P™ is the quotient
map, then a subset Z of P™ is closed if and only if its inverse image 7 ~1(Z) is closed.
For this, we may assume that Z is nonempty. If 771(Z) is closed, then it is clear
that 7=1(Z) U {0} is closed, hence by the previous remark, there is a homogeneous
ideal I C S such that 7=(Z) U {0} is the zero-locus of I. In this case, it is clear
that Z is the zero-locus of I in P™. The converse is clear.

We now construct a map in the opposite direction. Given any subset S C P",
let I(S) be the set of polynomials in S that vanish at all points in S. Note that
I(S) is a homogeneous radical ideal of S (the fact that it is homogeneous follows
from the fact that if f € I(.S), then all homogeneous components of f lie in I(5)).
This definition satisfies the following properties, that are straightforward to check.

PROPOSITION 4.1.7. The following hold:
1) I(0) = S.
2) If (Wa)a is a family of subsets of A", then I (J, Wa) =, I(Wa).
3) If W1 g WQ, then I(Wg) Q I(Wl)

We now turn to the compositions of the two maps. The first property is tau-
tological.

PROPOSITION 4.1.8. For every subset S of P", we have V (I(S)) = S.

PRroOF. The proof follows verbatim the proof in the case of affine space (see
Proposition 1.1.8). O

The more interesting statement concerns the other composition. This is the
content of the next proposition, a graded version of the Nullstellensatz.

PROPOSITION 4.1.9. If J C S is a radical ideal different from Sy = (xo, ..., zy),
then I(V(J)) = J.

Note that V(S;) = 0, hence I(V(S4)) = S. The ideal S, which behaves
differently in this correspondence, is the irrelevant ideal.

PrROOF OF PROPOSITION 4.1.9. The inclusion “2” is trivial, hence we only

need to prove the reverse inclusion. It is enough to show that every homogeneous
polynomial f € I(V(J)) lies in J.
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We make use of the map 7: A"T1 < {0} — P". Let Z be the closed subset
of A" defined by J, so that Z ~ {0} = 7~ *(V(J)). Our assumption on f says
that f vanishes on Z ~\ {0}. If deg(f) > 0, then f(0) = 0, and we conclude by
Hilbert’s Nullstellensatz that f € J. On the other hand, if deg(f) = 0 and f # 0,
then it follows that V(J) = 0. This implies that Z C {0} and another application
of Hilbert’s Nullstellensatz gives S, C J. Since J # S; by assumption, we have
J = S, in which case f € J. O

COROLLARY 4.1.10. The two maps V(=) and I(—) give inclusion reversing
inverse bijections between the set of homogeneous radical ideals in S different from
Sy and the closed subsets of P™.

PRrOOF. Note that for every closed subset Z of P™, we have I(Z) # S4. Indeed,
it I(Z) = S4, then it follows from Proposition 4.1.8 that

Z=V(I(Z)) =V(5;) = 0.

However, in this case I(Z) = I(#) = S. The assertion in the corollary follows
directly from Propositions 4.1.8 and 4.1.9. O

EXERCISE 4.1.11. Show that if I is a homogeneous ideal in a graded ring S,
then the following hold:
i) The ideal I is radical if and only if for every homogeneous element f € S,
with f™ € I for some m > 1, we have f € I.
ii) The radical rad(I) of I is a homogeneous ideal.

EXERCISE 4.1.12. Show that if I is a homogeneous ideal in a graded ring S,
then I is a prime ideal if and only if for every homogeneous elements f,g € S with
fg eI, wehave f € Iorge Il Deduce that a closed subset Z of P™ is irreducible
if and only if I(Z) is a prime ideal. In particular, P™ is irreducible.

DEFINITION 4.1.13. If X is a closed subset of P™ and Ix is the corresponding
homogeneous radical ideal, then Sx := S/Ix is the homogeneous coordinate ring
of X. Note that this is an N-graded k-algebra. In particular, .S is the homogeneous
coordinate ring of P™.

Suppose that X is a closed subset of P", with homogeneous coordinate ring
Sx. For every homogeneous g € Sx of positive degree, we consider the following
open subset of X:

D3 (9) = X\ V(q),
where g € S is any homogeneous polynomial which maps to g € Sx. Note that if
h is another homogeneous polynomial of positive degree, we have

Dx(gh) = Dx(g) N Dx(h).

REMARK 4.1.14. Every open subset of X is of the form X \ V(J), where J
is a homogeneous ideal in S. By choosing a system of homogeneous generators for
J, we see that this is the union of finitely many open subsets of the form Dj} (9)-

Therefore the open subsets D;(g) give a basis of open subsets for the topology of
X.

DEFINITION 4.1.15. For every closed subset X of P, we define the affine cone
C(X) over X to be the union in A" of the corresponding lines in X. Note that
if X is nonempty, then

C(X)=7"Y2Z)u{o}.
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If X = V(1) is nonempty, for a homogeneous ideal I C S, it is clear that C(X) is
the zero-locus of I in A"T!. Therefore C'(X) is a closed subset of A™ for every X.
Moreover, we see that O(C(X)) = Sx.

EXERCISE 4.1.16. Show that if G is an irreducible algebraic group acting on a
variety X, then every irreducible component of X is invariant under the G-action.

REMARK 4.1.17. Let X be a closed subset of P”, with corresponding homoge-
neous radical ideal Ix C S, and let C(X) be the affine cone over X. Since C'(X)
is k*-invariant, it follows from the previous exercise that the irreducible compo-
nents of C'(X) are k*-invariant, as well. By Remark 4.1.5, this means that the
minimal prime ideals containing Ix are homogeneous. They correspond to the irre-
ducible components X7, ..., X, of X, so that the irreducible components of C'(X)
are C(X1),...,C(X,).

4.2. Regular functions on quasi-projective varieties

Our goal in this section is to define a structure sheaf on P™. The main obser-
vation is that if F' and G are homogeneous polynomials of the same degree, then
we may define a function g on the open subset P™ \ V(G) by

F(a’Oa"'?an)

[ag, ... ,an] — 761(&07”.’%).
Indeed, if deg(F) = d = deg(G), then

F(Xao,...,May) M- F(ag,...,a,)  Flag,...,an)
G(Mao, ..., an)  A-Glag,...,a,) G(ag,...,an)

Let W be a locally closed subset in P™. A regular function on W is a function
f: W — k such that for every p € W, there is an open neighborhood U C W of p
and homogeneous polynomials of the same degree F' and G such that G(q) # 0 for
every ¢ € U and

F(q)
flq) === forall geU.
=G
The set of regular functions on W is denoted by O(W). Note that O(W) is
a k-algebra with respect to the usual operations on functions. For example, if

f1(q) = 511((?1)) for ¢ € Uy and fa(q) = gz(((é)) for ¢ € Uy, where U; and U, are open

neighborhoods of p, then F1G5 + F3G1 and GG are homogeneous polynomials of
the same degree and

(F1G2 + F2G1)(q)
(G1G2)(q)

Moreover, it is clear that if V' is an open subset of W, the restriction to V' of a regular
function on W is a regular function of V. We thus obtain in this way a subpresheaf
Ow of k-algebras of Funy . In fact, this is a sheaf, as follows immediately from
the fact that regular functions are defined in terms of a local property.

for qge U NUs,.

filg) + fa(q) =

REMARK 4.2.1. Note that if W is a locally closed subset of P, then the sheaf
Ow we defined is the one induced from Op~ as in Section 2.3.
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Our first goal is to show that all spaces defined in this way are algebraic vari-
eties. Let U; be the open subset defined by x; # 0. Note that we have

n
P = JU.
i=0
The key fact is the following assertion:
PROPOSITION 4.2.2. For every v, with 0 < i <n, the map
wi: A" — Ui7 ¢(U17 s 7Un) = [’U], ey Uiy 1avi+17' .. ,’Un]
is an isomorphism in Top,.
PROOF. It is clear that 1); is a bijection, with inverse
(ﬁﬁ Uz — An, [Uo, . ,Un] — (’LLQ/’LLi, Ce ,ui,l/ui,uiJrl/ui, Ce ,un/ui).

In order to simplify the notation, we give the argument for ¢ = 0, the other cases
being analogous. Consider first a principal affine open subset of A", of the form
D(f), for some f € k[x1,...,x,]. Note that if deg(f) = d, then we can write
fx1/zo, ..., xn/m0) = g(xm'i'd"m
To

for a homogeneous polynomial g € S of degree d. It is then clear that ¢, ! (D( f )) =
D;{n (20g), hence this is open in Up. Since the principal affine open subsets in A"
give a basis for the topology of A", we see that ¢¢ is continuous.

Consider now an open subset of Uy of the form D, (h), for some homogeneous
h € S, of positive degree. If we put hg = h(1,x1,...,x,), we see that ¢o (D (h)) =
D(hg) is open in A™. Since the open subsets of the form D, (h) give a basis for
the topology of P™, we conclude that ¢g is a homeomorphism.

We now need to show that if U is open in A™ and «: U — k, then o € Oax(U)
if and only if a0 ¢g € Opn ((bal(U)). If o € Oan(U), then for every point p € U,
we have an open neighborhood U, C U of p and fi, fo € k[z1,...,z,] such that

fi(u)
u)#0 and a(u)= for all w e U,.
f2( )7& ( ) fg(’u) 14
As above, we can write
L0, ..., Ty T, ..., Ty
filz1/xo, ... 0 /x0) = % and  fo(x1/x0,...,25/20) = %
0 0

for some homogeneous polynomials g1, g2 € S of the same degree, in which case we

see that

g1(v)

92(v)

Since this holds for every p € U, we see that a o ¢q is a regular function on qb(jl(U).
Conversely, suppose that a o ¢¢ is a regular function on ¢ 1(U ). This means

that for every ¢ € ¢y ' (U), there is an open neighborhood V, C ¢, (U) of ¢ and
homogeneous polynomials hq, he € S of the same degree such that

_ h1 (’U)
hg(’U)

92(v) #0 and  a(po(v)) = for all v € ¢y (U,).

ha(v) #0 and  a(do(v)) forall velV,
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In this case, we have

~ ha(Lug, . uy)

ho(Liug,...,u,) #0 and a(ug,...,u,) = T (L )
) PR ) n

for all u = (u1,...,u,) € ¢o(V,). Since this holds for every ¢ € ¢, ' (U), it follows
that « is a regular function on U. This completes the proof of the fact that ¢ is
an isomorphism. O

COROLLARY 4.2.3. For every locally closed subset W of P™, the space (W, Oy )
is an algebraic variety.

PrROOF. It is enough to show the assertion for W = P™: the general case is
then a consequence of Propositions 2.3.5 and 2.5.4. We have already seen that P™
is a prevariety. In order to show that it is separated, using Proposition 2.5.6, it is
enough to show that each U; NUj is affine and that the canonical morphism

(4.2.1) 7,0 O(U;) @ O(U;) = O(U; N Uj)

is surjective. Suppose that ¢ < j and let us denote by x1,...,x, the coordinates
on the image of ¢; and by 1, ..., y, the coordinates on the image of ¢;. Note that
via the isomorphism ¢;, the open subvariety U; N U; is mapped to the open subset

{(u1,...,u,) € A" | u; # 0},

which is affine, being a principal affine open subset of A". Similarly, ¢; maps
U; NU; to the open subset

{(ul,...,un) e A" | Us41 75 0}

Furthermore, since we have

1 _(w u; 1w Uj_1 Uji1 Up,
¢Jo¢l (’U,]_,...,’Ltn)—<_,...,_,'7 BERREE — ] ,...77.
Uj Uj Uj Uy Uj Uy Uy

for all (u1,...,u,) € ¢;(U; NU;), we see that the morphism

Tt ke, . xn] @ klyr, ... un] — k[ml,...,xn,xjfl]

satisfies 7(x¢) = x, for all £ and 7(y;41) = x;l. Therefore 7; ; is surjective for all
and j, proving that P™ is separated. ([l
EXAMPLE 4.2.4. The map
m: A" {0} = Pz, .. 2n) = [0 T

is a morphism. Indeed, with the notation in the proof of Proposition 4.2.2, it is
enough to show that for every i, the induced map 7~!(U;) — U; is a morphism.
However, via the isomorphism U; >~ A", this map becomes

AT V() = A", (2o, ) = (T0/Tiy ooy Tie1 /T, T 1 [Ty - T /T,
which is clearly a morphism.

DEFINITION 4.2.5. A projective variety is an algebraic variety that is isomorphic
to a closed subvariety of some P™. A quasi-projective variety is an algebraic variety
that is isomorphic to a locally closed subvariety ofsome P™.
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REMARK 4.2.6. It follows from definition that if X is a projective variety and
Y is a closed subvariety of X, then Y is a projective variety as well. Similarly, if
X is a quasi-projective variety and Z is a locally closed subvariety of X, then Z is
a quasi-projective variety.

REMARK 4.2.7. Every quasi-affine variety is quasi-projective: this follows from

the fact that A™ is isomorphic to an open subvariety of P™.

REMARK 4.2.8. Note that unlike the coordinate ring of an affine variety, the
homogeneous coordinate ring of a projective variety X C P™ is not an intrinsic
invariant: it depends on the embedding in the projective space.

We next show that the distinguished open subsets D} (g) are all affine varieties’.

PROPOSITION 4.2.9. For every closed subvariety X of P™ and every homoge-
neous element g € Sx of positive degree, the variety D} (g) is affine.

PROOF. Since X is a closed subvariety of P" and D% (g) = D, (g) N X, where
g € S is any lift of g, it is enough to prove the assertion when X = P". Let
U = D{.(g) and put d = deg(g).

d
Consider the regular functions fo, ..., f, on U given by f;(ug,...,un) = ﬁ
Note that they generate the unit ideal in T'(U,Opn). Indeed, since g € S; =
rad(zg, ..., x%), it follows that there is m such that g™ € (zg,...,2%). If we write
gr=>", himf and if we consider the regular functions «;: U — k given by
hi(u)
(Ul .. uy) = (a1’

then >0 ( fi - a; = 1, hence fo,..., fn generate the unit ideal in I'(U, Op»). By
Proposition 2.3.16, we see that it is enough to show that each subset UNU; is affine,
where Uj; is the open subset of P™ defined by x; # 0. However, by the isomorphism
U; ~ A" given in Proposition 4.2.2, the open subset U N U; becomes isomorphic to
the subset

{u = (U]_,...,U/n) €A" | g(u17"',ui717ui+17--~7un) 7é O})
which is affine by Proposition 1.4.18. This completes the proof. O

Since the open subsets DY (g) are affine, they are determined by their rings of
regular functions. Our next goal is to describe these rings.

We begin with some general considerations regarding localization in graded
rings. If S is a graded ring and T' C S is a multiplicative system consisting of
homogeneous elements of S, then the ring of fractions 7-1.S has an induced grading,
in which

(T_ls)m = {J; | teT, fe Sdeg(t)+m} -

Note that even if S is N-graded, 77! is not, in general, N-graded. We will use
two special cases. If g € S is a homogeneous element, then S, is a graded ring, and
we denote by S, its degree 0 part. Similarly, if p is a homogeneous prime ideal in
S and if we take T to be the set of homogeneous elements in S\ p, then T71S is a
graded ring and we denote its degree 0 part by S(,). Therefore S, is the subring

1For another proof of this proposition, making use of the Veronese embedding, see Exer-
cise 4.2.23 below.
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of Sy consisting of fractions ng’ where h is a homogeneous element of S, of degree
m - deg(g). Similarly, S, is the subring of S(,) consisting of all fractions of the

form %, where f,g € S are homogeneous, of the same degree, with ¢ ¢ p. Note

that S(p) is a local ring, with maximal ideal

{f/heSp) [ fep}k

Let X be a closed subset of P™, with corresponding radical ideal Ix and ho-
mogeneous coordinate ring Sx. Note that if A € Sx is homogeneous, of positive
degree, we have a morphism of k-algebras

Q: (Sx)n) — O(D}(h)),

such that ®(f/h™) is given by the function p — EJ; Ef;) , where j?,% € S are elements

mapping to f,h € Sx, respectively (it is clear that ®(f/h™) is independent of the
choice of f and h).

PROPOSITION 4.2.10. For every X and h as above, the morphism ® is an
isomorphism.

PRrROOF. We will prove a more general version in Proposition 4.3.17 below. O

We end this section with the description of the dimension of a closed subset of
P in terms of the homogeneous coordinate ring.

ProprosiTION 4.2.11. If X C P™ is a nonempty closed subset, with homoge-
neous coordinate ring Sx, then dim(X) = dim(Sx) — 1.

PROOF. Note that the morphism 7: A"+ < {0} — P" induces a surjective
morphism f: C(X)\ {0} — X whose fibers are 1-dimensional (in fact, they are all
isomorphic to A \ {0}). It follows from Corollary 3.4.3 that

dim (C(X)) =1+ dim(X).
Since Sy is the coordinate ring of the affine variety C'(X), we obtain the assertion

in the proposition. ([

COROLLARY 4.2.12. If X and Y are nonempty closed subsets of P™, with
dim(X) + dim(Y) > n, then X NY is nonempty and every irreducible component
of X NY has dimension > dim(X) + dim(Y) — n.

PROOF. Note that (C(X)NC(Y)) {0} = C(XNY)~{0}. It is clear C(X)N
C(Y) is nonempty, since it contains 0. In this case, it follows from Exercise 3.3.21
that every irreducible component of C(X) N C(Y) has dimension

> dim (C(X)) + dim (C(Y)) — (n+1) = dim(X) + dim(Y) —n + 1.

This implies that C(X)NC(Y) is not contained in {0}, hence X NY is non-empty.
Moreover, the irreducible components of C(X)NC(Y) are of the form C(Z), where
Z is an irreducible component of X NY, hence

dim(Z) = dim (C(Z)) — 1 > dim(X) + dim(Y) — n.
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EXERCISE 4.2.13. A hypersurface in P™ is a closed subset defined by
{[z0, ..., 2n] € P" | F(ag,...,zn) = 0},

for some homogeneous polynomial F', of positive degree. Given a closed subset
X C P", show that the following are equivalent:

i) X is a hypersurface.
ii) The ideal I(X) is a principal ideal.
iii) All irreducible component of X have codimension 1 in P™.

Note that if X is any irreducible variety and U is a nonempty open subset
of X, then the map taking Z C U to Z and the map taking W C X to W N
U give inverse bijections (preserving the irreducible decompositions) between the
nonempty closed subsets of U and the nonempty closed subsets of X that have no
irreducible component contained in the X ~ U. This applies, in particular, to the
open immersion

A" 5 P" (21,0, 20) =[x, .00, )
The next exercise describes this correspondence at the level of ideals.

EXERCISE 4.2.14. Let S = k[zo,...,x,] and R = k[z1,...,2y,]. For an ideal J
in R, we put
Jhom = (fhom | O;éf c J),

where fhom — xgeg(f) - f(z1/x0y ... xn/z0) € S. On the other hand, if a is a
homogeneous ideal in S, then we put a := {h(1,2z1,...,2,) | h € a} C R.

An ideal a in S is called zp-saturated if (a: xo) = a (recall that (a: z¢) := {u €
S| zou € a}).

i) Show that the above maps give inverse bijections between the ideals in R
and the zg-saturated homogeneous ideals in S.

ii) Show that we get induced bijections between the radical ideals in R and
the homogeneous xg-saturated radical ideals in S. Moreover, a homoge-
neous radical ideal a is xg-saturated if and only if either no irreducible
component of V(a) is contained in the hyperplane (xg = 0), or if a = S.

iii) The above correspondence induces a bijection between the prime ideals in
R and the prime ideals in S that do not contain .

iv) Consider the open immersion

A" 5 P" (ur,.. up) = (Liug: oo uy),
which allows us to identify A™ with the complement of the hyperplane
(xg = 0) in P™. Show that for every ideal J in R we have Van(J) =
VPn (Jhom).
v) Show that for every homogeneous ideal a in S, we have Vpn(a) N A" =
VAn (a).

EXERCISE 4.2.15. Recall that GL,1(k) denotes the set of invertible (n +
1) x (n + 1) matrices with entries in k. Let PGL,1(k) denote the quotient
GLy41(k)/k*, where k* acts on GLy41(k) by

A (aig)ig = (Maij)iy-

i) Show that PGL,1(k) has a natural structure of linear algebraic group,
and that it is irreducible.




ii)

4.2. REGULAR FUNCTIONS ON QUASI-PROJECTIVE VARIETIES 83

Prove that PGL,11(k) acts algebraically on P™.

DEFINITION 4.2.16. Two subsets of P™ are projectively equivalent if they differ
by an automorphism in PGL,11(k) (we will see later that these are, indeed, all
automorphisms of P™).

DEFINITION 4.2.17. A linear subspace of P™ is a closed subvariety of P™ defined
by an ideal generated by homogeneous polynomials of degree one. A hyperplane is
a linear subspace of codimension one.

EXERCISE 4.2.18. Consider the projective space P".

i)
ii)

iii)

iv)

Show that a closed subset Y of P is a linear subspace if and only if the
affine cone C'(Y) C A™*! is a linear subspace.
Show that if L is a linear subspace in P" of dimension r, then there is an
isomorphism L ~ P".
Show that the hyperplanes in P™ are in bijection with the points of “an-
other” projective space P", called the dual of P™, and usually denoted by
(P™)*. We denote the point of (P™)* corresponding to the hyperplane H
by [H].
Show that the subset

{(p,[H]) eP" x (P")" |pe H}
is closed in P™ x (P™)*.
Show that given two sets of points in P™

I'= {Po, .. .,Pn+1} and 1—‘/ = {Qo, .. .,Qn+1},

such that no (n + 1) points in the same set lie in a hyperplane, there is a
unique A € PGL,4+1(k) such that A - P, = Q; for every i.

EXERCISE 4.2.19. Let X C P™ be an irreducible closed subset of codimension
r. Show that if H C P" is a hypersurface such that X is not contained in H, then
every irreducible component of X N H has codimension r + 1 in P™.

EXERCISE 4.2.20. Let X C P" be a closed subset of dimension r. Show that
there is a linear space L C P" of dimension (n —r — 1) such that LN X = (.

EXERCISE 4.2.21. (The Segre embedding). Consider two projective spaces P

and P™.

Let N = (m+1)(n+1) — 1, and let us denote the coordinates on AN+!

by z; ;, with 0 <i<mand 0 < j <n.

1)

Show that the map A™*! x A1 — AN+ given by
((zi)i> (y5);) = (2iy))iy
induces a morphism

Gmm: P™ x P" — PV,

2) Cousider the ring homomorphism

fm,n: k[zi,j | 0<i<m,0< J< n] — k‘[l‘h ey Tmy Y1y - - ,yn]7 fm,n(zi,j) = T;Yj-

Show that ker(f,,.») is a homogeneous prime ideal that defines in P the
image of ¢y, (in particular, this image is closed).

3) Show that ¢,y is a closed immersion.
4) Deduce that if X and Y are (quasi)projective varieties, then X x Y is a

(quasi)projective variety.



84 4. PROJECTIVE VARIETIES

EXERCISE 4.2.22. (The Veronese embedding). Let n and d be positive integers,
and let My,..., My be all monomials in k[zg,...,z,] of degree d (hence N =
(") =D

1) Show that there is a morphism v, 4: P* — P that takes the point
[ag, - .., a,) to the point [My(a),..., My(a)].

2) Counsider the ring homomorphism fy: k[zq,...,2n] — klzo,...,2n] de-
fined by fa(z;) = M;. Show that ker(f;) is a homogeneous prime ideal
that defines in PV the image of Vn,q (in particular, this image is closed).

3) Show that v, 4 is a closed immersion.

4) Show that if Z is a hypersurface of degree d in P™ (this means that
I(Z) = (F), where F' is a homogeneous polyomial of degree d), then there
is a hyperplane H in P such that for every projective variety X C P",
the morphism v, 4 induces an isomorphism between XNZ and vy, 4(X)NH.
This shows that the Veronese embedding allows to reduce the intersection
with a hypersurface to the intersection with a hyperplane.

5) The rational normal curve in P™ is the image of the Veronese embed-
ding vy 4: P' — P9 mapping [a,b] to [a%, a?'b,...,b%]. Show that the
rational normal curve is the zero-locus of the 2 x 2-minors of the matrix

Z0 21 ... Zd—1
Z1 22 ... 24 )

EXERCISE 4.2.23. Use the Veronese embedding to deduce the assertion in
Proposition 4.2.9 from the case when h is a linear form (which follows from Propo-
sition 4.2.2).

EXERCISE 4.2.24. A plane Cremona transformation is a birational map of P?
into itself. Consider the following example of quadratic Cremona transformation:
¢: P2 — P2, given by ¢(x: y: 2) = (yz: zz: xy), when no two of z, y, or z are
Zero.

1) Show that ¢ is birational, and its own inverse.
2) Find open subsets U,V C P? such that ¢ induces an isomorphism U ~ V.
3) Describe the open sets on which ¢ and ¢! are defined.

4.3. A generalization: the MaxProj construction

We now describe a generalization of the constructions in the previous two sec-
tions. A key idea introduced by Grothendieck in algebraic geometry is that it is
often better to study morphisms f: X — Y, instead of varieties X (the case of a
variety being recovered as the special case when Y is a point). More precisely, in-
stead of studying varieties with a certain property, one should extend this property
to morphisms and study it in this context. We begin with one piece of terminology.

DEFINITION 4.3.1. Given a variety Y, a variety over Y is a morphism f: X —
Y, where X is another variety. A morphism between varieties fi: X; — Y and
fo: X9 — Y is a morphism of varieties g: X; — X5 such that foog = f1. It is
clear that we can compose morphisms of varieties over Y and we get, in this way,
a category.

Following the above philosophy, we introduce in this section the Proj construc-
tion, that allows us to study projective varieties over Y, when Y is affine (as we will
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see, these are simply closed subvarieties of a product Y x P™). We will return later
to the case when Y is an arbitrary variety, after discussing quasi-coherent sheaves.

The setting is the following: we fix an IN-graded, reduced, finitely generated
k-algebra S = @, cn Sm- This implies that Sy is a finitely generated k-algebra
and it is also easy to see that each S, is a finitely generated Sp-module. We put

S+ - @m>0 Sm

EXERCISE 4.3.2. Given homogeneous elements tg, . ..,t, € S4, show that they
generate S as an Sp-algebra if and only if they generate S, as an ideal.

For the sake of simplicity, we always assume that S is generated as an Sp-
algebra by S7. This condition is equivalent with the fact that S is isomorphic,
as a graded ring, to the quotient of Sy[xg,...,2,] by a homogeneous ideal, where
the grading on this polynomial ring is given by the total degree of the monomials.
Note that by the above exercise, our assumption implies that S; generates S, as
an ideal.

Consider the affine varieties W = MaxSpec(S) and Wy = MaxSpec(Sp) (see
Exercise 2.2.17 for the notation). The inclusion Sy < S corresponds to a morphism
f+ W — Wy. The grading on S translates into an algebraic action of the torus k*
on W, as follows. We have a morphism

a: k¥ xW =W

corresponding to the k-algebra homomorphism S — kft,t™!] @ S mapping >, f;
to >, t'f;, where f; € S; for all i. One can check directly that this gives an action
of k* on W, but we prefer to argue as follows: let us choose a surjective graded
homomorphism of Sp-algebras ¢: Splxg,...,x,] — S, corresponding to a closed
immersion j: W < Wy x A™! such that if p: Wy x A" — W, is the first
projection, we have po j = f. As before, we have a morphism

B k* x Wy x A" — Wy x AntL.

Since ¢ is a graded homomorphism, we see that the two morphisms are compatible
via j, in the sense that

j(a(/\, w)) = B()\,j(w)) forall A€ k™ weW.
It is straightforward to check that
B\, wo, T, ..., x2n) = (w0, \Xg, . .., Ax,) forall \€E* wy € Wo, (xq,...,5,) € A"

Therefore 3 gives an algebraic action of k* on Wy x A™*! and thus a gives an
algebraic action of £* on W. We will keep using this embedding for describing the
action of k* on W. To simplify the notation, we will write X - w for a(X, w).

LEMMA 4.3.3. Given the above action of k* on W, the following hold:

i) An orbit consists either of one point or it is 1-dimensional.
il) A point is fized by the k*-action if and only if it lies in V(S,).
ili) If O is a 1-dimensional orbit, then O is a closed subset of W \ V(S4),
O~A' and ONV(S,) consists of one point.

PRrROOF. By embedding W in Wy x A"*! as above, we reduce the assertions
in the lemma to the case when W = Wy x A"t in which case they are all clear.
Note that via this embedding, we have V(S;) = Wy x {0}. O
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REMARK 4.3.4. By arguing as in Remark 4.1.5, we see that a closed subset
Z C W is invariant by the k*-action (that is, A - Z = Z for every A € k*) if and
only if the corresponding ideal Iy (Z) is homogeneous.

DEFINITION 4.3.5. Given S as above, we define MaxProj(S) to be the set of
one-dimensional orbit closures for the action of £* on W. Since every such orbit
is clearly irreducible, being the image of a morphism k* — W, it follows from
Lemma 4.3.3 and Remark 4.3.4 that these orbit closures are in bijection with the
homogeneous prime ideals g C S such that S; Z q and dim(S/q) = 1.

We put a topology on X = MaxProj(S) by declaring that a subset is closed
if it consists of all 1-dimensional orbit closures contained in some torus-invariant
closed subset of W. Equivalently, the closed subsets are those of the form

V(1) = {q € MaxProj($) | I C q},
for some homogeneous ideal I C S. The assertions in the next lemma, which are
straightforward to prove, imply that this gives indeed a topology on MaxProj(.5).

LEMMA 4.3.6. With the above notation, the following hold:
i) We have V(0) = MaxProj(S) and V(S) = 0.
il) For every two homogeneous ideals I and J in S, we have
VIHuv(J)=vInJ)=V{I-J).

iii) For every family (I,)a of homogeneous ideals in S, we have

V)=V (; Ia> .

[e%

Since every homogeneous ideal is generated by finitely many homogeneous el-
ements, we see that every open set can be written as a finite union of sets of the
form

Dy (f) = {a € MaxProj(S) | f ¢ a},

where f € S is a homogeneous element. In fact, we may take f of positive degree,
since if tg,...,t, € S1 generate Sy, we have

D} (f) = J DX (t:f)-
i=0
As a special case of this equality for f = 1, we have
MaxProj(S) = D¥ (to) U...U D% (t).

REMARK 4.3.7. It is clear that if I is a homogeneous ideal in S, then V(I) =
V (rad(I)). Moreover, if

I'={feS|f S Crad(l)},
then V(I) = V(I').
For future reference, we give the following variant of graded Nullstellensatz.

PrROPOSITION 4.3.8. Let S be a graded ring as in the proposition. If I is a
homogeneous, radical ideal in S, and f € S is homogeneous, such that f € q for all
q € MaxProj(S) with q 2 I, then f-Sy CI. If deg(f) > 0, then f € I.
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PROOF. We first prove the last assertion, assuming deg(f) > 0. After writing
S as a quotient of a polynomial ring over Sy, we see that we may assume that S =
Alxo,...,2,], with the standard grading. Recall that we take Wy = MaxSpec(Sp)
and W = MaxSpec(S) = Wy x A", Let Y C W be the closed subset defined by
I. Note that W is k*-invariant. Our assumption says that f vanishes on {wg} x L,
whenever L is a line in A" with {we} x A"™! C Y. On the other hand, since
deg(f) > 0, we see that f automatically vanishes along Wy x {0}, hence f vanishes
along Y (we use the fact that Y is a union of k*-orbits). We thus conclude that
f € I. The first assertion in the proposition now follows by applying what we know
to each product fg, with g € S;. O

Given an ideal q € MaxProj(5), let T' denote the set of homogeneous elements
in S\ ¢. Recall that the ring of fractions 7-1S carries a natural grading, whose
degree 0 part is denoted by S(q). This is a local ring, with maximal ideal my :=
q-T71'Sn S(q)- Similarly, given a homogeneous element f € 5, the localization Sy
carries a natural grading, whose degree 0 part is denoted S ).

LEMMA 4.3.9. For every t € Sy, the following hold:
i) We have an isomorphism of graded rings Sy ~ Sg[x,271].
ii) Every homogeneous ideal in Sy is of the form @, .5 (I N Sy)t™.
iii) We have a homeomorphism between D (t) and MaxSpec(S(y)).
iv) For every q € MaxProj(S), the residue field of S(q) is equal to k.

PROOF. Since the element % € S; has degree 1 and is invertible, it follows

easily that the homomorphism of graded S(;)-algebras
S(t) [a:,a:_l] — S

that maps x to % is an isomorphism. This gives i) and the assertion in ii) is
straightforward to check.

It is clear that localization induces a bijection between the homogeneous prime
ideals in S that do not contain ¢ and the homogeneous prime ideals in S;. Moreover,
it follows from ii) that every such prime ideal in S; is of the form @, ., pt™, for a

unique prime ideal p in S(;. If ¢ € .S corresponds to p C S(y), then
(4.3.1) (S/a)e == (S /p) [z, 7],

hence
dim(S/q) = dim ((S/q);) = dim(S;)/p) + 1.

Therefore q lies in MaxProj(.5) if and only if p is a maximal ideal in S(;). This gives
the bijection between D7 (t) and MaxSpec(S(;)) and it is straightforward to check,
using the definitions of the two topologies, that this is a homeomorphism.

Finally, given any q € MaxProj(S), we can find ¢t € S; such that q € DT (¢). If
p is the corresponding ideal in S(4), then the isomorphism (4.3.1) implies that the
residue field of S(q) is isomorphic as a k-algebra to the residue field of (S())y, hence
it is equal to k. (I

We now define a sheaf of functions on X = MaxProj(.S), with values in k, as
follows. For every open subset U in X, let Ox (U) be the set of functions ¢: U — k
with the following property: for every « € U, there is an open neighborhood U, C U
of x and homogeneous elements f,g € S of the same degree such that for every
q € U,, we have g € q and ¢(q) is equal to the image of 5 in the residue field of Sy,
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which is equal to k by Lemma 4.3.9. It is straightforward to check that Ox (U) is
a k-subalgebra of Funx (U) and that, with respect to restriction of functions, Ox

is a sheaf. This is the sheaf of reqular functions on X. From now on, we denote by
MaxProj(S) the object (X,Ox) in Topy.

REMARK 4.3.10. It is clear from the definition that we have a morphism in
Topy
MaxProj(S) — MaxSpec(Sp)

that maps q to qN Sp.

ProrosITION 4.3.11. If we have a surjective, graded homomorphism ¢: S — T,
then we have a commutative diagram

MaxProj(T) A MaxProj(S)

| ;

MaxSpec(Tp) —s MaxProj(Sy),

in which i is a closed immersion and j given an isomorphism onto V(I) (with the
induced sheaf from the ambient space)’, where I = ker(®).

ProOF. Note first that since ¢ is surjective, the induced homomorphism Sy —
To is surjective as well, hence the induced morphism i: MaxSpec(Tp) — MaxSpec(Sy)
is a closed immersion. Since ¢ is graded and surjective, we have T = ¢(S+) and
S, = ¢7X(T}), hence S; C ¢~ 1(p) if and only if T C p. We can thus define
j: MaxProj(T) — MaxProj(S) by j(p) = ¢~ 1(p). It is straightforward to see that
the diagram in the proposition is commutative and that j gives a homeomorphism
of MaxProj(T') onto the closed subset V' (I) of MaxProj(S). Furthermore, it is easy
to see, using the definition, that if U is an open subset of V(I), then a function
¢: U — k has the property that ¢ o j is regular on j~(U) if and only if it can be
locally extended to a regular function on open subsets in MaxProj(S). This gives
the assertion in the proposition. (I

We now consider in detail the case when S = Alzy, ..., x,], with the standard
grading. As before, let Wy = MaxSpec(A4). We have seen that a point p in X =
MaxProj(S) corresponds to a subset in Wy x A" of the form {wg} x L, where
L is a 1-dimensional linear subspace in k"*!, corresponding to a point in P". We
thus have a bijection between MaxProj(S) and Wy x P™. Moreover, since xo, . .., Z,
span S7, we see that

n
X = D ().
i=0
The above bijection induces for every i a bijection between DY (z;) and Wy x
D, (z;). In fact, this is the same as the homeomorphism between D7 (z;) and

MaxSpec(A[zo, . . ., Tn](z;)) = MaxSpec(Alzo/z;, . .., zn/2;])
given by assertion iii) in Lemma 4.3.9. Furthermore, arguing as in the proof of

Proposition 4.2.2, we see that each of these homeomorphisms gives an isomorphism
of objects in Top;. We thus obtain the following

20nce we will show that MaxProj(S) and MaxProj(T) are algebraic varieties, this simply
says that j is a closed immersion.
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PROPOSITION 4.3.12. If S = Alxg,...,x,]|, with the standard grading, and
Wy = MaxSpec(A), then we have an isomorphism

MaxProj(S) ~ Wy x P"
of varieties over Wy.

COROLLARY 4.3.13. If S is a reduced, N-graded, finitely generated k-algebra,
generated as an Sp-algebra by Sy, then MaxProj(S) is a quasi-projective variety.

PROOF. By the assumption on S, we have a graded, surjective morphism of
Sp-algebras

So[.’l?o, .. .,xn] — S.

If Wy = MaxSpec(Sp), then it follows from Propositions 4.3.11 and 4.3.12 that we
have a closed immersion

MaxProj(5) < MaxProj(So[zo, - - ., zn]) ~ Wy x P",

which gives the assertion in the corollary, since a product of quasi-projective vari-
eties is quasi-projective by Exercise 4.2.21. ([l

REMARK 4.3.14. If X is a closed subset of P, with homogeneous coordinate
ring Sy, then MaxProj(Sx) ~ X. More generally, suppose that A is a reduced,
finitely generated k-algebra, Wy = MaxSpec(A), and X is a closed subvariety of
Wo x P™. If I is a radical, homogeneous ideal in A[zg, ..., z,] such that X = V(I),
then

X ~ MaxProj(Alzo, ..., zn]/I).
Indeed, the surjection
Alxg,...,xn] = Alxo, ..., z0]/1
induces by Proposition 4.3.11 a closed immersion
t: MaxProj (A[a:o, . ,xn]/l) — MaxProj (A[xo, e ,xn])

It is then clear that, via the isomorphism MaxProj (A[xo,...,ajn]) ~ Wy x P"
provided by Proposition 4.3.12, the image of ¢ is equal to X.

DEFINITION 4.3.15. Given an affine variety Y, a variety f: X — Y over Y is
projective if there is a reduced, N-graded, finitely generated k-algebra S, generated
as an Sp-algebra by Si, such that Y ~ MaxSpec(Sp), and X is isomorphic (over Y)
to MaxProj(S). It follows from the above remark, together with Propositions 4.3.11
and 4.3.12, that X is projective over Y if and only if it admits a closed immersion
(over Y) in Y x P™.

PRrROPOSITION 4.3.16. If S is a reduced, N-graded, finitely generated k-algebra,
generated as an Sp-algebra by Sy, then for every homogeneous f € S, of positive
degree, the open subset DY (f) € X = MaxProj(S) is affine.

PROOF. By Proposition 4.3.11, it is enough to prove this when S = Sy[xg, . . ., Tn]-
The argument in this case follows the one in the proof of Proposition 4.2.9. (]

We now give a generalization of Proposition 4.2.10 describing the regular func-
tions on the affine open subsets D (f) in MaxProj(sS).
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PROPOSITION 4.3.17. Let S be a reduced, N-graded, finitely generated k-algebra,
generated as an Sp-algebra by S1, and let X = MaxProj(S). For every homogeneous
f €8S, of positive degree, consider the homomorphism

®: S(p) — O(Dx(f))

that maps f% to the function taking q € D% (f) to the image of f% in the residue

field of S(qy, which is isomorphic to k. Then ® is an isomorphism.

PrOOF. The proof is similar to that of Proposition 1.4.7. We first show that
® is injective. Suppose that fim lies in the kernel of ®. In this case, for every
q € X\ V(f), we have g € q. This implies that fg € q for every q € X, hence
fg = 0 by Proposition 4.3.8, hence f% = 01in (Sx)(y). This proves the injectivity
of ®.

In order to prove the surjectivity of ®, consider ¢ € O(D; (f)) By hypothesis,
and using the quasi-compactness of D}( f), we may write

DL(f)=Viu...uV,,

for some open subsets V; such that for every i, there are g;, h; € S homogeneous of
the same degree such that for every q € V;, we have h; &€ q and ¢(q) is the image of
Z—i in the residue field of S(4). We may assume that V; = X \V(f;) for 1 <4 <, for
some homogeneous f; € S, of positive degree. Since h; & q for every q € X \V(f;),
it follows from Proposition 4.3.8 that f; € rad(h;). After possibly replacing f; by
a suitable power, we may assume that f; € (h;) for all 4. Finally, after multiplying
both g; and h; by the same homogeneous element, we may assume that f; = h; for
all 4.

We know that for u € X \ V(g;g;) the two fractions Zl((zg and ,’Z EZ% have the
same image in the residue field of every Sq). By the injectivity statement we have

already proved, this implies that
Gi 9i .
=== in Spp,.
hi  hy hiha
Therefore there is a positive integer N such that

(hlh])N(gzhj - gjhz) =0 forall Z,_]

After replacing each g; and h; by g;hY and hﬁv *1 respectively, we see that we may
assume that

gihj - gjhi =0 forall ’L,]
On the other hand, since

DL(f) = |J Dk (h),
i=1
we have
V(f)=V(h,..., h),

and therefore Proposition 4.3.8 implies that f € rad(hy,...,h,). We can thus write
fm= Zaihi forsome m>1 and ay,...,a, €S.
i=1

Moreover, by only considering the terms in S,,.4cg(f), We see that we may assume
that each a; is homogeneous, with deg(a;) + deg(h;) = m - deg(f).
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In order to complete the proof, it is enough to show that

¢¢(a191+~-~+ar9r
= Iz .

Note that for q € D% (h;), we have
gi _ a1g1+...+ argr

/- in S
h] fnL (q)
since i, .
hj- Y aigi =Y aihig; = f™g;.
i=1 i=1
This completes the proof. O

REMARK 4.3.18. Suppose that S is an N-graded k-algebra as above and
f+ X = MaxProj(S) — MaxSpec(Sy) =Y
is the corresponding morphism. If a € Sy and we consider the N-graded k-algebra
Sa, then we have a map
j: MaxProj(S,) — MaxProj(S)
that maps q to its inverse image in S. This gives an open immersion, whose image

is f‘l(Dy(a)): this follows by choosing generators t1,...,t. € S; of S as an Sp-
algebra, and by showing that for every 4, the induced map

MaXSpec((Sa)(ti)) — MaXSpec(S(ti))
is an open immersion, with image equal to the principal affine open subset corre-

sponding to ¢ € S(,)-

REMARK 4.3.19. Suppose again that S is an N-graded k-algebra as above and
f:+ X = MaxProj(S) — MaxSpec(Sy) = Y is the corresponding morphism. If J
is an ideal in Sy, then the inverse image f’l(V(J)) is the closed subset V(J - S).
This is the image of the closed immersion

MaxProj(S/rad(J - S)) < MaxProj(S)
(see Proposition 4.3.11).
REMARK 4.3.20. For every S as above, we have a surjective morphism
7: MaxSpec(S) \ V(S4) — MaxProj(5).

Since all fibers are of dimension 1 (in fact, they are all isomorphic to A\ {0}), we
conclude that

dim (MaxProj(S)) = dim (MaxSpec(S) \ V(54)) — 1 < dim(S) — 1.

Moreover, this is an equality, unless every irreducible component of maximal dimen-
sion of MaxSpec(S) is contained in V'(S; ), in which case we have dim(S) = dim(Sy).

EXERCISE 4.3.21. Show that if S is an N-graded k-algebra as above and X =
MaxProj(S), then for every q € X, there is a canonical isomorphism

OX,q ~ S(q)






CHAPTER 5

Proper, finite, and flat morphisms

In this chapter we discuss an algebraic analogue of compactness for algebraic
varieties, completeness, and a corresponding relative notion, properness. In particu-
lar, we prove Chow’s lemma, which relates arbitrary complete varieties to projective
varieties. As a special case of proper morphisms, we have finite morphisms, which
we have already encountered in the case of morphisms of affine varieties. We prove
an irreducibility criterion for varieties that admit a proper morphism onto an irre-
ducible variety, such that all fibers are irreducible, of the same dimension; we also
prove the semicontinuity of fiber dimension for proper morphisms. Finally we dis-
cuss an algebraic property, flatness, that is very important in the study of families
of algebraic varieties.

5.1. Proper morphisms

We will define a notion that is analogous to that of compactness for usual
topological spaces. Recall that the Zariski topology on algebraic varieties is quasi-
compact, but not Hausdorff. As we have seen, separatedness is the algebraic coun-
terpart to the Hausdorff property. A similar point of view allows us to define the
algebraic counterpart of compactness. The key observation is the following.

REMARK 5.1.1. Let us work in the category of Hausdorff topological spaces.
A topological space X is compact if and only if for every other topological space
Z, the projection map p: X x Z — Z is closed. More generally, a continuous
map f: X — Y is proper (recall that this means that for every compact subspace
K C Y, its inverse image f~1(K) is compact) if and only if for every continuous
map g: Z — Y, the induced map X Xy Z — Z is closed.

DEFINITION 5.1.2. A morphism of varieties f: X — Y is proper if for every
morphism ¢g: Z — Y, the induced morphism X Xy Z — Z is closed. A variety X
is complete if the morphism from X to a point is proper, that is, for every variety
7, the projection X x Z — Z is closed.

REMARK 5.1.3. Note that if f: X — Y is a proper morphism, then it is closed
(simply apply the definition to the identity map Z =Y — Y.

We collect in the next proposition some basic properties of this notion.

PROPOSITION 5.1.4. In what follows all objects are algebraic varieties.
) If f: X =Y and g: Y — Z are proper morphisms, then go f is a proper
morphism.
i) If f: X =Y is a proper morphism, then for every morphism g: Z =Y,
the induced morphism X Xy Z — Z is proper.
iii) Every closed immersion i: X < Y is proper.

93
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iv) If X is a complete variety, then any morphism f: X —'Y is proper.
v) If f: X =Y is amorphism andY has an open coverY = UU...UU, such
that each induced morphism f~1(U;) — U, is proper, then f is proper.

PRrROOF. Under the assumption in i), given any morphism h: W — Z, consider
the commutative diagram with Cartesian squares:

Xxy Y x;, W2 sV x, WLt oW

L,

X y —2 -7

In this case, the big rectangle is Cartesian. The assumption implies that the mor-
phisms p and ¢ are closed, hence the composition g o p is closed. This gives i).

For ii), we argue similarly: given a morphism h: W — Z, consider the commu-
tative diagram with Cartesian squares:

XXy ZxgW— XXy Z—X

(R

Since the big rectangle is Cartesian, it follows from the hypothesis that p is closed.
This proves that ¢ is proper.

Ifi: X — Y is a closed immersion, then for every morphism g: Z — Y, the
induced morphism X xy Z — Z is a closed immersion, whose image is g~ ! (’L(X ))
(see Example 2.4.8). Since every closed immersion is clearly closed, it follows that
1 is proper.

Suppose now that X is a complete variety and f: X — Y is an arbitrary
morphism. We can factor f as

XA xxy By,

where if is the graph morphism associated to f and p is the projection. The map p
is proper, by property ii), since X is complete, and i is proper by iii), being a closed
immersion, since X and Y are separated. Therefore the composition f = poiy is
proper, proving iv).

Under the assumptions in v), consider a morphism g: Z — Y and let p: X xy
Z — Z be the induced morphism. We have an induced open cover Z = |J._, g~ (U;)
and for every i, we have an induced morphism

pi:p (g7 N Uy) = fHU) xu, g7 U;) = g (Uh).

Since f~1(U;) — U; is proper, it follows that p; is closed, which easily implies that
p is closed. ([

REMARK 5.1.5. It follows from property ii) in the proposition that if f: X — Y
is a proper morphism, then for every y € Y, the fiber f~!(y) is a complete variety
(possibly empty).

EXERCISE 5.1.6. Show that if X is a connected, complete variety, then I'( X, Ox) =
k. Deduce that a complete variety is also affine if and only if it is a finite set of
points.
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EXERCISE 5.1.7. Show that if f: X — Y and g: Y — Z are morphisms of
algebraic varieties, with g o f proper, then f is proper. Show that the same holds
if we replace “proper” by “closed immersion” or “locally closed immersion.

The following is the main result of this section.
THEOREM 5.1.8. The projective space P™ is a complete variety.

PROOF. We need to show that given any variety Y, the projection morphism
p: P" xY — Y is closed. If we consider an affine open cover Y = |J._, U;, it is
enough to show that each projection P™ x U; — Uj is closed. Therefore we may
and will assume that Y is affine, say Y = MaxSpec(A) and we need to show that
the canonical morphism

f: X = MaxProj (A[a:o, . ,xn]) Y

is closed.
Let W = V(I) be a closed subset of X. Recall that if

I'={f€Alzxo,...,zn) | f (x0,...,2,) Crad(I)},

then V(I') = V(I). We need to show that if m ¢ f(W), then there is h € A such
that m € Dy (h) and Dy (h) N f(W) = . For this, it is enough to find h € A such
that h € I’ and h ¢ m. Indeed, in this case, for every ¢ € W = V(I'), we have
h e qnA, hence qN A & Dy (h).

For every i, with 0 < ¢ < n, consider the affine open subset U; = Dx(z;) of
X. Since U; is affine, with O(U;) = Alxo, ..., Tn](z,) = Alvo/xis ..., 00 /7], and
W N U; is the open subset defined by

Iy ={g/z" |m>0,9g€InAlxg,...,¢0]m},
the condition that m & f(U;) is equivalent to the fact that

By putting the condition that 1 lies on the left-hand side and by clearing the
denominators, we conclude that

' em- Alzg,...,x,] + 1 for some m e N.
Since such a condition holds for all 7, we conclude that if N > 0 then
(mo,...,aﬁn)N Cm- Alxg,...,zn] + 1.
This implies
Anlzo, .- xn]n Sm- Anlzo, .- s 2n]n + (- Anlzo, -, 20])N
and we deduce from Nakayama’s lemma that
Anlzo, .-, xnlny € (- Anlzo, ..., Tn])N-

This implies that there is h € A\ m such that h - (2o, ...,7,)Y C I, hence h € I'.
This completes the proof of the theorem. O

COROLLARY 5.1.9. FEwvery projective variety is complete. Moreover, every mor-
phism of varieties f: X — Y, with X projective, is proper; in particular, it is
closed.
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Proor. This follows from the theorem, using various assertions in Proposi-
tion 5.1.4. Since X is a projective variety, there is a closed immersion ¢: X — P"
for some n. Note that i is proper by assertion iii) in the proposition and P™ is
complete by the theorem, hence we conclude that X is complete, using assertion
i) in the proposition. The fact that every morphism X — Y is proper now follows
from assertion iv) in the proposition. O

COROLLARY 5.1.10. If S is a reduced, N-graded, finitely generated k-algebra,
generated as an Sg-algebra by Si, then the canonical morphism f: MaxProj(S) —
MaxSpec(Sy) is proper.

PROOF. The morphism f factors as

MaxProj(S) < MaxSpec(Sy) x P -5 MaxSpec(S),

where i is a closed immersion and p is the projection. Since P™ is complete, we
deduce that p is proper by assertion ii) in Proposition 5.1.4 and i is a closed im-
mersion by assertion iii) in the proposition. We thus conclude that f is proper by
assertion i) in the proposition. O

For the sake of completeness, we mention the following embedding theorem.
Its proof is more involved (see, for example, | D.

THEOREM 5.1.11. (Nagata, Deligne) For every algebraic variety X, there is an
open immersion i: X — Y, where Y is complete. More generally, every morphism
of algebraic varieties f: X — Z factors as a composition

XSy 57
with © an open immersion and p a proper morphism.

The next exercise deals with an important example of a proper, birational
morphism: the blow-up of the affine space at the origin.

EXERCISE 5.1.12. Thinking of P™~! as the set of lines in A", define the blow-up
of A™ at 0 as the set

Blg(A™) := {(P,{) € A" x P! | P € ¢}

1) Show that Blg(A™) is a closed subset of A" x P"~1,

2) Show that the restriction of the projection onto the first component gives
a morphism 7: Blg(A™) — A™ that is an isomorphism over A™ ~ {0}.

3) Show that 7=1(0) ~ P"~ L.

4) Show that 7 is a proper morphism.

5.2. Chow’s lemma

In this section we discuss a result that is very useful in reducing statements
about complete varieties to the case of projective varieties. More generally, it allows
reducing statements about proper morphisms to a special case of what we will later
define as projective morphisms. In order to make things more transparent, we begin
with the statement in the absolute case.

THEOREM 5.2.1. (Chow’s lemma) If X is a complete variety, then there is
a projective variety Y and a morphism g: Y — X that induces an isomorphism
between dense open subsets of Y and X.
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Here is the relative version of the above result:

THEOREM 5.2.2. (Chow’s lemma, relative version) If f: X — Z is a proper
morphism of algebraic varieties, then there is a morphism g: Y — X that satisfies
the following conditions:

i) The morphism g induces an isomorphism between dense open subsets of
Y and X.
il) The composition f o g factors as

Yy zx PN 2y 7

where i is a closed immersion, N is a positive integer, and p is the pro-
jection onto the first factor.

Of course, it is enough to only prove the relative statement. We give the proof
following [ ]

PROOF OF THEOREM 5.2.2. Note first that we may assume that X is irre-
ducible. Indeed, if X1,...,X, are the irreducible components of X and if we can
construct morphisms Y; — X; as in the theorem, then we have an induced mor-
phism Y = ||, Y; — X which satisfies the required conditions (note that if we
have closed immersions Y; < Z x P™, then we can construct a closed immersion
Y < Z x P4, where d+1=Y;_,(n; +1), by embedding the P in P¢ as disjoint
linear subspaces).

Suppose now that X is irreducible and consider an affine open cover X =
U, U...UU,. Since each U; is an affine variety, it admits a locally closed immersion
in a projective space P™i. We thus obtain a morphism U; — Z x P™¢ which is
again a locally closed immersion (see Exercise 5.1.7) and we denote its image by
U;. Using the Segre embedding we see that we have a closed immersion

Ui Xz ... XzUp > ZxP™ x ... xP" < Zx PV,

where N +1 = [[,(m; + 1).
Let U* =U;N...NU,. Since X is irreducible, U* is a nonempty open subset
of X. We consider two locally closed immersions. First, we have

Oz:U**)ﬁlXZ...XzUin

that on each component is given by the corresponding inclusion map. This is a
locally closed immersion since it factors as the composition

U* U Xz X...xz U = Uy Xz ...xzUp,

with the first map being a diagonal map (hence a closed immersion) and the second
being a product of open immersions (hence an open immersion). We denote by W
the closure of a(U*). Since W is a closed subvariety of U; Xz ... xz U,, we see
that the canonical morphism W — Z factors as

W ZxPN 5 27

where the first morphism is a closed immersion and the second morphism is the
projection onto the first component.
We also consider the map

B:U" - XxzU Xgz...xzU,
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that on each component is given by the corresponding inclusion. Again, this is a
locally closed immersion, and we denote the closure of its image by Y. It is clear
that the projection onto the last n components

XXZﬁlXZ...XzUin*)aXZ...XzUin
induces a morphism ¢: Y — W while the projection onto the first component
XXZaXZ...XzUin—)X

induces a morphism ¢g: Y — X. The restriction of g to U* is the identity, hence g
is birational. Note that ¢ is a closed map, since f is proper. In particular, since its
image contains the dense open subset U*, it follows that ¢ is surjective.
The key assertion is that ¢ is an isomorphism. Once we know this, we see that
f o g factors as
Y - ZxPN = Z,
with the first map being a closed immersion, and therefore g has the required
properties.
In order to show that ¢ is an isomorphism, we consider for every ¢ the map
a;: U = X Xz ﬁi,

given by the inclusion on each component. This is again a locally closed immersion.
Moreover, since the maps
Ui — X XzUZ' and Uz — Ul Xzﬁi

are closed immersions (as the graphs of the inclusion maps U; < X and U; < Uj,
respectively), it follows that

a;(U) N (X xzUy) = {(u,u) |u € U} = i (Uy) N (Ui %7 Ty).
Consider the projection map
Mt X xz Ui Xz ...xXz Uy = X xzU,.
Since m 4(Y) € a;(U*) = a;(U;), we deduce that
Vi=YN(XxzUXg...xzU; Xz ...x7U,)
=YNU;xzU Xz...x7U,) =Y N {(ug,u1,...,u,) | uo =u; € U;}.
The first formula for V; shows that V; = ¢=1(V/), where
V/=WNU, Xz...xz Ui xz...x7U,

is an open subset of W. From the second formula for V;/ we deduce that ¥ =
V1 U... UV, and since ¢ is surjective, it follows that W =V U...U V.

In order to conclude the proof, it is thus enough to show that each induced
morphism V; — V/ is an isomorphism. We define the morphism

Yi: Vi =+ X xzU; xz...x7U,

by

Yi(ur, oo tn) = (Ui, Uty .y Up).
This is well-defined, and since it maps U* to U™, it follows that its image lies inside
Y. Moreover, we clearly have ¢ o v;(u1,...,u,) = (u1,...,uy,); in particular, the
image of v; lies inside V;. Finally, if u = (ug, u1,...,un) € Vi, then ug = u; lies in

U;, hence u = ~; (q(u)) This shows that «; gives an inverse of g|y,: V; — V/ and
thus completes the proof of the theorem. O
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5.3. Finite morphisms

We discussed in Chapter 3 finite morphisms between affine varieties. We now
consider the general notion.

DEFINITION 5.3.1. The morphism f: X — Y between algebraic varieties is
finite if for every affine open subset V C Y, its inverse image f~*(V) is an affine
variety, and the induced k-algebra homomorphism

Oy (V) = Ox(f~H(V))
is finite.

It is not clear that in the case when X and Y are affine varieties, the above
definition coincides with our old one. However, this follows from the following
theorem.

PROPOSITION 5.3.2. Let f: X — Y be a morphism of algebraic varieties. If
there is an affine open cover Y = J;_, Vi such that each U; = f~1(V;) is an affine
variety and the induced morphism

is finite, then f is a finite morphism.
We begin with a lemma which is useful in several other situations.

LEMMA 5.3.3. If X is an algebraic prevariety and U, V C X are affine open
subsets, then for every p € UNV, there is open neighborhood W C U NV of p that
is a principal affine open subset in both U and V.

PRrROOF. We first choose an open neighborhood W17 C U NV of p of the form
W1 = Dy (f) for some f € O(U). We next choose another open neighborhood
W C W of the form W = Dy (g), for some g € O(V). It is enough to show that
W is a principal affine open subset also in U.

Since O(W1) ~ O(U)y, it follows that there is h € O(U) such that g|lw, = fim
for some non-negative integer m. In this case we have W = Dy (fh), completing
the proof. O

PROOF OF PROPOSITION 5.3.2. Note that if W is a principal affine open sub-
set of some of the V;, then f~1(W) is affine and the induced morphism
(5.3.1) Oy (W) = Ox (71 (W)
is finite. Indeed, if W = Dy, (¢), then f~Y(W) = Dy, (¢ o f) is affine and the
morphism (5.3.1) is identified to

Oy (Vi)p = O(Ui)gos,
which is finite.

Let V C Y be an arbitrary affine open subset. Since V is covered by the open
subsets V' NV}, applying for each pair (V,V;) Lemma 5.3.3, and using what we have
already seen, we see that we can cover V by finitely many principal affine open
subsets Wy, ..., Wy, such that each f~1(W;) is affine and the induced morphism
(5.3.2) Oy (W;) = Ox (f~' (W)

is finite. Let us write W; = Dy (¢;), for some ¢; € Oy (V). The condition that V =
U;_, W, is equivalent to the fact that ¢, ..., ds generate the unit ideal in Oy (V).
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This implies that the f#(¢;) = ¢; o f generate the unit ideal in Ox (f~1(V)).
Since each D -1y (¢; o f) is affine, it follows from Proposition 2.3.16 that f~!(V)
is affine.

Moreover, the Oy (V')-module Ox (f~*(V)) has the property that Ox (f ! (V))dn
is a finitely generated module over Oy (V')4, for all i. Since the ¢; generate the unit
ideal in Oy (V), we conclude using Corollary C.3.5 that Ox (f~*(V)) is a finitely
generated Oy (V)-module. O

REMARK 5.3.4. If f: X — Y is a finite morphism, then for every y € Y,
the fiber f~!(y) is finite. Indeed, if V is an affine open neighborhood of y, then
U = f~1(V) is affine and the induced morphism f~1(V) — V is finite. Applying
to this morphism Remark 3.2.7, we deduce that f~1(y) is finite.

In the next proposition we collect some general properties of finite morphisms.

PROPOSITION 5.3.5. In what follows, all objects are algebraic varieties.

) Iff: X =Y and g: Y — Z are finite morphisms, then go f: X — Z s
a finite morphism.

i) If f: X = Y is a finite morphism, then for every morphism g: Z — 'Y,
the induced morphism h: X Xy Z — Z is a finite morphism.

iii) Fvery closed immersion i: X — Y is a finite morphism.

iv) If f: X =Y is a morphism and Y =V, U ... UV, is an open cover such
that each induced morphism f=*(V;) — V; is finite, then f is finite.

PROOF. The assertions in i) and iii) are straightforward to see and the one in iv)
follows by covering each V; by affine open subsets and then using Proposition 5.3.2.
We now prove the assertion in ii). Let V =V, U... UV, be an affine open cover of
Y. For every i, consider an affine open cover g=1(V;) = U; Ui,;. Note that we have

W (Uiy) = f7H(Vi) xv, Uiy

Using Proposition 5.3.2, we thus see that it is enough to prove the assertion when
X, Y, and Z are affine varieties. In this case, X Xy Z is affine, since it is a closed
subvariety of X x Z (see Proposition 2.4.7). Moreover, the morphism

. O(Z) = O(X xy Z)
factors as
#
0(2) = O(Y) @) 0(Z) "8 O(X) 20v) O(Z) 25 O(X xy Z).

The homomorphism f#®1 is finite since f# is finite and p is surjective (this follows,
for example, from the fact that X xy Z is a closed subvariety of X x Z, but see also
Remark 2.4.9 for a more precise statement). This completes the proof of ii). O

The next proposition extends to arbitrary morphisms some properties that we
have already proved for finite morphisms between affine varieties.

PROPOSITION 5.3.6. Let f: X — Y be a finite morphism.

1) The map f is closed.

2) If Z1 C Zy are irreducible closed subsets of X, then f(Z1) € f(Za) are
irreducible, closed subsets of Y.

3) If f is surjective, then given any irreducible, closed subset W of Y, there
is an irreducible, closed subset Z in X such that f(Z)=W.
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4) If Zy is an irreducible, closed subset of X and W1 D Wy are irreducible,
closed subsets of Y, with Wy = f(Z1), then there is Zy C Z; irreducible
and closed such that f(Z3) = Wh.

PrOOF. We have already seen these properties when X and Y are affine vari-
eties in Corollary 3.2.9. Let Y = V3 U ... UV, be an affine open cover of Y. By
definition, each f~1(V;) is affine and the induced morphism f~1(V;) — V; is finite,
hence it satisfies the properties in the proposition. Since each map f=1(V;) — V; is
closed, it follows that f is closed, hence we have 1). The assertions in 2), 3), and 4)
similarly follow from the corresponding ones for the morphisms f~1(V;) — V;. O

COROLLARY 5.3.7. FEvery finite morphism f: X — 'Y is proper.

PROOF. Given any morphism of varieties g: Z — Y, assertion ii) in Proposi-
tion 5.3.5 implies that the induced morphism X xy Z — Z is finite. This is thus
closed by assertion 1) in Proposition 5.3.6, which shows that f is proper. O

We mention the following converse to Corollary 5.3.7. This is a deeper result
that we will only prove later.

THEOREM 5.3.8. If f: X — Y is a proper morphism with finite fibers, then f
18 finite.

The following proposition gives another property of finite morphisms that we
have seen for affine varieties.

PROPOSITION 5.3.9. If f: X — Y is a finite, surjective morphism of algebraic
varieties, then for every closed subset Z of X, we have

dim (f(2)) = dim(Z2).
Moreover, if Z is irreducible, then
codimy (f(Z)) = codimx (Z).

ProoF. This can be deduced from the properties in Proposition 5.3.6 as in the
proof of Corollary 3.2.10. O

EXAMPLE 5.3.10. If L; and Ly are disjoint linear subspaces of P", with dim(Lq)+
dim(Ly) = n—1, then the projection of P™ onto Lo, with center Ly is the morphism
m: P" N\ Ly — Lo such that 7(p) is the intersection of Lo with the linear span
(L1,p) of Ly and p. In order to see that this is indeed a morphism, let’s apply an
element of PGL,,4+1(k) to P™ in order to have

Li=(xo=...=2,=0) and L= (2441 =...=x, =0).
We consider the isomorphism P" ~ L, given by
[woy ..y up] = [ugy -« yur, 0,00, 0]
Note that if p = [ag, .. .,a,] € P™ \ L1, then the linear span of L; and p is the set
{[Aao, .-, Aar,bri1, .. bp] | X € K", bryr, ..., by € K}
We thus see that the map 7: P” ~\ L; — P" is given by
7([ao, ..., an)) = [ao, ..., a]

and it is now straightforward to check that 7 is a morphism.
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Let us show that if X is a closed subvariety of P™ such that X N L; = 0,
then the induced morphism 7x: X — Lo is finite. This is an easy consequence
of Theorem 5.3.8, since the hypothesis implies that wx has finite fibers: the fiber
over a point ¢ € Lo lies in the linear span (L1, q) of L; and ¢, which has dimension
equal to dim(L;) + 1; if this is not finite, then its intersection with the hyperplane
Ly C (Ly1,q) would be non-empty by Corollary 4.2.12. However, we will give a
direct argument for the finiteness of mx, since we haven’t proved Theorem 5.3.8
yet.

After a linear change of coordinates as above, we may assume that

W:P"\L1_>PT7 Wx([a(],...,an]):[(Lo,...7ar].

Note that 7 is the composition of (n —r) maps, each of which is the projection from
a point onto a hyperplane. Indeed, if

T 0 PT—H N {[0, ey 0, 1]} — PT-H_l, Wi([UO, . »ur+i]) = ['LL(], - ,ur+i,1]

for 1 < i <n—r, then it is clear that 7t = 71 o... o m,_,. Since a composition
of finite morphisms is finite, we see that we only need to prove our assertion when
r=n-—1.

It is enough to show that if U; = (z; # 0) € P""!, then for each i, with
0 <i <n — 1, the inverse image 75" (U;) is affine and the induced homomorphism

(5.3.3) O(U;) — O(nx (Uy))

is a finite homomorphism. The fact that w;(l(Ul-) is affine is clear, since this is equal
to Dj} (z;), hence it is affine by Proposition 4.2.9. Moreover, by Proposition 4.2.10,
we can identify the homomorphism (5.3.3) with

x Ty
(5.3.4) k2o, . Tn1](e = k [0, . 1] = (S%) (2):

Ty Ly

where Sx is the homogeneous coordinate ring of X. Since (Sx)(s,) is generated
by i—i, with 0 < j < n, in order to show that (5.3.4) is a finite homomorphism, it
is enough to show that each =X € (Sx)(s,) is integral over k [%, .., 2=t This
is clear if j < n — 1, hence we only need to consider ”;—’Z By hypothesis, we have
[0,...,0,1] € X. Therefore there is a homogeneous polynomial f, say of degree
d, in the ideal Ix corresponding to X such that z¢ appears in f with nonzero
coefficient. If d = 0, then X is empty, in which case the assertion to prove is trivial.
If d > 0, we may assume that f = z¢ —1—221:1 gi(wo, ..., xn_1)2d"". Dividing by x¢,

we thus conclude that

d d
T Zo LTp—1 .
In S 2., -0 S%) (s
(%) +i:19 (m i ) i (Sx) ()

K2

%] This gives our assertion.
i

hence 7= is integral over k [%7 ceey

In particular, we see that if X is a projective d-dimensional variety, then there
is a finite morphism X — P?. Indeed, if X is a closed subvariety of P™ different
from P™, by projecting from a point not in X we obtain a finite morphism X — Y,
where Y is a d-dimensional subvariety of P?~!. By iterating this construction we

obtain a finite morphism X — P?.
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PrOPOSITION 5.3.11. Let f: X — Y be a dominant morphism of irreducible
varieties. If dim(X) = dim(Y'), then there is a non-empty open subset V of Y such
that the induced morphism f~Y(V) — V is finite (in this case, one says that f is
generically finite).

Note that the converse also holds by Proposition 5.3.9.

PROOF OF PROPOSITION 5.3.11. We may clearly replace Y by an affine open
subset and X by the inverse image of this subset, in order to assume that Y is
an affine variety. In fact, we may assume that X is affine as well. Indeed, let
us choose an affine open subset U of X and suppose that we know the assertion
in the proposition for the induced morphism U — Y. In other words, we know
that there is a non-empty open subset V of Y, such that the induced morphism
g: UN f~1(V) — V is finite. Note that if Z = f(X \ U), then

dim(Z) < dim(X \U) < dim(X) = dim(Y'),

hence Z is a proper closed subset of Y. If we take V/ = V ~ Z, then V' is non-
empty and the induced morphism ¢~ *(V’) = U N f~Y(V') — V' is finite. However,
it follows from the definition of X’ that f~!(V’) C U, which implies that V"’ satisfies
the requirement in the proposition.

Suppose now that both X and Y are affine varieties, and consider the homo-
morphism

ffrA=0() - O0X)=8

corresponding to f. Note that this is injective since f is dominant. Let k(Y) =
Frac(A) be the field of rational functions of Y. The assumption that dim(X) =
dim(Y") implies that Frac(B) is algebraic, hence finite, over Frac(A) by Corol-
lary 3.3.9. Noether’s Normalization lemma thus implies that B ® 4 k(Y") is a finite
k(Y)-algebra. Let by,...,b. € B be generators of B as a k-algebra. Since each b;
is algebraic over k(Y'), we see that there is f; € A such that % is integral over Ay, .
This implies that if f = [, f;, then each % is integral over Ay, hence Ay — By
is a finite homomorphism. Therefore V' = Dy (f) satisfies the assertion in the
proposition. [l

We end this section by introducing another class of morphisms.

DEFINITION 5.3.12. A morphism of algebraic varieties f: X — Y is affine if
for every affine open subset V' C Y, its inverse image f~1(V) is affine.

The next proposition shows that, in fact, it is enough to check the property in
the definition for an affine open cover of the target. In particular, this implies that
every morphism of affine varieties is affine.

PRrROPOSITION 5.3.13. Let f: X — Y be a morphism of algebraic varieties. If
there is an open cover Y = Vi U...UV,, with each V; affine, such that all f_l(Vi)
are affine, then f is an affine morphism.

PROOF. The argument follows as in the proof of Proposition 5.3.2. O

5.4. Semicontinuity of fiber dimension for proper morphisms

Our goal in this section is to prove the following semicontinuity result for the
dimensions of the fibers of a proper morphism.



104 5. PROPER, FINITE, AND FLAT MORPHISMS

THEOREM 5.4.1. If f: X — Y is a proper morphism of algebraic varieties, then
for every non-negative integer m, the set

{yeY |dim(f'(y)) > m}
is closed in'Y .

This is an immediate consequence of the following more technical statement,
but which is valid for an arbitrary morphism.

ProrosiTION 5.4.2. If f: X — Y 4s a morphism of algebraic varieties, then
for every mon-negative integer m, the set X,, consisting of those x € X such that
the fiber f~1 (f(m)) has an irreducible component of dimension > m passing through
x, is closed.

PROOF. Arguing by Noetherian induction, we may assume that the assertion
in the proposition holds for every f|z, where Z is a proper closed subset of X. If
X is not irreducible and XM, ..., X(") are the irreducible components of X, we
know that each X,(g) is closed in X (j), hence in X. Since

Xm = LTJ Xy(,%
j=1

we conclude that X, is closed.

Therefore we may and will assume that X is irreducible. Of course, we may
replace Y by f(X) and thus assume that YV is irreducible and f is dominant. In
this case, if m < dim(X) — dim(Y), then X,, = X by Theorem 3.4.1, hence we
are done. On the other hand, it follows from Theorem 3.4.2 that there is an open
subset V of Y such that if y € V, then every irreducible component of f~1(y) has
dimension equal to dim(X) — dim(Y"). We deduce that if m > dim(X) — dim(Y)
and we put Z = X ~ f~1(V), then Z is a proper closed subset of X such that
X = Zpy. Since Z,, is closed in Z, hence in X, by the inductive assumption, we
are done. O

PROOF OF THEOREM 5.4.1. With the notation in the proposition, we have
{y €y | dim (fil(y)) > m} = f(Xm)-
Since X, is closed and f is proper, it follows that f(X,,) is closed. O

REMARK 5.4.3. If f: X — Y is an arbitrary morphism of algebraic varieties,
we can still say that the subset

{yeY [dim(f~'(y)) = m}

is constructible in Y. Indeed, with the notation in Proposition 5.4.2, we see that
this set is equal to f(X,,). Since X,, is closed in X by the proposition, its image
f(Xy) is constructible by Theorem 3.5.3.

Note that also the set

{y e Y |dim (f~'(y)) =m}

is constructible in Y, being the difference of two constructible subsets.



5.5. AN IRREDUCIBILITY CRITERION 105

5.5. An irreducibility criterion
The following result is an useful irreducibility criterion.

PROPOSITION 5.5.1. Let f: X — Y be a morphism of algebraic varieties. Sup-
pose that Y is irreducible and that all fibers of f are irreducible, of the same dimen-
sion d (in particular, f is surjective). If either one of the following two conditions
holds:

a) X is pure-dimensional;
b) f is closed,
then X is irreducible, of dimension d + dim(Y").

We will be using the proposition for proper morphisms f, so that condition b)
will be automatically satisfied.

PrROOF OF PROPOSITION 5.5.1. We will show that in general-that is, without
assuming a) or b)— the following assertions hold:
i) There is a unique irreducible component of X that dominates Y, and
ii) Every irreducible component Z of X is a union of fibers of f. Its dimension
is equal to dim (m) +d.
Let X = XjU...UX, be the irreducible decomposition of X. For every y € Y,
we put X, = f~!(y), and (X;), = X, N X;. Since X, = Uj=1(X;)y, and since X,
is irreducible, it follows that for every y, there is j such that X, = (Xj),.
For every ¢, let U; := X; \ U ;X;. This is a nonempty open subset of X.
Note that if y € f(U;), then X, can t bc contained in (Xj), for any j # i. It follows
that

(5.5.1) Xy =(X5)y, forall ye f(U;).

Note that some X, has to dominate Y: since f is surjective, we have ¥ =
U; f(X;), and since Y is irreducible, we see that there is £ such that Y = f(X,).

In this case we also have Y = f(U;), and Theorem 3.4.2 implies that there is an
open subset V of ¥ contained in f(U;). We deduce from (5.5.1) that X, = (X),
for every y € V, hence for all j # ¢, we have X; \ X; C f~1(Y \ V). Therefore
X; =X, ~ X, is contained in f~1(Y \ V) (which is closed). We conclude that X
does not dominate Y for any j # /.

On the other hand, it follows from Theorems 3.4.1 and 3.4.2 that for every i,
the following hold

@) dim(X;), > dim(X;) — dim (f(X;)) for every y € f(X;) and
B) There is an open subset W; in f (X;) such that for all y € W; we have
dim(X;), = dim(X;) — dim (f(X;)).
Since W;N f(U;) # 0, it follows from ) and (5.5.1) that d = dim(X;) —dim (f(X;))
for every ¢. Furthermore, for every y € f(X;), we know by «) that (X;), is a closed
subset of dimension d of the irreducible variety X, of dimension d. Therefore

Xy = (Xi)y for all y € f(X;), which says that each X, is a union of fibers of f.
Therefore assertions i) and ii) hold.

In particular, it follows from i) and ii) that if ¢ # ¢, then f(X;) is a proper
subset of Y, and

dim(X;) = d 4 dim(f(X;)) < d + dim(Y) = dim(Xy).
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If X is pure-dimensional, then we conclude that X is irreducible.

Suppose now that f is a closed map. Since f(X;) is closed, it follows that
f(Xy) =Y. We have seen that X, is a union of fibers of f, hence X, = X.
Therefore X is irreducible also in this case. [

ExAMPLE 5.5.2. Consider the incidence correspondence between points and
hyperplanes in P", defined as follows. Recall that (P™)* is the projective space
parametrizing the hyperplanes in P™. We write [H| for the point of (P™)* corre-
sponding to the hyperplane H. Consider the following subset of P" x (P")*:

Z={(p,[H]) eP"x (P")" |pe H}.

Note that if we take homogeneous coordinates xg, ..., x, on P™ and yq,...,y, on
(P™)*, then Z is defined by the condition Y. ,z;y; = 0. It is the straightforward
to see, by considering the products of the affine charts on P™ and (P™)*, that Z
is a closed subset of P™ x (P™)*. The projections on the two components induce
morphisms m1: Z — P" and mp: £ — (P™)*. For every [H| € (P™)*, we have
7y H([H]) =~ H, hence all fibers of 5 are irreducible, of dimension n—1. Since (P")*
is irreducible, it follows from Proposition 5.5.1 that Z is irreducible, of dimension
2n — 1. Note that the picture is symmetric: for every p € P", the fiber 7] L(p)
consists of all hyperplanes in P™ that contain p, which is a hyperplane in (P™)*.

5.6. Flat morphisms

We begin by reviewing the concept of a flat module. Recall that if M is a
module over a commutative ring A, then the functor M ® 4 — from the category of
A-modules to itself, is right exact. The module M is flat if, in fact, this is an exact
functor. Given a ring homomorphism ¢: A — B, we say that ¢ is flat (or that B
is a flat A-algebra) if B is flat as an A-module.

EXAMPLE 5.6.1. The ring A is flat as an A-module, since A ® 4 M ~ M for
every A-module M.

EXAMPLE 5.6.2. A direct sum of flat A-modules is flat, since tensor product
commutes with direct sums and taking a direct sum is an exact functor. It follows
from the previous example that every free module is flat. In particular, every vector
space over a field is flat.

EXAMPLE 5.6.3. If (M;);er is a filtered direct system of flat A-modules, then
M = hﬂMl is a flat A-module. Indeed, since the tensor product commutes with
iel
direct limits, for every injective morphism of A-modules N7 < Ns, the induced
morphism
N1 ®aM — Ny ®a M

can be identified with the direct limit of the injective morphisms
N1 ®Ml — N2 ®A Mi~

Since a filtered direct limit of injective morphisms is injective, we obtain our asser-
tion.

EXAMPLE 5.6.4. If M is a flat A-module, then for every non-zero-divisor a € A,
multiplication by a is injective on A, and after tensoring with M, we see that
multiplication by a is injective also on M. In particular, if A is a domain, then M
is torsion-free.
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The converse holds if A is a PID: every torsion-free A-module is flat. Indeed,
M is the filtered direct limit of its finitely generated submodules, which are free
A-modules, being finitely generated and torsion-free over a PID. Since every filtered
direct limit of flat modules is flat, we conclude that M is flat.

ExXAMPLE 5.6.5. For every ring A and every multiplicative system S C A,
the A-algebra S™'A is flat. Indeed, for every A-module N, we have a canonical
isomorphism

ST'A®A N ~SIN
and the functor taking N to S™'N is exact.

We do not discuss the more subtle aspects of flatness, which we do not need at
this point, and whose treatment is better handled using the Tor functors. We only
collect in the next proposition some very easy properties that we need in order to
define flatness for morphisms of algebraic varieties.

PROPOSITION 5.6.6. Let M be an A-module.

i) If M is flat, then for every ring homomorphism A — B, the B-module
M ®4 B is flat.

ii) If B— A is a flat homomorphism and M is flat over A, then M is flat
over B.

iii) If p is @ prime ideal in A and M is an Ay-module, then M is flat over A
if and only if it is flat over Ap.

iv) If B — A is a ring homomorphism, then M is flat over B if and only if
for every prime (respectively, mazimal) ideal p in A, the B-module M, is

flat.

PRrOOF. The assertion in i) follows from the fact that for every B-module N,
we have a canonical isomorphism
(M®sB)®g N~M®uN.
Similarly, the assertion in ii) follows from the fact that for every B-module N, we
have a canonical isomorphism
N®pM~(N®gA) ®s M.

With the notation in iii), note that if M is a flat A,-module, since A4, is a flat
A-algebra, we conclude that M is flat over A by ii). The converse follows from the
fact that if IV is an Ay-module, then we have a canonical isomorphism

N®APM2N®AP (AP(X)AM)ﬁN@AM.

We now prove iv). Suppose first that M is flat over B and let p be a prime
ideal in A. We deduce that M, is flat over B from the fact that for every B-module
N, we have a canonical isomorphism

N ®p Mp ~ (N®BM) ®AAp.

Conversely, suppose that for every maximal ideal p in A, the B-module M, is flat.
Given an injective map of B-modules N’ < N, we see that for every maximal ideal
p, the induced homomorphism

N/®B Mp ~ (N/(X)B M)p — (N®B M)p ~N®pg Mp
is injective. This implies the injectivity of
N’ M — N M
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by Corollary C.3.4. O

REMARK 5.6.7. If ¢: A — B is a flat homomorphism of Noetherian rings and
p is a prime ideal in A, then for every minimal prime ideal q containing pB, we
have ¢~1(q) = p. Indeed, it follows from assertion i) in Proposition 5.6.6 that the
morphism A/p — B/pB is flat. It then follows from Example 5.6.4 that if @ is
a nonzero element in A/p, then its image in B/pB is a non-zero-divisor, hence it
can’t lie in a minimal prime ideal (see Proposition E.2.1). This gives our assertion.

We now define flatness in our geometric context. We say that a morphism
of varieties f: X — Y is flat if it satisfies the equivalent conditions in the next
proposition.

PROPOSITION 5.6.8. Given a morphism of varieties f: X — Y, the following
conditions are equivalent:

i) For every affine open subsets U C X and V CY such that U C f=%(V),
the induced homomorphism Oy (V) = Ox(U) is flat.

ii) There are affine open covers X = J,U; andY = J,; V; such that for all i,
we have U; C f~Y(V;) and the induced homomorphism Oy (V;) — Ox (U;)
is flat.

iii) For every point x € X, ify = f(x), then the homomorphism Oy, — Ox 4
is flat.

PRrROOF. We begin by showing that ii)=-ii). Given z and y as in iii) and covers
as in ii), we choose i such that « € U;, in which case y € V;. Note that  corresponds
to a maximal ideal p in Ox (U;) and y corresponds to the inverse image q of p in
Oy (V;). Since
is flat, we conclude that A is B-flat by property iv) in Proposition 5.6.6. It follows
that A, is flat over By by property ii) in the same proposition.

Since the implication i)=-ii) is trivial, in order to complete the proof it is enough
to show iii)=1i). Let U and V be affine open subsets as in i). Given the induced
homomorphism

B= Oy(V) — Ox(U) = A,
it follows from iii) that for every maximal ideal p in A, if its inverse image in B
is q, then the induced homomorphism By — A, is flat. Assertion iii) in Proposi-
tion 5.6.6 implies that A, is flat over B for every p, in which case assertion iv) in
the proposition implies that A is flat over B. O

REMARK 5.6.9. The argument for the implication ii)=-ii) in the proof of the
above proposition shows that more generally, if f: X — Y is a flat morphism, then

for every irreducible closed subset V' C X, if W = f(V), then the induced ring
homomorphism Oy,w — Ox,v is flat.

ExXAMPLE 5.6.10. Every open immersion i: U — X is flat: indeed, it is clear
that property iii) in the above proposition is satisfied.

EXAMPLE 5.6.11. If X and Y are varieties, then the projection maps p: X x
Y - X and ¢: X xY — Y are flat. Indeed, by choosing affine covers of X
and Y, we reduce to the case when both X and Y are affine. In this case, since
O(Y) is a free k-module, it follows from assertion i) in Proposition 5.6.6 that
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OX xY) ~ O(X) ®, O(Y) is flat over O(X). This shows that p is flat and
the assertion about ¢ follows similarly.

REMARK 5.6.12. A composition of flat morphisms is a flat morphism. Indeed,
this follows from definition and property ii) in Proposition 5.6.6.

REMARK 5.6.13. If f: X — Y is flat and W C Y is an irreducible, closed
subset such that f~*(W) # ), then for every irreducible component V of f~1(W),
we have f(V) = W. Indeed, we may replace X and Y by suitable affine open
subsets that intersect V' and W, respectively, to reduce to the case when both X
and Y are affine. In this case the assertion follows from Remark 5.6.7.

EXAMPLE 5.6.14. A morphism f: X — Al is flat if and only if every irreducible
component of X dominates A'. The “only if’ part follows from the previous remark.
For the converse, note that under the hypothesis, for every affine open subset U
of X, the k[z]-module Ox(U) is torsion-free: if a nonzero u € k[z] annihilates
v € Ox(U), it follows that every irreducible component of U on which v does not
vanish is mapped by f in the zero-locus of u, a contradiction. We then deduce that
f is flat using Example 5.6.4.

Our goal is to prove two geometric properties of flat morphisms. We begin with
the following generalization of Proposition 1.6.6.

THEOREM 5.6.15. If f: X — Y is a flat morphism between algebraic varieties,
then f is open.

The proof will make use of the following openness criterion.

LEMMA 5.6.16. Let W be a subset of a Noetherian topological space Y. The set
W is open if and only if whenever Z C'Y is a closed irreducible subset of Y such
that W N Z # 0, then W contains nonempty open subset of Z.

PrOOF. The “only if” part is clear, so we only need to prove the converse.
Arguing by Noetherian induction, we may assume that the assertion holds for all
proper closed subspaces of Y. Let Yi,...,Y, be the irreducible components of Y.
We may assume that W is nonempty, and suppose that W contains a point y in
some Y;. By hypothesis, there is a nonempty open subset U C Y; such that U C W.
After replacing U by U ~\ Uj# Y;, we may assume that U NY; = for every j # i,
in which case U is open in Y.

Note that Y ~\ U is a proper closed subset of Y. Moreover, W\ U CY \ U
satisfies the same hypothesis as W: if Z C Y \ U is an irreducible closed subset
such that (W \U) N Z # ), then W contains a nonempty open subset of Z, hence
the same holds for W\ U. By induction, we conclude that W~ U is open in Y \ U.
This implies that W is open, since

Y\ W=Y\U)N(W~U)
is closed in Y N\ U, hence in Y. |

PROOF OF THEOREM 5.6.15. If U is an open subset of X, we may replace f
by its restriction to U, which is still flat. Therefore we only need to show that f(X)
is open in Y and it is enough to show that f(X) satisfies the condition in the lemma.
Suppose that W is an irreducible closed subset of Y such that f(X)NW # 0. If V
is an irreducible component of f~!(W), then V dominates W by Remark 5.6.13.
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In this case, the image of V' in W contains an open subset of W by Theorem 3.4.2.
This completes the proof. ([

Our second main property of flat morphisms will follow from the following

PROPOSITION 5.6.17. (Going Down for flat homomorphisms) If ¢: A — B s
a flat ring homomorphism, then given prime ideals p1 C ps in A and qz in B such
that $~1(q2) = pa, there is a prime ideal q1 C qo such that ¢~1(q1) = p1.

PrOOF. As we have seen in the proof of Proposition 5.6.8, the fact that ¢ is
flat implies that the induced homomorphism A,, — By, is flat. After replacing ¢
by this homomorphism, we may thus assume that (A, p2) and (B, qz2) are local rings
and ¢ is a local homomorphism. In this case every prime ideal in B is contained in
g2. Since the prime ideals in B lying over p; are in bijection with the prime ideals
in (Ap, /p14p,) ®a B, it is enough to show that this ring is not the zero ring.

In fact, the following more general fact is true: under our assumptions, for
every nonzero A-module M, the B-module M ® 4 B. is nonzero. Indeed, if u € M
is nonzero and I = Anng(u), then I C py and Au ~ A/I. We thus have an
inclusion A/T < M and the flatness assumption implies that the induced morphism
B/IB=A/I® B — M ®4 B is injective. Since IB C qa, it follows that B/IB is
nonzero, hence M ® 4 B is nonzero. O

PRrROPOSITION 5.6.18. If ¢: A — B is a ring homomorphism that satisfies the
Going-Down property in the previous proposition, then for every prime ideal q, if
we put p = ¢~ 1(q), then

dim(By/pBg) < dim(Bg) — dim(Ay).

PROOF. Let r = dim(By/pB,) and s = dim(A,). We can choose prime ideals
ps C...Cpp=pindandq-<...<C qo=¢qin B, with pB C q,. Applying the
Going-Down property successively, we obtain a sequence of prime ideals p’, C ... C
po C g, such that ¢~ *(p}) = p; for 0 < i < s. In particular, we have p} # p;_, for
0 <i < s—1 (however, we might have pj, = q,). From the sequence of prime ideals
in B

PG EPCe G S g =g,
we conclude that dim(Bg) > r + s. O

By combining the above two propositions, we obtain the following consequence
in our geometric setting:

THEOREM 5.6.19. If f: X — Y is a flat morphism between two algebraic vari-
eties, W is an irreducible closed subset of Y such that f=*(W) # 0, then for every
irreducible component V of f~1(W), we have

codimx (V) = codimy (W).

PRroOOF. Note first that V' dominates W (see Remark 5.6.13). We apply Propo-
sition 5.6.18 for the flat morphism

Oy,w — Ox.v,

which satisfies the Going-Down property by Proposition 5.6.17. Since V is an
irreducible component of f~(W), we obtain the inequality

codimx (V') > codimy (W).
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In order to prove the opposite inequality, let X’ be an irreducible component
of X containing V' and such that codimx (V) = codimx/ (V). If Y’ is an irreducible
component of Y that contains f(X’), then X’ dominates Y’ by Remark 5.6.13. We
can thus apply Theorem 3.4.1 to deduce

codimx (V) = codimx/ (V') < codimy (W) < codimy (W).

This completes the proof of the theorem. ([l

ExaMPLE 5.6.20. If f: X — Y is a flat morphism between algebraic varieties,
with X of pure dimension m and Y of pure dimension n, then for every irreducible
closed subset W of Y with W N f(X) # 0, the inverse image f~'(W) has pure
dimension equal to dim(W) +m — n. In particular, every non-empty fiber of f has
pure dimension m — n.






CHAPTER 6

Smooth varieties

In this chapter we introduce an important local property of points on algebraic
varieties: smoothness. We begin by describing a fundamental construction, the
blow-up of a variety along an ideal (in the case of an affine variety). We then
define the tangent space of a variety at a point and use it to define smooth points.
We make use of the blow-up of the variety at a smooth point to show that the
local ring of a smooth point is a domain. After discussing some general properties
of smooth varieties, we prove Bertini’s theorem on general hyperplane sections of
smooth projective varieties and end the chapter by introducing smooth morphisms
between smooth varieties.

6.1. Blow-ups

In this section we discuss the blow-up of an affine variety along an ideal. We
will later globalize this construction, after having at our disposal coherent sheaves
of ideals and the global MaxProj construction.

Let X be an affine variety, with A = O(X), and let I C A be an ideal.

DEFINITION 6.1.1. The Rees algebra R(A,I) is the N-graded k-subalgebra
R(A,I)= @ I"t™ C Alt].

meN
Since A is reduced, it follows that A[t] is reduced, hence so is R(A, I). Similarly,
if X is irreducible, then A[t] is a domain, hence so is R(A, ).
Note that R(A,I) is finitely generated and, in fact, it is generated by its degree
1 component: if I = (ay,...,a,), then ait, ..., a,t generate R(A,I). We can thus
apply to R(A, I) the MaxProj construction discussed in Section 4.3. Note that the
degree 0 component is equal to A.

DEFINITION 6.1.2. The blow-up of X along I is the morphism
f: MaxProj (R(A, I)) — X.

We will typically assume that I is nonzero, since otherwise MaxProj (R(A, I )) is
empty. We collect in the next proposition some basic properties of this construction.

PROPOSITION 6.1.3. Let X be an affine variety, with A = O(X), and let I C A
be a nonzero ideal. If Z is the closed subset of X defined by I and f: X = X is
the blow-up of X along I, then the following hold:

i) The morphism f is an isomorphism over X \ Z.

ii) The inverse image f~(Z) is locally defined in X by one equation, which is
a non-zero-divisor. In particular, every irreducible component of f=1(2)
has codimension 1 in X.
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iii) If X is irreducible, then X is irreducible and f is a birational morphism.

iv) More generally, if Z does not contain any irreducible component of X,
by mapping X' to f(X'), we get a bijection between the irreducible com-
ponents of X and those of X, such that the corresponding varieties are
birational.

PROOF. In order to prove the assertion in i), it is enough to show that if a € A
is such that Dx(a) NV (I) = § (which implies a € VI, hence I, = A,), then the
induced morphism f~!(Dx(a)) — Dx(a) is an isomorphism. Since f~!(Dx(a)) =
MaxProj(R(A,I),) (see Remark 4.3.18) and R(A, 1), ~ R(Aq4,L,), we see that it
is enough to show that if I = A, then f is an isomorphism. However, in this case

X = MaxProj(A[t]) = MaxSpec(4) x P°

by Proposition 4.3.12, with f being the projection on the first component. This is
clearly an isomorphism.

In order to prove ii), note that f~'(Z) = V(I - R(A,I)). Let us choose gener-
ators ay,...,a, of I and consider the affine open cover

)? = LnJ D}(ait).

Note that by Propositions 4.3.16 and 4.3.17, we have
DY (a;t) ~ MaxSpec(R(A, I)(4;1))-
Since the ideal I - R(A,I)(,, is generated by 4L ..., % and aTJ = &. % for
1 < j < n, we conclude that I - R(A, I)(4,+) is generated by 9. Finally, note that
h

% € R(A,I)(q,+) is a non-zero divisor: if 5 - mr 0 for some h € R(A, 1),

then there is ¢ > 1 such that ha! = 0 in A, hence # = 0in R(A,I)(q,). This
gives the first assertion in ii) and the second one follows from the Principal Ideal
theorem (see also Remark 3.3.6).

The assertion in iii) is clear: we have seen that in this case X is irreducible and
f is an isomorphism over the nonempty closed subset X \ Z.

Suppose now that X7i,..., X, are the irreducible components of X and that Z
does not contain any of the X;. It follows from i) that X; := f~1(X; < Z) is an
irreducible component of X such that f induces a birational morphism )?1- - X;.
Since f is proper (see Corollary 5.1.9), the image f()?l) is closed, hence f()?l) =X;.

Moreover, we have

XcflzulJX.
i=1
On the other hand, no irreducible component of f~!(Z) can be an irreducible

component of X, since we can find, on a suitable affine chart, a non-zero-divisor
that vanishes on f~1(Z) (see Remark 3.3.6). We thus conclude that

=%
=1

completing the proof of iv). O
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EXAMPLE 6.1.4. Suppose that I = m is the maximal ideal defining a non-
isolated point © € X = MaxSpec(A), hence Z = {z}. It follows from Remark 4.3.19
that f~1(Z) is the closed subset associated to the ideal m - R(A, m). Note that

R(A,m)/m- R(A,m) = P m'/m"! = gr, (A).
i>0
Note that if X71,..., X, are the irreducible components of X that contain x, then the

corresponding irreducible components of X are precisely those that meet f~1(Z2).
Since f~1(Z) is locally defined by a non-zero-divisor, we conclude that

dim (f(2)) = max{dim(X;)} — 1 = dim(Ox.,) - 1.
Since
f7HZ) ~ MaxProj(gr,, (4)/J),
where J is the nil-radical of gr,, (A), we conclude using Proposition 4.2.11 that
dim (gry,(4)) = dim(Ox ,).

ExAMPLE 6.1.5. With the above notation, suppose that X = A" hence A =

klz1,...,z], and I = (x1,...,2,). We thus have a surjective homomorphism
¢ Alyr, .., yn] = R(A D),  o(y;) =at for 1<i<n,
inducing a closed immersion
1 X = X x P!

of varieties over X. Note that if J is the ideal in A[y1,...,¥yn] generated by all dif-

ferences x;y; —x;y;, for i # j, then J C ker(¢), hence 1(X) is contained in V(J). On
the other hand, we have seen in Exercise 5.1.12 that V'(J) is an irreducible variety,
of dimension n. We thus conclude that ¢ gives an isomorphism of X with V(.J). In
particular, our old definition for the blow-up of the affine space at the origin agrees

with the new one. For a generalization of this example, see Example 6.3.23 below.

DEFINITION 6.1.6. Suppose that X is an irreducible affine variety, Z is a proper
closed subset of X, and f: X — X is the blow-up of X along I. If Y is any closed
subvariety of X such that no irreducible component of Y is contained in Z, then
the strict transform (or proper transform) of Y in X is given by

Y = f-1(Y < 2).

REMARK 6.1.7. With the notation in the above definition, we have an induced
morphism Y — Y that can be identified with the blow-up of Y along the ideal
J=1-0(Y). Indeed, if B = O(Y), then the surjection A — B induces a graded,
surjective homomorphism of k-algebras:

R(A,I) = R(B,J).

This induces by Proposition 4.3.11 a commutative diagram

MaxProj(R(B, J)) —— MaxProj(R(A, )

L

Y : X,
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where ¢ and j are closed immersions. By Proposition 6.1.3, g maps birationally
each irreducible component of Y onto a corresponding irreducible component of Y,
which implies that the image of j is, indeed, the strict transform of Y.

EXAMPLE 6.1.8. In order to give some intuition about the blow-up, we discuss
the strict transform of a curve in A? under the blow-up at one point. Let us begin,
more generally, with the computation of the strict transform of a hypersurface in
A" under the blow-up at one point, where n > 2. Suppose that Y is a hypersurface
in A™, with corresponding radical ideal defined by the non-zero polynomial f €
k[z1,...,z,]. Given a point p € Y, the multiplicity mult,(Y) of Y (or of f) at p is
the largest j > 1 such that f € mg), where m,, is the maximal ideal corresponding
to p. Let 7: A" — A" be the blow-up of A™ at p. After a suitable translation, we
may assume that p = 0. We can thus write

f:fm+fm+1+---+fd7
where each f; is homogeneous of degree i, and f,, # 0, so that multo(Y) = m.
Recall that by Example 6.1.5, we know that A" is the subset of A” x P"~! given

by the equations z;y; = x;ys, for 0 < 4,5 < n, where y1, ..., ¥y, are the homogeneous
coordinates on P"~!. Consider the chart U; on Y given by y; # 0. Note that in
this chart we have z; = mZ‘Z—J for j # 1, hence U; ~ A™, with coordinates uq,...,u,

such that 7#(2;) = u; and 7% (z;) = ugu; for j # i. If E = 7=1(0), then ENUj; is
defined by u; = 0.
The inverse image 7~ 1(Y) is defined in U; by

w#(f) = f(UrUsy ooy Wiy oo vy Up ;)

= u;"-(fm(ul, cen Lo un) g g (U, o 1y g+ .—|—u;n*dfd(u1, U
Since the polynomial

o= mlur, o Lo un)Fug e (g, o 1o up )+ .—HL;”_dfd(ul, el uy)
defines a hypersurface in U; that does not contain £ N U;, it follows that its zero-
locus defines ¥ N U;. In fact, since the homomorphism ki, ..., 2nle, = OU;)uy,
is an isomorphism, it is easy to deduce that fis square-free, hence it generates the
ideal of Y N U;.

Let us specialize now to the case n = 2. In this case f,, is a homogeneous
polynomial of degree d, which can thus be written as f,,, = H;"Zl £;, where each /;
is a linear form (we use the fact that k is algebraically closed, hence every polynomial
in one variable is the product of degree 1 polynomials). The lines through the origin
defined by the factors of f,, are the tangents to X at 0. Note that the lines through
0 in A? are parametrized by P* = 771(0).

We claim that after the blow-up, the points of intersection of the strict trans-
form Y with F correspond precisely to the tangent lines to X at 0. Indeed, if we
consider for example the chart Uy, note that the points of Y NENU, are defined by
up = 0= fin(1,uz). It follows that if f,, = H;nzl(ajxl + bjxz), then the points of
Y NENU, are precisely the points [b;, —a;] € E with b; # 0. Similarly, the points
of YNEN U, are precisely the points [b;, —a;] € E with a; # 0. This proves our
claim. In fact, this is not just a set-theoretic correspondence: tangents that appear
with multiplicity > 1 in f,,, translate to tangency conditions between Y and F at
the corresponding point. We will return to this phenomenon at a later point.
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6.2. The tangent space

We begin with the following general observation. If (R, m) is a local Noetherian
ring, then m/m? is a finite-dimensional vector space over the residue field K =
R/m. It follows from Nakayama’s lemma that dimy m/m? is the minimal number
of generators for the ideal m (see Remark C.1.3).

In this section we are interested in the case when (X,Ox) is an algebraic
variety, p € X is a point, and we consider the local ring Ox ,, with maximal ideal
m,,. Recall that in this case the residue field is the ground field k.

DEFINITION 6.2.1. The tangent space of X at p is the k-vector space
T,X := (m,/m>)* = Homy(m,/m> k).

The following proposition explains the terminology in the above definition.
Note that T}, X does not change if we replace X by an affine open neighborhood of
p. In particular, we may assume that X is affine and choose a closed immersion
X — A",

PRrROPOSITION 6.2.2. If X is a closed subvariety of A™ with corresponding rad-
ical ideal Ix C k[z1,...,2,], then T, X is isomorphic to the linear subspace of k™
defined by the equations

0
8;(17)@:0 forall felx.

Moreover, it is enough to only consider those equations corresponding to a system
of generators of Ix.

In the case of a closed subset X of A", we will refer to the linear subspace in
the proposition as the embedded tangent space in the affine space.

PROOF OF PROPOSITION 6.2.2. Let f1,..., f be a system of generators of Ix.
In this case, if p = (a1, ...,ay), we have

Oxp=0anp/(fi,...,fr) and my=(z1—a1,...,2n —an)Oanp/(f1,..., fr).

Therefore we have

OXﬁD/sz) = ki[l‘1,...,.1‘n]/($1 —at,...,Tn _an)Q + (f1yee s fr)

On the other hand, for every f € k[z1,...,z,], we have
"9
fEf(p)—&—Zan;( ) - (xi —a;) mod (z1 —ay,..., o, —a,)>.

We thus see that mp/mf) is the quotient of the vector space over k with basis
e; = x; — a; for 1 < i < n, by the subspace generated by
of
%(P)ei for fe(fi,....fr)
i=1 "
This immediately gives the first assertion in the proposition.
Note now that if g € (f1,..., fr) and we write g = 23:1 hjf;, then it follows

from the product rule and the fact that f;(p) = 0 for all j that

s af
Z@a}z Z:,Zlh Z@x]z
=

i=1 i=1
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The last assertion in the proposition follows. ([

REMARK 6.2.3. If f: X — Y is a morphism of varieties and p € X, we obtain
a local homomorphism of local rings

¢: Oy’f(p) — OXJ,.
This induces a k-linear morphism
2 2
M () /M () — Mp/my,

and by taking duals, we obtain a k-linear map df,: T, X — Ty, Y. It is easy to
see that this definition is functorial: if g: Y — Z is another morphism, then

dgs(p) © dfy = d(g o f)p-

REMARK 6.2.4. If Y is a closed subvariety of the variety X and if ¢: ¥ — X
is the inclusion, then for every p € Y, the linear map di,: T,Y — T, X is injective.
This follows from the fact that the homomorphism Ox , — Oy, is surjective and
therefore the induced map mX,p/m?X’p — mym/m%/m is surjective, where mx , C
Ox p and my,, C Oy, are the corresponding maximal ideals.

Note that if Y if if a closed subvariety of A™ and i: Y < A" is the inclusion,
then the embedded tangent space of Y at p is the image of di,, where we identify
in the obvious way T, A" to k™.

REMARK 6.2.5. If X and Y are closed subvarieties of A™ and A", respectively,
and if f = (f1,...,fn): X — Y, then via the isomorphisms given by Proposi-
tion 6.2.2, the linear map df,, is induced by the linear map £ — k™ given with

respect of the standard bases by the Jacobian matrix (ggj (p)) Indeed, by func-

toriality, it is enough to check this when X = A™ and Y = A”. Let x1,...,2,, be
the coordinate functions on A™ and ¥, ...,y the coordinate functions on A™. If
p=(ay,...,an), then the maximal ideals defining p and f(p) are

m, = (r1 —a1,...,Tm —am) and M) = (1 — [1(0)s-- - Y0 — fu(P)).
Moreover, the map my,) — m, maps y; — fi(p) to f; — fi(p) and Taylor’s formula

shows that
5fz 9
Z 3% —aj) € my,

which implies, after taking duals, our assertion.

In the case of a closed subvariety of a projective space, we also have an embed-
ded tangent space: this time, it is a linear subpace of the projective space. This
is defined as follows. Suppose that X is a closed subset of P™, with corresponding
radical homogeneous ideal Ix. Given a point p = [ug, ..., u,] € X, the projective
tangent space of X at p, that we will denote by T, X, is the linear subspace of P"
defined by the equations

&vi

(ug, ..., up)x; =0,

i=0
where f varies over the homogeneous elements in Ix. Note first that since f is
homogeneous, if we replace (ug, ..., u,) by (Aug,...,Au,), for some A € k*, then
the equation gets multiplied by A. Note also that it is enough to consider a system
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of homogeneous generators of Ix: if f = 22:1 g;f;, with f; € Ix, then we get
using the product rule and the fact that f;(uo,...,u,) =0 for all j

— f r "o,
;azi(u07...,un)xi:;QJ(U07...,U71)~;a—qi(uo,...,un)xi_

Finally, we note that T, X contains the point p: this is a consequence of Euler’s
identity, which says that if f is homogeneous, of degree d, then

of
;mzaxl —df

The terminology is justified by the following

PROPOSITION 6.2.6. Let X be a closed subvariety of P™ and p € X. If i is
such that p € U; = (x; # 0) and if we identify U; with A™ is the usual way, then
T, X NU; is the image of the embedded tangent space in A™ for X NU; at p by the
translation mapping 0 to p.

PROOF. In order to simplify the notation, let us assume that ¢ = 0. In this case,
we may assume that (ug,...,u,) = (1,u1,...,u,). Note that the ideal of X N U;

in k[zq,...,x,] is generated by f(1,x1,...,2,), where f varies over a set of homo-
geneous generators of Ix (see Exercise 4.2.14). Fix such f and let g(z1,...,2,) =
f(,21,...,2,). Therefore we have aa—i(ul, CeyUp) = g—i(Lul, .eoyUp). On the

other hand, it follows from Euler’s identity that

of ~., . 0f
%(1’11’17"'7”71) = _Zul f(l,Ul,...,Un)-

This implies that

of - u =Y
8x0(1’ul’,,,7un)+;axi(l,u1,...7un)£z—;830

i(ulv--~7un) ' (-731' —Ul)

This implies the assertion in the proposition. O

EXERCISE 6.2.7. Given varieties X and Y, for every z € X and y € Y, the
projections X x Y — X and X xY — Y induce a linear map

T(x,y)(X X Y) — T, X x TyY

Show that this is an isomorphism.

6.3. Smooth algebraic varieties

Let X be an algebraic variety. Given a point p € X, recall that we put
dim, X := dim(Ox ). This is the largest dimension of an irreducible component
of X that contains p (see Remark 3.3.14), and also the codimension of {p} in X.
Our first goal is to show that dimy 7, X > dim, X.

More generally, we will get a similar statement for the localization of a finite
type k-algebra at a prime ideal. This applies, in particular, for the local ring
(Ox v,my) of X at an irreducible closed subset V. Note that in this case the
residue field is the field of rational functions on V.
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PROPOSITION 6.3.1. For every local ring (R,m) that is the localization of a
k-algebra of finite type at a prime ideal, we have

dim(R) < dimg m/m?,
where K = R/m.

PRrOOF. Suppose that R = A, where A is a k-algebra of finite type and p is
a prime ideal in A. Note that if I is the nil-radical of A and R = R/I - R, then
R is local, with maximal ideal m = m/I - R, and the same residue field. Since

dim(R) = dim(R), while
dimg m/m? = dimg m/(m? 4 I - R) < dimg m/m?,

we see that that it is enough to prove the assertion when A is reduced. Let X be
an affine variety with O(X) = A and let V be the irreducible closed subset defined
by p.

Recall that by Nakayama’s lemma, if » = dimgx m/m?, then m is generated by
r elements. This implies that there is f € A \ p such that pAy is generated by r
elements. After replacing A by Ay, we may thus assume that p is generated by r
elements. In this case, Corollary 3.3.7 implies dim(R) = codimx (V) < r, giving
the assertion in the proposition. O

DEFINITION 6.3.2. A point p € X is nonsingular (or smooth) if dim, X =
dimy, T, X. Otherwise, it is singular. The variety X is nonsingular (or smooth) if
all its points are nonsingular points.

Given an irreducible, closed subset V' C X, we say that X is nonsingular at V'
if dim(Ox,v) = dimyy,) my /m2,. We will see later that this is equivalent with the
fact that some point p € V is a nonsingular point.

ExAMPLE 6.3.3. It is clear that every affine space A™ is a smooth variety.
Since a projective space has an open cover by affine spaces, it follows that every
projective space is a smooth variety.

EXAMPLE 6.3.4. Let X be a hypersurface in A™, defined by the radical ideal
(f) C klz1,...,2,]). Since dim,(X) = n — 1 for every p € X, it follows from
definition and Proposition 6.2.2 that the set of singular points in X is the zero
locus of the ideal
(fv 8f/8331, <o 78f/8xn)'
In particular, we see that the set of smooth points is open in X. A generalization
of this fact will be given in Theorem 6.3.7 below.

REMARK 6.3.5. Since Krull’s Principal Ideal theorem holds in every Noetherian
ring, the inequality in Proposition 6.3.1 also holds for arbitrary Noetherian local
rings. A Noetherian local ring for which the inequality is an equality is a regular
ring.

DEFINITION 6.3.6. For every regular local ring (R, m), a regular system of pa-
rameters is a minimal set of generators of m. Note that since R is regular, the
length of such a system is equal to dim(R). If X is a variety and p € X is a smooth
point, we say that some regular functions f1,..., f, defined in a neighborhood of
p give a regular system of parameters at p if their images in Ox ), give a regular
system of parameters.

The following is the main result of this section
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THEOREM 6.3.7. For every variety X, the set Xgm of smooth points p € X is
a dense open subset.

We prove the theorem, assuming the following proposition, and then give the
proof of the proposition.

ProOPOSITION 6.3.8. If p € X is a nonsingular point, then the local ring Ox
is a domain (that is, p lies on a unique irreducible component of X ).

PROOF OF THEOREM 6.3.7. In order to prove the assertion, we may assume
that X is irreducible. Indeed, if X,..., X, are the irreducible components of X,
then it follows from Proposition 6.3.8 that no point on the intersection of two
distinct components is nonsingular. It thus follows that if X] = X; \ U#i X, then

= U (Xz,)gm

Therefore it is enough to know the assertion for irreducible varieties.

Suppose now that X is irreducible and let r = dim(X). If X = |J,U; is an
affine open cover, it is enough to show that each set Xgp NU; = (U;)sm 1S open
and nonempty. Therefore we may and will assume that X is a closed subset of an
affine space A™. If fi,..., fi, are generators of the ideal defining X, then it follows
from definition and Proposition 6.2.2 that a point ¢ € X is a nonsingular point if

and only if the rank of the Jacobian matrix (gi (q)) is > n —r. This is the case

if and only if one of the (n — r)-minors of the matrix (ggf) does not vanish at ¢,
J

condition that defines an open subset of X.

In order to prove that Xy, is nonempty, we may replace X by a birational
variety. By Proposition 1.6.13, we may thus assume that X is an irreducible hy-
persurface in A"t Let f € k[zy,...,7,41] be the irreducible polynomial that
generates the prime ideal Correspondmg to X. As We have seen, for a point ¢q € X
we have g € X if and only there is ¢ such that ( ) #0. If Xgm =0, then 2 az

vanishes on X for 1 < i < r + 1. Therefore —f (f) for all 4. If deg, (f) = d;,
then we clearly have deg, (836 ) < d;, hence 6f € (f) implies that 6f = 0. Since

this holds for every i, we conclude that char(k) =p>0and f € k[xl, oo, P
Since k is perfect, being algebraically closed, we conclude that f = gP for some
g € k[z1,...,2,41], contradicting the fact that f is irreducible. O

We now turn to the proof of Proposition 6.3.8. This will be a consequence of
the following useful fact about smooth points. Let X be a variety and p € X a
smooth point. We put R = Ox ;, and let m be the maximal ideal in R. Since p
is a smooth point, if n = dim(R), then we can choose generators aq, ..., a, for m.
Note that R/m = k and the classes @y, ..., d, € m/m? give a k-basis. Consider the
graded k-algebra homomorphism

(b: k[.’ﬁ‘l,...,xn] — @mi/mi"‘l

i>0

that maps each z; to @;. Since the right-hand side is generated by m/m?, it is clear
that ¢ is surjective.
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PROPOSITION 6.3.9. If p € X is a smooth point, then morphism ¢ defined above
is an isomorphism.

PROOF. Let U be an affine open neighborhood of p and let A = O(U). Ifn C A
is the maximal ideal corresponding to x, then R = A, and m = nA,. Note that

P’/ = gr,(4),

i>0
hence this ring has dimension n by Example 6.1.4. Since ¢ is a surjective homo-
morphism and k[z1,...,%,] is a domain of dimension n, it follows that ¢ is an
isomorphism. ([

PROOF OF PROPOSITION 6.3.8. Let R = Ox ;, and m the maximal ideal of R.
We know, by Proposition 6.3.9, that the ring S = @,., m‘/m'™! is a domain. We
now show that this implies that R is a domain. Suppose that a,b € R ~ {0} are
such that ab = 0. It follows from Krull’s Intersection theorem (see Theorem C.4.1)
that there are i and j such that ¢ € m* <~ m**! and b € m/ ~ m/*1. In this case,
since S is a domain, we conclude that ab ¢ m**/*! a contradiction. Therefore R
is a domain. O

REMARK 6.3.10. It follows from Proposition 6.3.8 that every connected compo-
nent of a smooth variety is irreducible. Because of this, when dealing with smooth
varieties, one can easily reduce to the case when the variety is irreducible.

REMARK 6.3.11. The same line of argument can be used to prove a stronger
statement: if A is a k-algebra of finite type, but non-necessarily reduced, and m is
a maximal ideal in A such that A, is a regular local ring, then A, is a domain.
Indeed, let I be the nil-radical of A and A = A/I, m = m/I. After possibly
replacing A by the localization at a suitable element not in m, we may assume
that m is generated by n elements, where n = dim(A,) = dim(A). Consider the
following two surjective morphisms:

Afmlzy, ... 2n] 2 gro(A) L gre(A).

By Example 6.1.4, we have

dim (gri(4) = n,
which implies that 1 o ¢ is an isomorphism, which implies that ¢ is injective, hence
an isomorphism. The argument in the proof of Proposition 6.3.8 now implies that
A is a domain.

REMARK 6.3.12. Suppose that f € k[z1,...,z,] is a non-constant polynomial
such that there is no point p € A™, with
0
) =0=L(p) for 1<i<n.

(“)xi
In this case f generates a radical ideal and the corresponding hypersurface in A™ is
smooth. Indeed, note that if g is a non-constant polynomial such that ¢2 divides f,
then for every p € V(g), we have f(p) = 0 and g—i = 0 for all ¢, a contradiction. The
fact that the hypersurface defined by f is smooth now follows from Example 6.3.4.

A similar assertion holds in the projective setting, with an analogous argument:
if F' € k[xo,...,z,] is a homogeneous polynomial of positive degree such that there
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is no point p € P" with

_OF

then the ideal (F') is radical and it defines a smooth hypersurface in P™. Moreover,
in this case we see that if n > 2, then this hypersurface is irreducible: indeed, two
irreducible components would have non-empty intersection by Corollary 4.2.12 and
any point on the intersection would be a singular point by Proposition 6.3.8.

F(p)=0

(p) for 0<i<mn,

EXERCISE 6.3.13. Show that if X and Y are algebraic varieties, the points
z € X and y € Y are smooth if and only if (z,y) is a smooth point of X x Y.

EXERCISE 6.3.14. Suppose that G is an algebraic group which has a transitive
algebraic action on the variety X. Show that X is smooth. Deduce that every
algebraic group is a smooth variety.

EXAMPLE 6.3.15. If V is an irreducible, closed subset of X, with codimx (V) =
1, then X is smooth at V if and only if the maximal ideal of Ox y is principal, that
is, Ox,v is a DVR (for an elementary discussion of DVRs, see Section C.5).

EXAMPLE 6.3.16. Let H be a hyperplane in P™ and X a closed subvariety of
H. Given a point p € P™ \ H, the projective cone over X with vertez p is the union
Cp(X) of the lines joining p with the points on X. Note first that this is a closed
subvariety of P".

In order to see this, after applying a suitable transformation in PGL,1(k),
we may assume that H = (x, = 0) and p = [0,...,0, 1], and use the isomorphism
P! — H, given by [ug,...,Un_1] = [U0,---,Un_1,0], to identify P"~! and H.
In this case,

Co(X) ={p} U{[uo,...,un] € P* | [ug,...,up—1] € X}.

It is now clear that C,(X) is closed in P"; in fact, if Ix C k[zog,...,zn—1] is the
homogeneous ideal corresponding to X, then the ideal of C,(X) is Ix -k[zo, . .., Zn].
Note that if U is the affine chart U = (z,, # 0) ~ A", then C,,(X)NU is isomorphic
to the affine cone over X.

We claim that p is a smooth point of C},(X) if and only if X is a linear subspace
of H. Indeed, p is a smooth point of C,(X) if and only if 0 is a smooth point of
the affine cone C'(X) over X. Note that the embedded tangent cone to C(X) at
0 is defined by the linear polynomials in the ideal Ix of X; in other words, this is
equal to the smallest vector subspace of k™ containing C(X). This has the same
dimension as C(X) if and only if C'(X) is a linear space.

In the remainder of this section we give some further properties of smooth
points.

PROPOSITION 6.3.17. Let X be an algebraic variety and Y a closed subvariety,
with © € Yy, such that there is an affine open neighborhood U of x in X, and
fi,.., fr € O(U) satisfying the following conditions:

i) We have Iy(Y NU) = (f1,..., fr), and
ii) The subvariety Y NU of U is irreducible, of codimension r.

In this case x is a smooth point on X.
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Note that since x is a smooth point of Y, it follows from Proposition 6.3.8 that
x lies on a unique irreducible component of Y. Therefore after possibly replacing
U by a smaller open subset, we can always assume that Y N U is irreducible.

PROOF OF PROPOSITION 6.3.17. Let R = Ox , and R be the local rings at
x of X and Y, respectively. If m and m are the maximal ideals in R and R, then
m=m/(fiz .-, frz), where we denote by f;, the image of f; in R. It follows
that
m/m? =m/m? + (frer- s fra)s
hence dimy T,Y > dimy T, X — r. Since we clearly have

dim(onz) > COdimx(Y) + dlm(0y7r) =r+ dim(Oy@),
we conclude that dim(Oyx ,) > dimy T, X and thus z is a smooth point of X. O

REMARK 6.3.18. An important special case of the above proposition is that of
a hypersurface: suppose that X is an algebraic variety and Y is a closed subvariety
of X such that for some point € Y and for some affine open neighborhood U C X
of x, we have Iy (Y NU) = (f), for some non-zero divisor f € O(U). In this case, if
x is a smooth point of Y, then z is a smooth point of X. Indeed, note that in this
case the fact that Y N U has codimension 1 in U follows from Theorem 3.3.1 and
Remark 3.3.6.

COROLLARY 6.3.19. If X is a variety and V is an irreducible closed subset of
X such that X is nonsingular at V', then V N Xgy # 0.

We will see later that the converse also holds. This is a special case of a result
due to Auslander-Buchsbaum and Serre, saying that if R is a regular local ring, then
for every prime ideal p in R, the localization R, is regular (see | , Chapter 19]).
We will give later a direct proof of this result in our geometric setting.

PROOF OF COROLLARY 6.3.19. Let r = dim(Ox,y). By assumption, the
maximal ideal in Ox y is generated by r elements. After possibly replacing X
by a suitable affine open subset meeting V', we may assume that X is affine and
that Ix (V) is generated by r elements f1,..., fr. By Theorem 6.3.7, we can find a
point z € Yg,. We then deduce from Proposition 6.3.17 that z is a smooth point
also on X, hence Y N X, # 0. O

PROPOSITION 6.3.20. Let p be a smooth point on a variety X. If f1,..., f. are
reqular functions defined in an open neighborhood of p, vanishing at p, and whose
images in m/m? are linearly independent, where m is the mazimal ideal in Ox p,

then there is an affine open neighborhood U of x such that the following conditions
hold:

i) We have f1,..., fr € O(U).
ii) We have a closed subvariety Y of X with Iy(Y NU) = (f1,-.., fr)-
ii) The subvariety Y is smooth at p and dim,(Y) = dim,(X) —r.

PROOF. We begin by choosing an affine open neighborhood U of p such that
fi € O(U) for all i and let Y be the closure in X of the zero-locus in U of f1,..., f..
Since p lies on a unique irreducible component of X by Proposition 6.3.8, we may
assume, after possibly shrinking U, that X is irreducible, and let n = dim(X).
Let R = Ox, and R = R/(fip,---, frp), where f;, is the image of fi in R.
If we denote by m and m the maximal ideals in R and R, respectively, then by
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assumption, the classes of fi,,..., frp in m/m? are linearly independent, hence
dimj, m/m? = n — r. On the other hand, it follows from Corollaries 3.3.7 and
3.3.13 that dim(R) > n — r. We thus conclude that dim;m/m* < dim(R) and it
follows from Proposition 6.3.1 that this is an equality, hence R is a regular local
ring. We also see that dim(R) = n — r. Since R is a regular ring, it follows
from Remark 6.3.11 that R is a reduced ring, hence after replacing U by a smaller
neighborhood of p, we may assume that fi,..., f. generate a radical ideal in O(U),
hence (fi,...,fr) = Iy(Y NU). Since R is a regular ring, it follows that Y is
smooth at p, with dim,(Y") = dim,(X) —r. O

The next result describes the behavior of smooth closed subvarieties of a smooth
variety.

PROPOSITION 6.3.21. Let X be an algebraic variety and Y a closed subvariety
of X. If p €Y is a point that is smooth on both' Y and X, then after replacing X
with a suitable affine open neighborhood of p, the following conditions hold:
i) The ideal I = Ix(Y') is generated by r elements, where r = dim,(X) —
dim,(Y); in fact these elements can be chosen such that their images in
Ox p are part of a reqular system of parameters.
il) If R = O(X), then the generators of I induce an isomorphism

R/Iy,..., x| =~ @ P /P =: gr (R).
j=0

PRrOOF. Note first that by Proposition 6.3.8, the point p lies on unique irre-
ducible components of X and Y, hence we may assume that both X and Y are
irreducible. We may and will assume that X is affine, with O(X) = R, and Y is
defined by I = Ix(Y). Let m be the maximal ideal in R corresponding to p. By
assumption, we can write

(6.3.1) r = dimg T,X — dimy, T,,Y.
It follows from (6.3.1) that
dimg (I Ry + m?Ry) /m? Ry = 7.

We can thus find r elements that are part of a regular system of parameters of
Ry, and which lie in IR,,. After possibly replacing X by a smaller affine open
neighborhood of xz, we may assume, in addition, that these elements are the im-
ages fip,.-., frp in Ry of f1,..., fr € I. It follows from Proposition 6.3.20 that
after possibly replacing X by a suitable open neighborhood of p, we may assume
that fi,..., f, generate the ideal of a closed subvariety Z, smooth, irreducible, of
dimension equal to dim(X) — r. Since Y C Z, it follows that Y = Z, which gives

i).
We now prove the assertion in ii). This is trivial if I = 0, hence we assume
r > 0. We have a surjective homomorphism

¢: R/I[z1,...,2,] — gr;(R)
that maps each z; to the class of f; in I/I%. Note now that
(6.3.2) dim (gr;(R)) > dim(R).

Indeed, it follows from Proposition 6.1.3 that the blow-up g: X > Xof X along I
is a birational morphism and g~!(Y’) has all irreducible components of codimension
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1in X. If J is the nil-radical of gr;(R), then
g 1Y) ~ MaxProj(gr;(R)/J),
which gives by Remark 4.3.20
dim (gr;(R)) = dim (gr;(R)/J)) > dim (MaxProj(gr;(R)/J)) + 1 = dim(X).

Since R/I[x1,...,z,] is a domain of dimension equal to dim(X), we conclude that
¢ is an isomorphism, completing the proof of the proposition. (I

COROLLARY 6.3.22. If X is a smooth variety and Y, Z C X are irreducible
closed subsets, then every irreducible component W of Y N Z satisfies

codimx (W) < codimy (Y) + codimx (Z).

PRrROOF. The idea is similar to the one used when X = A" (cf. Exercise 3.3.21).

We may replace X by its unique irreducible component that contains W, and thus

assume that X is irreducible. Let n = dim(X). Consider the diagonal Ax C X x X.
Note that we have an isomorphism

YNZ~(Y xZ)NAx,

hence we may consider W as an irreducible component of the right-hand side. Since
X is smooth of dimension n and X x X is smooth of dimension 2n, it follows from
the proposition that we can find a non-empty affine open subset U C X x X such
that U N W # 0, and we have fi,..., f, € O(U) such that

AxNU={zeU]| fi(x)=...= fu(z) =0}.
We deduce that W N U is an irreducible component of
{xe (Y xZ)NU| fi(z) =...= fo(x) =0},

and therefore Corollary 3.3.7 implies that codimy xz)nv(W NU) < n. Using
Corollary 3.3.13, this gives dim(W) > dim(Y) 4+ dim(Z) — n, and further

codimx (W) < codimy (Y) + codimx (Z).
g

EXAMPLE 6.3.23. If X = MaxSpec(A) is a smooth variety and f: X — X is the
blow-up of X along the radical ideal I, defining the smooth closed subvariety Y of
X, then X is smooth. Indeed, note first that after covering X by suitable affine open
subsets, we may assume that X and Y are irreducible and, by Proposition 6.3.21,
that I is generated by r = codimx (Y') elements fi,..., f.. In this case, we can
explicitly describe X by equations, as follows.

The surjection

¢ Alyr, .. ur] = R(AD),  o(y;) = fit for 1<i<r
induces a closed immersion B
X 5 X xP!

of varieties over X. Note that if J is the ideal generated by all differences f;y; — f;v:,
for i # j, then .J C ker(), hence « maps X inside V/(.J). We will show that in fact
u(X)=V(J).

Note first that the morphism g: V(J) — X is an isomorphism over X \ Y.
Indeed, we have

(A[yla s 7y7‘]/J)fi = Afi [yi]7
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and therefore the inverse image of D(f;) in V(J) is isomorphic to
MaxProj( Ay, [yi]) ~ MaxSpec(Ay,).

We now show that V(J) is a smooth subvariety of X x P"~1, of codimension

r — 1. This is clear at the points lying over X \ Y, so that we consider a point

q= (p, [ug, ... ,ur]) € V(J) lying over Y, hence f1(p) = ... = fr-(p) = 0. Let i be

such that u; # 0 and consider the open subset U; = X x D;,l(xi) CXxPr—1

The intersection V' (J) NU; is the zero-locus of the ideal generated by f; — fi%, for
j # 4. Let m be the ideal defining g. Note that we can write
fefl— gt (BB

?

Since (Z—Z - Z—Z) fi € m? and the classes of f; — 32 f; in m/m?, for j # i, are linearly
independent, it follows from Proposition 6.3.20 that ¢ is a smooth point of V(.J),
and the codimension of X in X x P"~! around ¢ is r — 1.

We can now see that V(J) is irreducible, and thus it is equal to +(X). Indeed,
every irreducible component of V'(.J) different from ¢=1(X \Y’) must be contained
in g71(Y) = Y x P"~1. However, we have seen that every irreducible component of
V(J) has dimension equal to dim(X) > dim(Y") +r — 1, hence it can’t be contained
inY x Pr=1, N

We thus conclude that X is smooth and is defined in X x P"~! by the ideal J.

DEFINITION 6.3.24. Given a smooth variety X and two smooth closed subva-
rieties Y and Z of X, recall that for every p € Y N Z, we may consider 7,,Y and
T,7 as linear subspaces of T, X. We say that Y and Z intersect transversely if, for
every p € Y N Z, we have

codimy, x (T,Y NT,Z) = codimk (Y) 4 codim’y (Z)

(note that p lies on unique irreducible components X’ and Y’ of X and Y, re-
spectively, and we put codimk (V) = codimx/(Y”); a similar definition applies for
codim% (Z)). The condition can be equivalently formulated as follows: for every
peYNZ, we have

T,Y +T,Z =T,X.

PRrROPOSITION 6.3.25. If X is a smooth variety and Y, Z are smooth closed
subvarieties of X that intersect transversely, then Y N Z is smooth, and for every
p €Y NZ, we have

codim® (Y N Z) = codimk (V) + codim® (Z) and
T,(YNZ)=T,Y NT,Z.
Moreover, for every affine open subset U of X, we have
Iy(YNZNU)=Iy(YNU) + Iy(ZnU).

PROOF. Let r = codimk (V) and s = codimk (Z). It follows from Proposi-
tion 6.3.21 that if U is a suitable irreducible affine open neighborhood of p, then
Iy (Y NU) is generated by r elements and I/ (Z NU) is generated by s elements.
Consider the ideal

J=Iy(YNU)+Iy(ZNU)
that defines the closed subset Y N Z. Since J is generated by r + s elements, it
follows from Corollaries 3.3.7 and 3.3.13 that every irreducible component of Y N Z
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has dimension > dim,(X) — (r + s). On the other hand, we have T,(Y N Z) C
T,(Y)NT,(Z), hence by assumption

dimy T,(Y N Z) < dim,(X) — (r + s).

This implies that p is a smooth point of YN Z and T,,(Y N Z) = T,Y N T, Z.
In fact we can do better: it is easy to see, by translating the above argument
algebraically, that if m C O(U) = R is the maximal ideal corresponding to p, then

dimg m/m? + J < dim,(X) — (r + ) < dim (R /J Rw)-

This implies that Ry, /J Ry, is a regular local ring, hence reduced by Remark 6.3.11.
Therefore Ju = (Iy(Y NU) + Iy (ZNU)) _ for every point in Y N Z, which implies
the last assertion in the proposition (see, for example, Corollary C.3.3 ). g

We end this section by stating one of the most useful results in algebraic ge-
ometry. Given an irreducible algebraic variety X, a resolution of singularities of X
is a proper, birational morphism f: X — X, with X a smooth, irreducible variety.
One can ask for more properties (for example, one can ask that f is projective, in
a sense that we will define later, which implies in particular that if X is projective
or quasi-projective, then X has the same property; one can also ask for f to be an
isomorphism over Xy, ). The following celebrated result is due to Hironaka.

THEOREM 6.3.26. If char(k) = 0, then every irreducible variety X over k has
a resolution of singularities.

REMARK 6.3.27. In fact, Hironaka’s theorem is more precise: suppose, for
simplicity, that X has a closed immersion in a smooth variety ¥ (for example, any
quasi-projective variety satisfies this condition). In this case the theorem says that
there is a sequence of morphisms

v, vy, — . v Iy =y
with the following properties:
i) Each f;, with 1 < i < r, is the blow-up along a smooth variety Z;_;
(hence, by induction, all Y; are smooth).
ii) For every 4, with 1 <4 < r, the strict transform X; ;1 of X on Y;_; is not

contained in Z;_; (so that the next strict transform X; is defined).
iii) The strict transform X, of X on Y, is smooth.

EXERCISE 6.3.28. Consider the following curves in AZ:
X=V(@®—y*), Y=V({*-2*@x+1), and Z=V(z®-1¢°).

Show that if 7: A2 — A2 is the blow-up of the origin, then the strict transforms X
and Y of X and Y, respectively, are smooth; the strict transform Z of Z has one
singular point and by blowing that up, the resulting strict transform is smooth.

6.4. Bertini’s theorem

Recall that the hyperplanes in P™ are parametrized by a projective space (P™)*.
We will be using the following terminology: if Z is an irreducible variety, we say that
a property holds for a general point z € Z if there is an open subset U of Z such that
the property holds for all z € U. Note that if we have two such properties, then they
both hold for a general point in Z: this follows from the fact that the intersection of
two nonempty open subsets is again a nonempty open subset. This terminology is
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particularly convenient when the points of Z parametrize some geometric objects,
as is the case with (P")*.

Given a projective variety X C P, one is often interested in the following type
of statement: if X has a certain property, then for a general hyperplane H in P",
the intersection X N H still has the same property. In this section we prove such a
result for smoothness.

THEOREM 6.4.1 (Bertini). If X C P" is a smooth variety, then for a general
hyperplane H in P", the subvarieties X and H of P™ intersect transversely; in
particular, the intersection X N H 1is smooth, and if X has pure dimension d, then
X N H has pure dimension d — 1.

PROOF. We may assume that X is irreducible: indeed, if we know this, then
for every connected component of X, we find a corresponding open subset of (P™)*.
The intersection of these open subsets then satisfies the conclusion in the theorem.
From now on we assume that X is irreducible, and let d = dim(X).

Note that for every hyperplane H in P" and every p € H, we have T, H = H.
It follows from Proposition 6.2.6 that H and X do not intersect transversely if and
only if there is p € X N H such that T, X C H. Consider the set

Z:={(p,[H]) € X x (P™")" | T,(X)C H}.

We claim that Z is closed in X x (P™)*. In order to check this, let fi,..., f. be
homogeneous generators for the ideal Ix of X in P™. The linear subspace T, X at
a point p € X is defined by the linear equations

~ 9f;
ij

(p)z; =0 for 1<i<r

j=0

By assumption, for every p € X, the rank of the matrix (%(p)) is n —d. The
J 74,‘7

hyperplane H defined by Z?:o ajr; = 0 contains T, X if and only if the rank of
the matrix

5 ao o ap . o Qg
L) L .. S
IR
el (YR () R ()

is < n — d. Equivalently, all (n — d + 1)-minors of this matrix must be 0, and it is
clear that it is enough to only consider those minors involving the first row. Each
of these conditions is of the form

> agi(p) =0
=0

for some homogeneous polynomials g, ..., gn, all of the same degree. It is now
straightforward to check (for example, by covering each of X and (P™)* by the
standard affine charts) that the subset Z is closed in X x (P™)*. In particular, Z
is a projective variety.

The projections onto the two components induce two morphisms m1: Z — X
and my: Z — (P™)*. For every p € X, consider the fiber 77 *(p). This is identified
with the subset of (P™)* consisting of all hyperplanes containing T, (X). This is a
linear subspace of dimension n — d — 1. Indeed, since X is smooth, of dimension



130 6. SMOOTH VARIETIES

d, the linear subspace T,(X) of P™ has dimension d. After choosing suitable

coordinates, we may assume that this is given by 441 = ... = 2, = 0. In this

case, the hyperplane with equation Z?:o a;z; = 0 contains T, (X) if and only if

ap = ... = ag = 0; this is thus a linear subspace in (P™)* of codimension d + 1.
Therefore we conclude from Corollary 3.4.3 that

dim(Z) =dim(X)+ (n—d—-1)=n—1.

In this case, the morphism 7y: Z — (P™)* can’t be dominant. Its image is thus
a proper closed subset of (P™)* and if U is the complement of this image, we see
that for every hyperplane H in P™ with [H] € U, X and H intersect transversely,
and therefore Proposition 6.3.25 implies that X N H is a smooth variety of pure
dimension d — 1 (of course, if d = 0, this simply means that X N H is empty). O

REMARK 6.4.2. It follows from the above proof that even if X C P" is a
subvariety with finitely many singular points, for a general hyperplane H in P™,
the intersection X N H is still smooth. Indeed, with the notation in the proof, we
still have that the fiber 7 '(p), for p € X, has dimension < n —d — 1 (in fact,
one can get a better bound at the singular points). We thus still have the bound
dim(Z) < n — 1, which implies that Z does not dominate (P™)*. Since a general
hyperplane does not contain any of the singular points of X, we deduce that such
a hyperplane intersects X, transversally, and therefore X N H is smooth.

REMARK 6.4.3. There are several other versions of Bertini’s theorem. One
which is often useful says that if X C P” is an irreducible closed subvariety, with
dim(X) > 2, then for a general hyperplane H C P™, the intersection X N H is again
irreducible (see [ | for this and related results). Another useful version, due
to Kleiman, concerns smoothness in the case when instead of a closed subvariety of
P™ one deals with an arbitrary morphism X — P™ (this, however, works only over
a ground field of characteristic 0). We will give a proof of this result at some later
point.

6.5. Smooth morphisms between smooth varieties

In this section we discuss the notion of smooth morphism between smooth
varieties. We will later return to this concept, to consider the case of arbitrary
varieties.

DEFINITION 6.5.1. A morphism f: X — Y between smooth algebraic varieties
is smooth at a point x € X if the linear map

dfwi T.X — Tf(z)Y
is surjective. The morphism f is smooth if it is smooth at every point.

Given a morphism of smooth varieties f: X — Y, for every irreducible compo-
nent X’ of X there is a unique irreducible component Y’ of Y such that f(X’) C Y.
We can thus easily reduce to the case of morphisms between smooth, irreducible
varieties.

ProrosiTION 6.5.2. If f: X — Y is a smooth morphism between the smooth,
irreducible varieties X and Y, then f is dominant and for every y € f(X), the
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fiber f=Y(y) is smooth, of pure dimension dim(X) — dim(Y). Moreover, for every
x € f~1(y), we have

T (f ' (y)) = ker(dfy: ToX — Ty)Y).

PROOF. By Theorem 3.4.1, we know that every irreducible component of f~(y)
has dimension > dim(X) — dim(Y’). Moreover, the inequality is strict if f is not
dominant.

On the other hand, the composition

) S x Ly
where 7 is the inclusion map can also be factored as

' y) — {yy =Y.

This implies that the restriction of df, to T, (f~*(y)) C T, X is zero, hence T, (f~*(y))
is contained in the kernel of df,. Since df, is surjective, it follows that

dimy, T, (f " (y)) < dimy, ker(df,) = dimy T, X — dimy, Tf(,)Y = dim(X) — dim(Y").

Since dim, (ffl(y)) < dimy Ty, (ffl(y)), we thus conclude that this is, in fact, an
equality. This implies that f is dominant, T, (f~*(y)) = ker(df,), and f~'(y) is
smooth at z, of dimension dim(X) — dim(Y"). O

EXAMPLE 6.5.3. Consider the morphism f: A! — A given by f(t) = t2,
where we assume that char(k) # 2. For every point ¢t € Al the map

TA' =k — k=T, A'

is given by multiplication by 2t (see Remark 6.2.5). It follows that f is smooth at
every point ¢ # 0, but it is not smooth at 0.

DEFINITION 6.5.4. A morphism of smooth varieties f: X — Y is étale at x € X
if it is smooth at z and dim, X = dimy(,) Y. The morphism is étale if it is étale at
every point.

The following theorem is the Generic Smoothness theorem. We will prove this
later.

THEOREM 6.5.5. If char(k) = 0, then for every dominant morphism of smooth
varieties f: X — Y, there is a non-empty open subset U C'Y such that the induced
morphism f~1(U) — U is smooth.

REMARK 6.5.6. The hypothesis on the characteristic in the above theorem is
essential. If char(k) = p, note that the morphism f: A' — A! given by f(t) = t?
is not smooth at any point.

REMARK 6.5.7. The Generic Smoothness theorem is the analogue of Sard’s
theorem in differential topology. Note that by combining it with Proposition 6.5.2,
we conclude that if f: X — Y is a dominant morphism of smooth, irreducible
algebraic varieties over an algebraically closed field of characteristic 0, then there
is a non-empty open subset U of Y such that for every y € Y, the fiber f=1(y) is
smooth.






CHAPTER 7

The Grassmann variety and other examples

In this chapter we discuss various geometric examples related to the Grassmann
variety. In the first section we construct this variety and discuss several related
constructions, such as the Pliicker embedding and the incidence correspondence.
In the second section we discuss flag varieties, while in the third section we give a
resolution of singularities for the generic determinantal variety. We next consider
the parameter space for projective hypersurfaces and discuss linear subspaces on
such hypersurfaces. In the last section we treat the variety of nilpotent matrices.

7.1. The Grassmann variety

Let V = k™ and let r be an integer with 0 < r < n. In this section we describe
the structure of algebraic variety on the set G(r, n) parametrizing the r-dimensional
linear subspaces of V. These are the Grassmann varieties. Given an r-dimensional
linear subspace W of V', we denote by [L] the corresponding point of G(r,n).

This is trivial for r = 0 or » = n: in this case G(r,n) is just a point. The
first non-trivial case that we have already encountered is for » = 1: in this case
G(r,n) = P"~1. A similar description holds for 7 = n — 1: hyperplanes in k" are in
bijection with lines in (k™)* ~ k™, hence these are again parametrized by a P"~!
(cf. Exercise 4.2.18).

We now proceed with the description in the general case. Given an r-dimensional
linear subspace W of k™, choose a basis u1, . .., u, of W. By writing u; = (a;1,...,ain)
for 1 <4 < r, we obtain a matrix A = (a;;) € M, (k). Note that we have an
action of GL, (k) on M, , (k) given by left multiplication. Choosing a different basis
of W corresponds to multiplying the matrix on the left by an element of GL, (k).
Moreover a matrix in M, ,, (k) corresponds to some r-dimensional linear subspace in
k™ if and only if it has maximal rank r. We can thus identify G(r,n) with the quo-
tient set U/GL,(k), where U is the open subset of M, ,,(k) consisting of matrices
of rank r.

For every subset I C {1,...,n} with r elements, let U; be the open subset of U
given by the non-vanishing of the r-minor on the columns indexed by the elements
of I. Note that this subset is preserved by the GL,(k)-action and let V; be the
corresponding subset of G(r,n). We now construct a bijection

Gr: Vi = My, (k) = A"("77),

In order to simplify the notation, say I = {1,...,r}. Given any matrix A € Uy, let
us write it as A = (A’, A”) for matrices A’ € M, (k) and A” € M, ,,_,(k). Note
that by assumption det(A’) # 0. In this case there is a unique matrix B € GL, (k)
such that B - A = (I,,C), for some matrix C € M, ,_,(k) (namely B = (4")7!,
in which case C' = (A’)~! - A”). Therefore every matrix class in V7 is the class of

133
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a unique matrix of the form (I, C), with C € M, ,,_,(k). This gives the desired
bijection between Vi . 3 — A7) and a similar argument works for every V7.

We put on each V; the topology and the sheaf of functions that make the
above bijection an isomorphism in 7 op,. We need to show that these glue to give
on G(r,n) a structure of a prevariety: we need to show that for every subsets I and
J as above, the subset ¢;(V; NV;) is an open subset of A=) and the map

(7.1.1) dprodrt: dr(VinVy) — ¢s(VinNVy)

is a morphism of algebraic varieties (in which case, by symmetry, it is an isomor-
phism). In order to simplify the notation, suppose that I = {1,...,r}. It is then
easy to see that if #(I NJ) = £, then ¢;(V; NVy) C A" ") is the principal affine
open subset defined by the non-vanishing of the (r — £)-minor on the rows indexed
by those ¢ € I . J and on the columns indexed by those j € J ~\ I. Moreover, the
map (7.1.1) is given by associating to a matrix C the r x n matrix M = (I,,C),
multiplying it on the left with the inverse of the r x r-submatrix of M on the
columns in J to get M’, and then keeping the r x (n — r) submatrix of M’ on the
columns in {1,...,n} ~ J. It is clear that this is a morphism.

We thus conclude that G(r,n) is an object in Top,,. In fact, it is a prevariety,
since it is covered by open subsets isomorphic to affine varieties. In fact, since
each V; is isomorphic to an affine space, it is smooth and irreducible, and since
we have seen that any two V7 intersect, we conclude that G(r,n) is irreducible by
Exercise 1.3.17. Furthermore, since each V; has dimension r(n — r), we conclude
that dim (G(r,n)) = r(n —r). We collect these facts in the following proposition.

PROPOSITION 7.1.1. The Grassmann variety G(r,n) is a smooth, irreducible

prevariety of dimension r(n — ), that has a cover by open subsets isomorphic to
Ar(nf'r‘)-

EXAMPLE 7.1.2. If r = 1, the algebraic variety G(1,n) is just P"~!, described
via the charts U; = (z; # 0) ~ A"~ L.

ExXAMPLE 7.1.3. If r = n — 1, the algebraic variety G(n — 1,n) has an open
cover

Gn—1,n)=U1U...UU,.

For every 4, we have an isomorphism A"~! ~ U; such that (A1, ..., Ai_1, Xit1, -+ An)
is mapped to the hyperplane generated by {e; + Aje; | j # i}. This is the hyper-
plane defined by the equation ef — 7., Ajej = 0. We thus see that the variety
structure on G(n — 1,n) is the same one as on (P"~!)*, which is isomorphic to
P! (cf. Exercise 4.2.18).

Our next goal is to show that, in fact, G(r,n) is a projective variety. Note that
if W is an r-dimensional linear subspace of V' = k™, then A"W is a 1-dimensional
linear subspace of A"V =~ k¢, where d = (:) Ifeq,..., e, is the standard basis of k",
then we have a basis of A"V given by the e; = e;, A...Ae; , where I = {iy,... i}
is a subset of {1,...,n} with r-elements (and where, in order to write ey, we order
the elements i; < ... < 4,). We correspondingly denote the coordinates on the
projective space of lines in A"V by z;.

PROPOSITION 7.1.4. The map f: G(r,n) — P91 that maps [W] to [N"W] is
a closed immersion. In particular, G(r,n) is a projective variety.
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The embedding in the above proposition is the Plicker embedding of the Grass-
mann variety.

PROOF OF PROPOSITION 7.1.4. If W C V is an r-dimensional linear subspace
described by the matrix A, then f([W]) € P4~! is given in the above homogeneous
coordinates by the r-minors of A. In particular, we see that the inverse image of
the affine chart W; = (21 # 0) is the affine open subset Vi C G(r,n).

In order to complete the proof, it is enough to show that for every I, the induced
map V; — W is a morphism and the corresponding ring homomorphism

(7.1.2) O(W;) — O(Vr)

is surjective. The argument is the same for all I, but in order to simplify the
notation, we assume I = {1,...,r}. Note that the map V; — W gets identified
to My p—r(k) — A(?)fl, than maps a matrix B to all r-minors of (I, B), with the
exception of the one on the first » columns. In particular, we see that this map is a
morphism. By choosing  — 1 columns of the first r ones and an additional column
of the last (n — r) ones, we obtain every entry of B as an r-minor as above. This

implies that the homomorphism (7.1.2) is surjective. O

REMARK 7.1.5. The algebraic group G L, (k) acts on k™ and thus acts on G(r,n)
by g - [W] = [g- W]. Note that if W is described by the matrix A € M, ,(k), then
g - W is described by A - gt. Tt is straightforward to see that this is an algebraic
action. Since any two linear subspaces can by mapped one to the other by a linear
automorphism of k™, we see that the GL, (k)-action on G(r,n) is transitive.

REMARK 7.1.6. If W is an r-dimensional linear subspace of V = k", then we
have an induced surjection V* — W*, whose kernel is an (n —r)-dimensional linear
subspace of (k™)* ~ k™. In this way we get a bijection G(r,n) — G(n — r,n) and
it is not hard to check that this is, in fact, an isomorphism of algebraic varieties.

REMARK 7.1.7. Given an arbitrary n-dimensional vector space V over k, let
G(r, V) be the set of r-dimensional linear subspace of V. By choosing an isomor-
phism V ~ k™, we obtain a bijection G(r,V) ~ G(r,n) and we put on G(r,V) the
structure of an algebraic variety that makes this an isomorphism. Note that this is
independent of the choice of isomorphism V' ~ k": for a different isomorphism, we
have to compose the map G(r, V) — G(r,n) with the action on G(r,n) of a suitable
element in GL, (k).

REMARK 7.1.8. It is sometimes convenient to identify G(r,n) with the set of
(r — 1)-dimensional linear subspaces in P"~1.

NOTATION 7.1.9. Given a finite-dimensional k-vector space V', we denote by
P(V) the projective space parametrizing hyperplanes in V. Therefore the homoge-
neous coordinate ring of P(V) is given by the symmetric algebra Sym*® (V). With
this notation, the projective space parametrizing the lines in V' is given by P(V*).

We end this section by discussing the incidence correspondence for the Grass-
mann variety and by giving some applications. More applications will be given in
the next sections.

Consider the set of r-dimensional linear subspaces in P", parametrized by
G = G(r+1,n+1). The incidence correspondence is the subset

Z={(¢q,[V]) eP"xG|qeV}.
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Note that this is a closed subset of P™ x G. Indeed, if we represent [W] by the
matrix A = (a;;)o<i<r+1,0<j<n, then ([bo, ..., by], [W]) lies in Z if and only if the
rank of the matrix

bo by ... by
B = ap,0 aop,1  --- Qo
Ar.0 Gy 1 oo Qprn

is < r + 1. This is the case if and only if all (r + 2)-minors of B vanish. By
expanding along the first row, we can write each such minor as ) jer b;é;, where
I C{0,...,n} is the subset with r 4 2 elements determining the minor and each J;
is a suitable minor of A. Consider the closed immersion

P" x G <5 P" x PN L pM,

where i is given by i(u,v) = (u, cz)(v)), with ¢ being the Pliicker embedding, and j is
the Segre embedding. It follows from the above discussion that via this embedding,
Z is the inverse image of a suitable linear subspace of P™, and therefore it is closed
in P® x G. Since both P™ and G are projective varieties, we conclude that Z is a
projective variety.

The projections onto the two components induce the morphisms 7: Z2 — P"
and mo: Z — G. It follows from the definition that for every [W] € G, we have
™ ([W]) =~ W.

EXERCISE 7.1.10. Show that the morphism my: Z — G is locally trivial, with
fiber! P.

Since all fibers of w9 are irreducible, of dimension r, we conclude from Propo-
sition 5.5.1 that Z is irreducible, of dimension

dim(Z) =r+dim(G) =r+ (r+1)(n —r).

(we use here the fact that G is irreducible and Z is a projective variety).

Given a point ¢ € P", the fiber 77'(q) C G consists of all r-dimensional
linear subspaces of P™ containing ¢ (equivalently, these are the (r + 1)-dimensional
linear subspaces of £"*! containing a given line). These are in bijection with the
Grassmann variety G(r,n).

EXERCISE 7.1.11. Show that the morphism m;: Z — P™ is locally trivial, with
fiber G(r,n).

We use the incidence correspondence to prove the following

PROPOSITION 7.1.12. Let X C P™ be a closed subvariety of dimension d and
let G=G(r+1,n+1). If we put

M(X) = {[W] €G|WNX#0},

then the following hold:
i) The set M.(X) is a closed subset of G, which is irreducible if X is irreducible.
ii) We have dim (M, (X)) = dim(G) — (n —r —d) for 0 <r <n —d.

lGiven a variety F', we say that a morphism f: X — Y is locally trivial, with fiber F', if there
is an open cover Y = Uy U...UU, such that for every i, we have an isomorphism f~1(U;) ~ U; x F’
of varieties over U;.
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PROOF. Using the previous notation, note that M, (X) = ma (77 ' (X)), hence
M, (X) is closed, since X is closed and my is a closed map (recall that Z is a
projective variety). Consider now the morphism m;*(X) — X induced by 7.
Since all fibers are irreducible, of dimension r(n —r) (being isomorphic to G(r,n)),
and wfl(X) is a projective variety, we deduce from Proposition 5.5.1 that if X is
irreducible, then 7, *(X) is irreducible, with

dim (77! (X)) = dim(X) + r(n — 7).

The irreducibility of 771 (X) implies the irreducibility of m (77 (X)).

It is clear that if X = X U...U X is the irreducible decomposition of X, then
we have M, (X) = M, (X1)U...UM,(X,). Therefore, in order to prove ii), we may
assume that X is irreducible. We claim that the morphism 7, '(X) — M,(X) has
at least one finite, non-empty fiber. Using Theorems 3.4.1 and 3.4.1, this implies
that

dim (M, (X)) = dim (77 (X)) =d +r(n —7).
hence
codimg (M, (X)) =(r+1)(n—r)—d—r(n—r)=n—r—d.
We thus only need to find an r-dimensional linear subspace that intersects X in a

nonempty, finite set. This is easy to see and we leave the argument as an exercise
for the reader. O

EXERCISE 7.1.13. Consider the Grassmann variety G = G(r+1, n+1) parametriz-
ing the r-dimensional linear subspaces in P™. Show that if Z is a closed subset of
G, then the set

Z:=|Jvecen
Vlez

is a closed subset of P”, with dim(Z) < dim(Z) + r.

EXERCISE 7.1.14. Show that if X and Y are disjoint closed subvarieties of P,
then the join J(X,Y) C P™, defined as the union of all lines in P™ joining a point
in X and a point in Y, is a closed subset of P", with

dim (J(X,Y)) < dim(X) + dim(Y) + 1.

7.2. Flag varieties

In this section we define flag varieties and prove some basic properties. Let V
be a vector space over k, with dimgV =nand let 1 < /{1 < ... < /l. <n. A flag
of type (£1,...,£,) in V is a sequence of linear subspaces V; C Vo, C--- CV,. C V|
where dimy(V;) = £;. A complete flag is a flag of type (1,2,...,n).

The flag variety Flp, ;. (V) parametrizes flags in V. In other words, this is
the set

Floy o, (V) i={(V1,...,V;) € G(t1, V) x - - x G(£,, V) | V4 C--- C V,.}.

In particular, the complete flag variety F1(V) = Fly (V) parametrizes complete
flags in V.

PROPOSITION 7.2.1. The subset Fly, o (V) of G(¢1,V) x --- x G(¢,, V) is

closed, hence Fly, o (V) is a projective variety.
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PrOOF. The assertion is trivial for » = 1, hence we may assume r > 2. For ¢
with 1 < ¢ <r — 1, consider the map

i1t G(gl,V) X -+ X G(KT,V) — G(EZ,V) X G(£i+1,V)

given by the projection on the factors ¢ and i + 1. It is clear that

r—1
Floy o, (V) = () 7t (Fle e, (V)),
=1

hence it s enough to prove the assertion in the proposition when r = 2.

Let us fix a basis eq,...,e, on V. Consider now the set My x My C My, (k) x
My, » (k) consisting of pairs of matrices of maximal rank. Let Z be the subset of
My x M consisting of matrices (A, B) with the property that the linear span of
the rows of A is contained in the linear span of the rows of B. Recall that we have
morphisms

M1 — G(fl, V) and M2 — G(EQ,V)

such that the product map My x My — G(£1, V) x G(¢2, V) maps Z onto Flg, ¢, (V).
Note that Z is closed in M; x Ms. Indeed, a pair ((am», (bm-)) lies in Z if and
only if the rank of the matrix (¢; j)1<i<s,+4,,1<j<n given by

Cij = Q45 for 1 é 61 and Cij = bile,j for 61 +1 S 1 S gl

has rank < ¢5. Using now the description of G(¢1,V) and G(¢3,V) in terms of
charts arising by covering M; and Ms by corresponding open subsets, it is now
easy to see that Flg, ¢, (V) is closed in G(¢1,V) x G({42,V). O

Recall that the group GL(V) of linear automorphisms of V' has an induced
action on each G(¢,V) and it is clear that the product action on G(¢1,V) x --- x
G(,,V) induces an algebraic action of GL(V) on Fly, . .. (V). This action is
clearly transitive: given any two flags of type (¢1,...,%,), we can find an invertible
linear automorphism of GL(V) that maps one to the other (for example, choose
for each flag a basis of V' such that the i*" element of the flag is generated by the
first ¢; elements of the basis, and then choose a linear transformation that maps
one basis to the other). By Exercise 6.3.14, we conclude that F1(¢1,...,4.)(V) is a
smooth variety.

EXAMPLE 7.2.2. Ifeq,..., e, is a basis of n and V; is the linear span of ey, ..., e;,
then the stabilizer of the point on the complete flag variety corresponding to V; C
... CV, is the subgroup B C GL(V) ~ GL, (k) of upper-triangular matrices.

It is clear that if r = 1, then Fl, (V) = G(¢1,V). Suppose now that r > 2. For
every (¢1,...,£,) as above the projection

G, V) x -+ x G, V) — G(l1,V) X - X G(lr_1,V)
onto the first (r — 1) components induces a morphism
Flzl ,,,,, ZT(V) — Flgl ,,,,, brn (V)

The fiber over a point corresponding to the flag (Vi,...,V;_1) is isomorphic to
the Grassmann variety G(¢, — £,._1,V/V,_1), hence it is irreducible, of dimension
(4, — r—1)(n — £,). Arguing by induction on r and using Proposition 5.5.1, we

obtain the following;:
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PrOPOSITION 7.2.3. If V is an n-dimensional vector space over k, then for ev-

ery (01,...,4;), the flag variety Fly, . 4. (V) is an irreducible variety, of dimension
Soi i li(liyq — 4;), where €,y = n. In particular, the complete flag variety F1(V)
n(n—1)

is an irreducible variety of dimension —=

7.3. A resolution of the generic determinantal variety

Fix positive integers m and n and a non-negative integer » < min{m, n}. Recall
that if we identify the space M, ,(k) of m x n matrices with entries in k with A™"
in the obvious way, we have a closed subset M}, (k) of A™" consisting of those
matrices of rank < r. Two cases are trivial: if » = 0, then My, , (k) = {0}, and if
r = min{m,n}, then My, (k) = My, (k).

If we denote the coordinates on A™" by z;;, for 1 <¢<mand 1 < j < n,
then My, , (k) is defined by the vanishing of all (r + 1)-minors of the matrix (z; ;).
We have already seen that M , (k) is irreducible in Exercise 1.4.27. We will give
another argument for this, that allows us to also compute the dimension of this
variety. In fact, we will give a resolution of singularities for My, , (k).

As usual, we identify M,, (k) with Homy(k™, k™). Consider the following
subset of A™" x G(n —r,n):

Y={(A[W])e A" x G(n—r,n) | W C ker(A)}.

We first show that ) is a closed subset of A™" x G(n — r,n). Consider the affine
open cover G(n — r,n) by subsets V; ~ A=) deseribed in Section 7.1. Suppose,
as usual, that I = {1,...,r}. If B € M(,_,,(k) represents the linear subspace W
and if M = (I,,—,, B), then (A, [W]) € Y if and only if A- M' = 0. We thus see
that Y N (A™" x V;) is the zero-locus of the homogeneous degree 2 polynomials
given by writing the entries of A- M? in terms of the entries of A and M. We thus
conclude that Y is a closed subset of A™" x G(n —r,n)

The projections onto the two components induce maps 7: Y — A™" and
ma: Y — G(n—r,n). Note that since G(n—r, n) is a projective variety, 7 is a proper
morphism. Its image consists of that A € M,, ,(k) such that dimy ker(A4) > n —r:
this is precisely My, ,, (k).

Let us consider the fiber of 7y over a point [W] € G(n — r,n). This is iden-
tified to the set of all A € M,, (k) that vanish of W, which is isomorphic to
Hom(k™/W, k™) ~ A™™. In fact we can say more: m is locally trivial, with fiber
A", Indeed, for every subset with r elements I C {1,...,n}, we have an isomor-
phism of varieties over V;:

7t (V) = Vi x AT™,

In order to see this, let us assume that I = {1,...,7}. Via the identification
Vi ~ M,,_,,(k), the intersection Y N (M, (k) x Vi) consists of pairs of matrices
A = (a; ;) (of size m x n) and B = (by4) (of size (n —r) x r) such that

s
a; + Zai,n,rﬂb&j =0 for 1<i<m,1<{<n-—r.
j=1
It is then clear that by mapping the pair

((aihcicmacicn, (bpg)) to ((@ij)i<i<mmn—rti<i<n: (0pg))
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we obtain the desired isomorphism. Since G(n —r,n) is smooth, this clearly implies
that ) is smooth. We also see that ) is irreducible via the general lemma below.
Finally, it follows from Theorem 3.4.2 that

dim(Y) = dim (G(n —r,n)) + mr = (n—r)r + mr = (m+ n)r — r>.

LEMMA 7.3.1. If F is an irreducible algebraic variety and f: X — Y is a
morphism of algebraic varieties that is locally trivial with fiber F, and such that'Y
is 1rreducible, then X is irreducible.

ProoFr. Consider a cover Y = V3 U...UV;, with each V; a nonempty open
subset of Y such that f~1(V;) is isomorphic to V; x F' as a variety over V;. In
particular, since Y is irreducible, each V; is irreducible, and therefore V; x F is
irreducible. Moreover, using again the irreducibility of ¥ we see that V; NV, # 0
for every ¢ and j. Therefore

FRV)N V) = (Vin V) x F
is nonempty, and we conclude that X is irreducible using Exercise 1.3.17. ]

Since My, ,,(k) is the image of )/, we get another proof for the fact that My, (k)
is irreducible. Note that if U = M}, (k) ~ M}, (k), then for every A € U, there
is a unique point in Y mapping to A, namely (A, [ker(A)]). By Theorem 3.4.2,
we conclude that dim (7, ,(k)) = dim(Y), hence the codimension of My, ,, (k) in
M, n (k) is

mn —(m+n)r+r>=(m—r)(n—r).

In fact, we will show that w9 is an isomorphism over U; in particular, it is
birational. We need to show that the inverse map U — f~!(U) is a morphism.
Of course, since f~1(U) is a locally closed subvariety of A™" x G(n — r,n) it is
enough to show that the map taking A € U to ker(A4) € G(n —r,n) is a morphism.
We cover U by the subsets Up r, where A C {1,...,m} and I' C {1,...,n} are
subsets with 7 elements, and where Up r is the subset of My, , (k) consisting of
those matrices A such that the minor on the rows in A and on the columns in I' is
nonzero. We will show that each map Uxr — G(n — r,n) is a morphism.

In order to simplify the notation, let us assume that A = {1,...,7} and T’ =
{n—r+1,...,n}. Let A € Uy . Note that in this case, if e1, ..., e, is the standard
basis of k™, then A(e,—ry1),...,A(en) are linearly independent, hence

ker(A) + (ep—rq1,. -, n) = k™.
This implies that ker(A) € Vi1, . n,—r3. Moreover, if ker(A) is described by the
matrix (bp ¢)1<p<n—r1<g<r, then the b, , are determined by the condition
Alep) = — Z bp,qA(eq).
qg=n—r+1

It thus follows easily from Cramer’s rule that if A = (a;;) € Ua,r, then we can
write each b, , as

b _ va'l(A)

P T5A)
where R, , is a polynomial in the a; ;, while 6(4) = det(a; j)1<i<rn—r+1<j<n. This
completes the proof of the fact that 75 is birational. We collect the results we proved
in this section in the following proposition
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PROPOSITION 7.3.2. The closed subset My, , (k) of M, (k) is irreducible, of
codimension (m —r)(n —r), and the morphism mo: Y — My, . (k) is a resolution
of singularities.

7.4. Linear subspaces on projective hypersurfaces

We consider a projective space P™ and let S be its homogeneous coordinate ring.
Recall that a hypersurface in P™ is a closed subvariety of P whose correspond-
ing radical homogeneous ideal is of the form (F'), for some nonzero homogeneous
polynomial of positive degree. If deg(F') = d, then the hypersurface has degree d.

We begin by constructing a parameter space for hypersurfaces of degree d. Note
that two polynomials F' and G define the same hypersurface if and only if there is
A € k* such that ' = AG. Let P4 be the projective space parametrizing lines in
the vector space Sy, hence Ny = (";’;d) —1. We consider on PV¢ the coordinates Yas
where o = (ap, ..., a,) has |a] := ). a; = d; therefore the point [c4]q corresponds
to the hypersurface defined by )  cqx®, where % = zg° - - - ». Therefore the set
Hq is parametrized by a subset of the projective space P™V¢ consisting of classes
of homogeneous polynomials F € Sy such that the ideal (F') is radical. We will
denote by [H] the point of H4 corresponding to the hypersurface H C P™.

LEMMA 7.4.1. The subset Hq C PN¢ is a non-empty open subset.

PRrOOF. Note that given F' € Sy, the ideal (F) is not reduced if and only if
there is a positive integer e and a homogeneous polynomial G € S, such that G2
divides F'. For every e such that 0 < 2e < d, consider the map

ae: PNe x pla—2e _, pha

that maps ([G], [H]) to [G*H]. It is straightforward to see that this is a morphism.
Since the source is a projective variety, it follows that the image of a, is closed.
Since Hq4 is equal to

PN U Im(a),

1<e<|d/2]

we see that this set is open in P4, In order to see that it is non-empty, it is enough
to consider f € S4 which is the product of d distinct linear forms. O

REMARK 7.4.2. We have seen in Theorem 6.4.1 that if X C P™ is a smooth
variety of pure dimension 7, then for a general hyperplene H C P", the intersection
X N H is smooth, of pure dimension r — 1. The same assertion holds if we take
H a general hypersurface in P", of degree d. Indeed, if v4: P < PY¢ is the d'!
Veronese embeddings, then the intersections X N H is isomorphic to the intersection
vg(X)NL, where L C P4 is the hyperplane corresponding to H. We thus conclude
by applying Bertini’s theorem to vg4(X).

By applying the above remark to the case X = P", we see that a general
hypersurface H C P" of degree d is smooth. The following proposition makes this
more precise.

PROPOSITION 7.4.3. The subset Sing; C Ha consisting of singular hypersur-
faces is an irreducible closed subset, of codimension 1.
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PROOF. Let Y be the subset of PY consisting of pairs (p, [F]) such that

oF

(7.4.1) F(p)=0 and oz,

(p)=0 for 0<i<n.

It is straightforward to see that ) is a closed subset of P™ x PYe: in particular, it
is a projective variety. Let a: Y — P™ and 3: Y — P™¢ be the maps induced by
the two projections.

We claim that for every p € P", the fiber a=1(p) — P™¢ is a linear subspace,
of codimension n + 1. Indeed, we may choose coordinates on P™ such that p =
[1,0,...,0]. In this case, the conditions in (7.4.1) are equivalent with the fact that
the coefficients of [L'g, x(‘)lflwl, ceey nglmn are equal to 0, which gives our claim.

In particular, all fibers of a are irreducible, of the same dimension. Since «
is proper, we deduce using Proposition 5.5.1 that ) is irreducible, and Proposi-
tion 3.4.2 gives

dim(Y) = Ny — 1.

Since 8 is a closed map, it follows that its image is a closed, irreducible subset
of PN, In order to conclude the proof of the proposition, it is enough to find a
singular hypersurface, with only finitely many singular points. Indeed, this implies
via Theorem 3.4.1 that dim (8(Y)) = dim(Y) = Ngq — 1. Since

Sing, = 8(Y) N Hy,

it follows that Sing, is closed in H4, and being a non-empty open subset of 5(}),
it is irreducible, of dimension Ny — 1.

In order to construct a hypersurface that satisfies the required condition, it
is enough to consider g € k[zo,...,z,_1] homogeneous, of degree d, defining a
smooth hypersurface in P?~!. Such ¢ exists by Remark 7.4.2. For an explicit
example, when char(k) fd, one can take

n—1
b=t
i=0
For any such example, if we consider g as a polynomial in k[zg, ..., x,], it defines a
hypersurface in P™ that has precisely one singular point, namely [0, ...,0,1]. This
completes the proof of the proposition. O

EXAMPLE 7.4.4. Let us describe the hypersurfaces of degree 2 (the quadrics)
in P™. For simplicity, let us assume that char(k) # 2. Any non-zero homogeneous
polynomial F' € k[zo,...,z,] of degree 2 can be written as

F= Zai,jxixj, with Qi 5 = Gj4 for all ’L,j
()
The rank of F' is the rank of the symmetric matrix (a; ;) (note that if we do a linear
change of variables, this rank does not change).
Since k is algebraically closed, it follows that after a suitable linear change of
variables, we can write

(7.4.2) F=> a3,
=0
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in which case rank(F) = r+1 > 1. This can be deduced from the structure theorem
for symmetric bilinear forms over a field, but one can also give a direct argument:
we leave this as an exercise for the reader.

Given the expression in (7.4.2), note that (F') is radical if and only if r > 1
and (F') is prime if and only if » > 2. It follows from the above description that
a quadric is either smooth (precisely when r = n) or the projective cone over a
quadric of lower dimension.

For example, a quadric in P? is either a smooth quadric, or a cone over a
smooth conic (quadric in P?) or a union of 2 planes. After a suitable change of
variables, a smooth quadric in P3 has equation xgxs + £122 = 0. This is the image
of the Segre embedding

P! x P! — P3| ([uo, w1], [vo, v1]) = [wouy, ugvy, urve, ugvs).

We next construct the universal hypersurface over Hy. In fact, for many pur-
poses, it is more convenient to work with the whole space P™V¢ instead of restricting
to Hg (this is due to the fact that PN¢ is complete, while H4 is not). Define

Zy:={(p,[F]) e P" x PN | F(p) =0}.
It is easy to see that via the composition of closed embeddings

pr x PN "X pNa  pNa Ly pM
where v4 is the d™" Veronese embedding and 3 is the Segre embedding, Z, is the
inverse image of a hyperplane, hence it is a closed subset of P™ x PN¢,
Note that the projections onto the two components induce two morphisms

¢: Zg—P" and ¢: 24— PNa,

Since P™ and P™¢ are projective varieties, we deduce that both ¢ and 1 are proper
morphisms. It follows from definition that for every [H] € H4, we have ! ([H]) =
H.

On the other hand, for every p € P", the fiber ¢ ~!(p) consists of the classes of
those F' € Sy such that F(p) = 0. This is a hyperplane in P¥¢. We deduce from
Proposition 5.5.1 that Z; is irreducible, of dimension Ng + n — 1.

We now turn to linear subspaces on projective hypersurfaces. Given r < n, let
G = G(r+1,n+1) be the Grassmann variety parametrizing the r-dimensional linear
subspaces in P". Consider the incidence correspondence I C PY¢ x G consisting
of pairs ([F],[A]) such that F vanishes on A.

We first show that I is closed in PV x G. Suppose that we are over the open
subset V' = Vi1 .3 =~ AU+D(=7) of G where a subspace A is described by the
linear span of the rows of the matrix

1 0 e 0 ag,r4+1 ... Qon
0 1 FN 0 1,41 .- Q1n

0 0 ... 1 arpy1 .- Grn
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The hypersurface corresponding to ¢ = (¢4 ), which is defined by f. =" cqaz®
contains the subspace corresponding to the above matrix if and only if

Je | Toy-- s Tr, E Qi 1Ty - -+ s g ainz; | =0 in klzg,...,z].

0<i<r 0<i<r

We can write

(7.4.3) fel xo,. o 2y, Z Qirt1Tis- -, Z a;nTi | = Z Fs(a, c)scﬂ,
B

0<i<r 0<i<r

where the sum is running over those g = (fo,...,3,) with ). 3, = d. Note that
each Fj is a polynomial in the a;; and c, variables, homogeneous of degree 1 in
the c,’s. With this notation, I N (PY¢ x V) is the zero-locus in PY¢ x V of the
ideal generated by all Fg; in particular, it is a closed subset. The equations over
the other charts in G are similar.

In particular, we see that I is a projective variety. Let m1: I — PN¢ and
mo: I — G be the morphisms induced by the projections onto the two factors.

DEFINITION 7.4.5. For every hypersurface H of degree d in P", the Fano variety
of r-planes in H, denoted F,.(H), is the fiber wfl([H]) of 71, parametrizing the
r-dimensional linear subspaces contained in H. .

PROPOSITION 7.4.6. The projective variety I is irreducible, of dimension

(T—&-l)(n—?‘)—k(n;d) - (Tzd) 1.

PRrROOF. Consider the morphism 75: I — G. By Proposition 5.5.1, it is enough

to show that every fiber 7=!([A]) is isomorphic to a linear subspace of PN¢, of

r+d) )

codimension ( A In order to see this, we may assume that A is defined by

Tpy1 = ... =x, = 0. It is clear that a polynomial f vanishes on A if and only if all
coefficients of the monomials in xg, ..., x, in f vanish; this gives a linear subspace
of codimension (T"gd). O

EXERCISE 7.4.7. Given a smooth quadric X in P3, we have 2 families of lines
on X: choose coordinates such that X is given by xgxs — z122 = 0, hence X is
the image of the Segre embedding ¢: P! x P! < P3. One family of lines is given
by («(P! x {q}))qep1 and the other one is given by (.({p} x Pl))pepl. Show that
these are all the lines on X; deduce that the Fano variety of lines on X has two
connected components, each of them isomorphic to P!.

ExXAMPLE 7.4.8. Consider lines on cubic surfaces: that is, we specialize to the
case when n = 3 = d and r = 1. Note that in this case I is an irreducible variety
of dimension 19, the same as the dimension of the projective space parametrizing
homogeneous polynomials of degree 3 in S = k[zg,z1, 22, x3]. We claim that the
morphism 71 : I — P9 is surjective; in other words, every hypersurface in P? which
is the zero-locus of a degree 3 homogeneous polynomial contains at least one line.
In order to see this, it is enough to exhibit such a hypersurface that only contains
finitely many lines (this follows from Theorem 3.4.1). At least for char(k) # 3, such
an example is given by the Fermat cubic surface below.
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EXAMPLE 7.4.9. Suppose that char(k) # 3 and let X be the Fermat surface in
P?3 defined by the equation

3 3 3 3
ry+a] +z5+x5=0.

Of course, if char(k) = 3, then the zero locus of this polynomial is the hyperplane
o + x1 + 2 + 3 = 0, which contains infinitely many lines.

Up to reordering the variables, every line L C X can be given by equations of
the form

ro = axe + Bxs and x7 = yxo + dx3,
for some «, 3,7,d € k. This line lies on X if and only if
(o + Br3)® + (Yoo +0x3)> + a5 + 23 =0 in K[z, 23]
This is equivalent to the following system of equations:
A4+ =—1,028+7% =0,a8% +~v6* =0, and B3 + 6% = —1.
If «, B, 7y, § are all nonzero, then it follows from the third equation that
v =—af??,
and plugging in the second equation, we get
a2+ o286t =0,

which implies 3% = —463, contradicting the fourth equation.

Suppose now, for example, that & = 0. We deduce from the second equation

that 6 = 0. Moreover, 7> = —1 by the first equation, hence § = 0 and 3% = —1
by the fourth equation. We thus get in this way the 9 lines with the equations

xog = Prz and 1 = YT,
where 3,7 € k are such that 32 = —1 = 3. After permuting the variables, we
obtain 2 more sets of lines on X, hence in total we have 27 lines.

We next discuss hypersurfaces that contain linear spaces of small codimension.

ProproOSITION 7.4.10. We consider hypersurfaces in P™ of degree d > 2.

i) If X is a smooth such hypersurface containing a linear subspace A C P™
of dimension r, then r < an

ii) If A C P™ is a linear subspace of dimension r < ”7_1, then a general
hypersurface containing A is smooth.

PrOOF. After a suitable choice of coordinates on P™, we may assume that A
is the linear subspace defined by

Trp1 =...=xp =0.

Suppose that X is the hypersurface defined by a homogeneous polynomial F', of
degree d. If X contains A, then we can write

(7.4.4) F= Z Trtifi,
i=1
for some f; € k[zo,...,z,], homogeneous of degree d — 1. For every i, with 1 <14 <

n — r, consider the homogeneous polynomials of degree d — 1

gi(x()a"'vxr) :fi(wa";xrvOa"'vO)'
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If n —r <r, then a repeated application of Corollary 4.2.12 implies that there is a
point [ug, ..., u,] € P" such that

gi(UO,...,UT):O for 1<i<n-—r.

In other words, there is a point p € A such that f;(p) =0forall1 <i<n—r.In
this case, it follows from (7.4.4) that F(p) = 0 and gTFJ_(p) =0 for 0 < 5 < n, hence
p is a singular point of X. We thus deduce that if X is smooth, then n —r > r 41,
giving i).

Suppose now that r < ”T_l and consider the subset W of PN¢ consisting of
those [F] such that A is contained in the zero-locus (F = 0). This consists of those
[F] such that F € (2,41, ...,T,), which is a linear subspace in P4, of codimension
(Tzd). Let U be the subset of W consisting of those [F] such that there is no p € P,
with

(7.4.5) F(p)=0= aF (p) for 0<i<n.
£

Note that such F' generates a radical ideal (see Remark 6.3.12) and the correspond-
ing degree d hypersurface contains A and is smooth. We need to show that U is
open and non-empty.

As in Proposition 7.4.3, we consider the set Yy of pairs (p,[F]) € P" x W
such that (7.4.5) holds. This is a closed subset of P™ x W, hence it is a projective
variety. Let a: Yy — P™ and g8: Yy — W be the morphisms induced by the two
projections. Since U = W~ 3(Yw ), it follows that U is open in W, and it is enough
to show that S(Vw) # W.

We now describe the fiber a=(p) for p € P™. Suppose first that p € A.
We may choose coordinates such that p = [1,0,...,0]. The conditions in (7.4.5)
are equivalent with the fact that the coefficients of xd, x0 'xy,... 28 'a, in F
are 0. Since F € (zy41,...,2,), we see that a~!(p) — W is a linear subspace
of codimension n — r. Suppose now that p ¢ A, in which case we may choose
coordinates such that p = [0,...,0,1], in which case the conditions in (7.4.5) are
equivalent with the fact that the coefficients of 22, 241z, _q,..., 24" 2 are 0. We
thus see that in this case a~!(p) < W is a linear subspace of codimension n + 1.
We deduce from Corollary 3.4.3 that

dim (e (A)) = dim(A) + dim(W) — (n — r) = dim(W) + (2r — n)
and
dim (a7 (P" N A)) = dim(P™ N A) + dim(W) — (n + 1) = dim(W) — 1.

Since by assumption we have 2r —n < —1, we deduce that dim(Yy) = dim(W) —
1, hence dim (8(Yw)) < dim(Yw) < dim(W). This completes the proof of the
proposition. (I

7.5. The variety of nilpotent matrices

Fix a positive integer n and let
N, ={A € M, (k) | Ais nilpotent}.

The case n = 1 is trivial (A consists of one point), hence from now on we will
assume that n > 2.

Recall that a matrix A € M, (k) is nilpotent if and only if A™ = 0. Since
the entries of A™ are homogeneous polynomials of degree n in the entries of A, it
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follows that A, is a closed subset of M, (k), preserved by the standard k*-action
on M, (k). Note that there are nonzero nilpotent matrices (we use here the fact
that n > 2). It follows that we have a non-empty projective variety N'P*J in the
projective space P ~ P’ 1 of lines in M, (k), such that N, is the affine cone over
N,

In fact, we can define N,, by only n equations. Indeed, a matrix A is nilpotent
if and only if its characteristic polynomial det(A — AI) is equal to (—=\)™. If we

write
n

det(A — AI) = (=1)'pi(A)N,
i=0

then p,(A) = 1 and for each 4, with 0 < ¢ < n — 1, p;(A) is a homogeneous
polynomial of degree n—1 in the entries of A. We thus see that A, is the zero-locus
of the ideal (po7 SN 7pn—1)~

Our next goal is to show that N, is irreducible and compute its dimension. For
this, it is a bit more convenient to work with the corresponding projective variety
J\/‘Eroj .

The key observation is the following: a matrix A € M, (k) is nilpotent if and
only if there is a complete flag of subspaces

ich c...cV, =V,

with dimg(V;) =i and A(V;) C V;_; for 1 < i < n (where we put Vp = 0). Indeed,
it is clear that if we have such a flag, then A™ = 0. Conversely, if A" = 0, let
W; = A"~¢(k™). Tt follows from definition that

Wo=0CW;C...CW, =k"

and A(W;) C W;_; for 1 < i < n. If we refine this sequence of subspaces to a
complete flag, this flag will satisfy the required conditions.
Motivated by this, we define

Z={([Al, W,...,Vy)) € P x FI(k") | A(V;) C Vi_y for1 <i <n}

(where in the above formula we make the convention that Vj = {0}). We leave it
as an exercise for the reader to check that Z is a closed subset of P x F1(k™). In
particular, we see that Z is a projective variety. The projections of P x F1(k™) onto
the two components induce proper morphisms

m:Z —P and mwo: Z — FI(E").

Let us consider the fiber of mo over a flag Vo = (V1,...,V,,). If we choose a
basis ey, ..., e, such that each V; is generated by eq,...,e;, it follows that wgl(V.)
is isomorphic to the the subvariety of P consisting of classes of nonzero strictly

n(n—1)

upper-triangular matrices, hence it is isomorphic to P~ =2 ~1. Since FI(k") is
irreducible, of dimension W, it follows from Proposition 5.5.1 that Z is an
irreducible variety, of dimension n? —n — 1.

Consider now the morphism m;: Z — P, whose image is A/P*°. This implies
that AP™) is irreducible. We next show that over a non-empty open subset of
NPl each fiber of m; consists of just one point. Note that if A € M, (k) is a
nilpotent matrix, then its rank is < n — 1. Let UP™ be the open subset of NP
consisting of matrices of rank m — 1. Note that this is a non-empty subset: for
example, the nilpotent matrix (ai’j) with age—1 = 1 for 2 < ¢ < n and all other a; ;
equal to 0 has rank n — 1. We note that if [A] € 42"}, then 7! ([A]) has only one
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element: if (V1,...,V,,) is a flag in k™ such that A(V;) C V;_; for 1 < i < n, then
V; = A"4(V) for all i. Indeed, the condition on the flag implies that A"~ (k™) C V;
and the condition on the rank of A implies easily, by descending induction on 4,
that dimg A" ~¢(k") = i. Therefore A"~ (k") =V, for 1 <i < n.

Since 7y has finite fibers over U,,, we deduce from Theorem 3.4.2 that

dim(NP™) = dim(Z) = n? —n — 1.
We thus conclude that N, is an irreducible variety of dimension n? — n.

REMARK 7.5.1. In fact, the above construction, but done for the affine cone
N, gives a resolution of singularities of N,,. Indeed, let

W ={(4,(V1,...,Va_1)) € My(k) x FI(k") | A(V;) C Vi_1for1 <i<n}.

One can check that the projection onto the second component induces a morphism
ma: W — F1(k™) that is locally trivial, with fiber A I particular, it follows
that W is smooth, irreducible, of dimension n? — n. The projection onto the first
component induces a proper, surjective morphism m1: W — MN,,. In order to see

that this is birational, note that if
U, ={A e N, |tk(A) =n—1},
then the induced morphism 7 1(1/{”) — U, is an isomorphism, whose inverse maps

Ato (A, (A™L(k), ..., A(k™), k™).

REMARK 7.5.2. One can see that the ideal (po,...,pn—1) € O(M,(k)) is a
radical ideal, but we do not pursue this here, since the argument involves some
deeper facts of commutative algebra than we have used so far.




CHAPTER 8

Coherent sheaves on algebraic varieties

In algebra, when one is interested in the study of rings, modules naturally
appear: for example, as ideals and quotient rings. Because of this, it is more
natural to study the whole category of modules over the given ring. This method
becomes even more powerful with the introduction of cohomological techniques,
since by working in the category of modules over a given ring, we can construct
derived functors of familiar functors like Hom and the tensor product. Our goal
in this chapter is to introduce objects that in the context of arbitrary varieties
extend what (finitely generated) modules over a ring are in the case of an affine
variety: these are the quasi-coherent (respectively, the coherent) sheaves. This
will provide us with the language to treat in later chapters global objects, such as
divisors, vector bundles, and projective morphisms. We begin with some general
constructions for sheaves of R-modules, then discuss sheaves of Ox-modules, and
then introduce quasi-coherent and coherent sheaves. In particular, we use these
to globalize the MaxSpec and MaxProj constructions. In the last section of this
chapter we describe coherent sheaves on varieties of the form MaxProj(5).

8.1. General constructions with sheaves

In this section we discuss several general constructions involving sheaves. We
fix a commutative ring R and consider presheaves and sheaves of R-modules. Im-
portant examples are the cases when R = Z or R is a field. Given a topological
space X, we denote by Psh§ and Sh§ the categories of presheaves, respectively
sheaves, of R-modules on X. However, when R is understood, we simply write
Pshx and Shx.

8.1.1. The sheaf associated to a presheaf. Let R be a fixed commuta-
tive ring and consider a topological space X. We show that the inclusion functor
Pshx — Shx has a left adjoint. Explicitly, this means that for every presheaf F
on X, we have a sheaf Ft, together with a morphism of presheaves ¢: F — FT
that satisfies the following universal property: given any morphism of presheaves
: F — G, where G is a sheaf, there is a unique morphism of sheaves a: F+ — G
such that a o ¢ = 1. In other words, ¢ induces a bijection

Homsp, (F,G) ~ Hompyy,, (F,G).

Note that the universal property implies that given any morphism of presheaves
u: F — G, we obtain a unique morphism of sheaves u*: F* — GT such that the
diagram

149
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F——sF*

ui lu+
G——=g*
is commutative.

Given a presheaf F, for every open subset U C X we define F1(U) to consist
of all maps t: U — | |, Fr that satisfy the following properties:

i) We have t(x) € F, for all z € U.
ii) For every x € U, there is an open neighborhood U, C U of z and s €
F(Uy), such that t(y) = s, for all y € U,.

Note that since each F, is an R-module, addition and scalar multiplication of
functions makes each F*(U) an R-module. We also see that restriction of functions
induces for every open subsets U C V a map F* (V) — FT(U) that make F* a
presheaf of R-modules. In fact, it is straightforward to check that F* is a sheaf:
this is a consequence of the local characterization of the sections of . We have
a morphism of presheaves of R-modules ¢: F — FT that maps s € F(U) to the
map U — | |, ..y Fo that takes z to s,.

Let’s check the universal property: consider a morphism of presheaves ¥ : F —
G, where G is a sheaf. Given t € F*(U), it follows from definition that we can cover
U by open subsets U; and we have s; € F(U;) such that for every ¢ and every y € U;,
we have t(y) = (s;)y € Fy. This implies that the sections t; := ¢(s;) € G(U;) have
the property that (t}), = (t}), for all y € U; N U;. Using the fact that G is a
sheaf, we first see that t}|y,~v, = t;» v.nu; for all i and j, and then that there is
a unique ' € G(U) such that ¢'|y, = t, for all i. We then define a(t) = ¢'. It is
straightforward to see that this gives a morphism of sheaves o: F* — G such that
ao ¢ =1 and that in fact « is the unique morphism of sheaves with this property.

REMARK 8.1.1. It is straightforward to check, using the definition, that if F is
a sheaf, then the canonical morphism ¢: F — F* is an isomorphism.

REMARK 8.1.2. For every presheaf F and every x € X, the morphism ¢: F —
F7T induces an isomorphism ¢, : F, — F,7. The inverse map is defined as follows.
Given an element u € F,I represented by (U,t € f+(U)), by hypothesis we have
an open neighborhood U, of x and s € F(U,) such that t(y) = s, for all y € U,.
We define 7(u) = s, € F, and leave it as an exercise for the reader to check that

this is well-defined and that 7 gives an inverse of ¢,,.

REMARK 8.1.3. Wherever we mention stalks in this section, the same results
hold, with analogous proofs, for the stalks at irreducible closed subsets of the given
topological space. For simplicity, we only give the statements at points of X,
since this is sufficient for the study of sheaves on topological spaces; however, in
the setting of algebraic varieties it is sometimes convenient to also consider more
general stalks (corresponding to localizing a ring to a possibly non-maximal prime
ideal).

REMARK 8.1.4. It is clear from definition that if U is an open subset of X,
then we have a canonical isomorphism

(]:‘U)—i_ ~ ]:+|U~
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ExAMPLE 8.1.5. If F is a sheaf and G is a subpresheaf of F, then the inclusion
morphism 1: G < F induces a morphism of sheaves j: G+ — F. This gives an
isomorphism of G* with the subsheaf 7’ of F such that for an open subset U of
X, F'(U) counsists of those s € F(U) such that for every x € U, there is an open
neighborhood U,, C U of z such that s|y, lies in G(U,). Indeed, it is easy to see
that F' is a subsheaf of F and j induces a morphism of sheaves a: G — F’ such
that for all z € X, the induced morphism G, — F_, is an isomorphism; therefore «
is an isomorphism (see Exercise 2.1.20).

ExAMPLE 8.1.6. If M is any R-module, then we have the constant presheaf
on X that associates M to every open subset of X, the restriction maps being the
identity maps. The associated sheaf is the constant sheaf M associated to M. If X
has the property that every open subset is a union of open connected subsets (for
example, this is the case for an algebraic variety), then I'(U, M) can be identified
with the set of maps U — M that are constant on every connected open subset of
U.

8.1.2. Kernels and cokernels. Let R be a fixed commutative ring and X
a fixed topological space. We first note that for every two sheaves F and G, the
set of morphisms Homgy, (F,G) is an R-module. In particular, we have a zero
morphism. We also note that composition of morphisms of sheaves is bilinear.

Given finitely many sheaves Fi,...F, on X, we define /1 & ... ® F,, by

with the restriction maps being induced by those for each F;. It is straightforward
to see that this is a sheaf. We have canonical sheaf morphisms F; — F1 ®... D F,
that make F; @ ... ® F, the coproduct of Fi,...F, and we have sheaf morphisms
F1®...HF, — F; that make F; & ...® F, the product of Fy,...,F,. Note that
for every z € X we have a canonical isomorphism

(F1®..0F):=(F1)e @ ... 0 (Fn)u,

due to the fact that filtered direct limits commute with finite direct sums.
We now show that the category Shx has kernels. Given a morphism of sheaves
¢: F — G, define for an open subset U of X

ker(¢)(U) :=ker(¢y: F(U) = G(U)).

The restriction maps of F induce restriction maps for ker(¢) that make ker(¢) a
presheaf and it is straightforward to see that it is a sheaf (in fact, a subsheaf of F).
It is an easy exercise to see that the inclusion morphism i: ker(¢) < F is a kernel
of ¢: this means that ¢ o7 = 0 and for every morphism of sheaves u: F' — F such
that ¢ o u = 0, there is a unique morphism of sheaves v: F' — ker(¢) such that
u = iov. Note that since filtered inductive limits are exact functors, it follows that
for every z € X, we have

ker(¢), ~ ker(F, — G,).

We now define the cokernel of a morphism of sheaves of R-modules ¢: F — G.
For every open subset U of X, define

—_——

coker(¢)(U) := coker(¢y: F(U) = G(U)).
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It is straightforward to see that the restriction maps of G induce restriction maps
for coker(¢) which make it a presheaf. We define

coker (o) := c/()_\/lm(¢)+.
Note that the composition map p
G— CO/I{_G/I“(¢) — coker(¢)

is a cokernel of ¢; this means that po ¢ = 0 and for every morphism of sheaves
u: G — G’ such that uo¢ = 0, there is a unique morphism of sheaves v: coker(¢) —
G’ such that v o p = wu (this follows using the corresponding property of cokernels
of morphsms of R-modules and the universal property of the sheaf associated to
a presheaf). Finally, we note that since filtering direct limits are exact and since
passing to the associated sheaf preserves the stalks, for every x € X we have a
canonical isomorphism

coker(¢), ~ coker(F, — G.).

If 7' is a subsheaf of F, we define F/F" as the cokernel of the inclusion mor-
phism F' — F. It follows that for every x € X, we have a short exact sequence

0— Fl, — Fp— (F/Fz — 0.

The image Im(¢) of a morphism of sheaves ¢: F — G is defined as the kernel
of
G — coker(¢).

Using the universal property of the kernel and of the cokernel, we obtain a canonical
morphism

(8.1.1) FJker(¢) — Im(o).

This is an isomorphism: this follows by considering the induced morphisms at
the levels of stalks, using the fact that a morphism of sheaves a: A — B is an
isomorphism if and only if a,: A, — B, is an isomorphism for every z € X
(see Exercise 2.1.20). The existence of kernels and cokernels, together with the
fact that the canonical morphism (8.1.1) is an isomorphism mean that Sh¥ is an
Abelian category.

EXAMPLE 8.1.7. Given a morphism of sheaves ¢: F — G, the image Im(¢) is
the subsheaf of G described as follows: for every open subset U C X, the subset
Im(¢)(U) € G(U) consists of those s € G(U) such that for every x € U, there is an
open neighborhood U,, C U of z, such that s|y, lies in the image of F(U,) — G(Uy).
This follows from Example 8.1.5.

A morphism of sheaves ¢: F — G is injective if ker(¢) = 0. Equivalently, for
every open subset U of X, the morphism F(U) — G(U) is injective; moreover, this
holds if and only if ¢, : F, — G, is injective for every x € X. In this case, ¢ gives
an isomorphism of F with a subsheaf of G.

The morphism of sheaves ¢: F — G is surjective if coker(¢) = 0, or equivalently,
Im(¢) = G (in this case we say that G is a quotient of F). Equivalently, for every
x € X, the morphism F, — G, is surjective. However, this does not imply that
for an open subset U of X, the morphism F(U) — G(U) is surjective. What we
can say in this case is that for every s € G(U) and every = € U, there is an open
neighborhood U, C U of z such that sy, lies in the image of F(U) — G(Uy,).
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As in any Abelian category, we can consider exact sequences: given morphisms
F = F=F
this is exact if Im(u) = ker(v); equivalently, for every z € X, the sequence of
R-modules
Fo—= Fo— F
is exact.
In particular, the sequence
0—F S F-5F —0
is exact if v is surjective and u gives an isomorphism F’ ~ ker(v); equivalently, u is
injective and v induces an isomorphism coker(u) ~ F”. Moreover, this is equivalent
with the fact that for every z € X, the sequence of R-modules
0— F, — Fo — Fo, — 0
is exact. Note that in this case, for every open subset U of X, the induced sequence
0— F(U) — FU) — F"(U)

is exact. In other words, the functor I'(U, —) is left exact. However, in general this
is not an exact functor.

8.1.3. The sheaf Hom. If F and G are sheaves of R-modules on X, then
for every open subset U of X, we may consider the R-module Homgy,, (F|v, Glv).
If ¢: Fly — Glu is a morphism of sheaves and V' C U is an open subset, then
we clearly get an induced morphism ¢|y: Fly — G|y. We thus get a presheaf of
R-modules denoted Hompg(F,G). In fact, this is a sheaf: this follows from the fact
that morphisms of sheaves can be uniquely patched together (see Exercise 2.1.22).

8.1.4. The functor f~!. Recall that if f: X — Y is a continuous map, then

we have the functor f: Sh§ — Sh{; such that
LV, fu.F) = F(f_l(V),}') for every open subset V CY.

A special case is that when Y is a point, in which case this functor gets identified
with T'(X, —).

Like the special case of the functor I'( X, —), the functor f, is left-exact. Indeed,
given an exact sequence of sheaves on X

0F >F—=>F"=0
and an open subset V in Y, the corresponding sequence
0= F(f'(V) = F(f V) = F'(f1 (V)

is exact.

We now construct a left ﬁdjoint of this functor. Given a sheaf of R-modules G
on Y, consider the presheaf G on X given by

GU) == lm G(V).
f)cv

where the direct limit is over the open subsets V of Y containing f(U), ordered by

reverse inclusion. Note that if U; C Us, then for every open subset V in Y such
that f(Uz) C V, we also have f(U;) C V, which induces a restriction map

G(Uy) — G(Uy)



154 8. COHERENT SHEAVES ON ALGEBRAIC VARIETIES

and it is easy to see that these maps make G a presheaf. We define f~1(G) := G+.
If : G — G’ is a morphism of sheaves on Y, then for every open subset U of
X, we have a morphism of R-modules
lim ¢y: lim G(V)— lim g'(V)
f)cv v v
and these give a morphism of presheaves G — G'. This in turn induces a morphism
of sheaves f~1(G) — f~1(G’). This is compatible with composition of morphisms,
hence we get a functor
ft: Shit — ShE.
Note that for every sheaf G on Y and every x € X, we have canonical isomor-
phisms
FNDe =G lin Ly G(V) = lim G(V) = Gy,
zeU f(U)CV flz)eVv
This immediately implies that f~! is an exact functor.

ExAMPLE 8.1.8. Note that if U is an open subset of X and i: U < X is the
inclusion, then we have a canonical isomorphism i~ (F) ~ F|y.

An important property is that the pair (f~!, f.) is an adjoint pair of functors.
This means that for every sheaves of R-modules F on X and G on Y, we have a
canonical isomorphism

Homgp, (f_l(g),]:) ~ Homgp, (g7 f*(]:))

Indeed, giving a morphism of sheaves f~(G) — F is equivalent to giving a mor-

phism of presheaves G—F , which is equivalent to giving for every open subsets
UC X and V CY such that f(U) C V morphisms of R-modules

G(V)— F{U)

that are compatible with the maps induced by restriction. Because of this com-
patibility, it is enough to give such maps when U = f~1(V), and such a family
of maps compatible with the restriction maps is precisely a morphism of sheaves

G — f.(F).
8.2. Sheaves of Ox-modules

Suppose now that (X,Ox) is a ringed space, that is, X is a topological space
and Ox is a sheaf of rings on X. Our main example will be that when X is an
algebraic variety and Ox is the sheaf of regular functions on X, but it is more
natural to develop the notions that we need here in the general framework.

DEFINITION 8.2.1. A sheaf of Ox-modules (or, simply, Ox-module) is a sheaf
of Abelian groups F such that for every open subset U of X we have an Ox (U)-
module structure on F(U), and these structures are compatible with restriction
maps, in the sense that for every open sets V' C U, we have

(a-s)ly =aly-sly forall ae€Ox(U) and se F(U).

If F is a presheaf, instead of a sheaf, we call it a presheaf of Ox-modules.

A morphism of sheaves (or presheaves) of Ox-modules F — G is a morphism
of sheaves (respectively, presheaves) of Abelian groups such that for every open
subset U of X, the map F(U) — G(U) is a morphism of Ox (U)-modules. We write
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Homo, (F,G) for the set of such morphisms. It is clear that the Ox-modules form
a category that we will denote Ox-mod.

ExXAMPLE 8.2.2. The sheaf Ox has an obvious structure of Ox-module.

ExAMPLE 8.2.3. If F is an Ox-module and U is an open subset of X, with
Ov = Ox|y, then Fly is an Op-module.

REMARK 8.2.4. It is easy to see that a sheaf (presheaf) of Ox-modules is
the same as a sheaf (respectively, presheaf) of Abelian groups F, together with a
morphism of sheaves (respectively, presheaves)

Ox — Homz(F,F).

This easily implies that if Ox = R, for a ring R, then giving a sheaf of O x-modules
is equivalent to giving a sheaf of R-modules.

REMARK 8.2.5. Note that every Ox-module F is in particular an Ox(X)-
module. Indeed, for every open subset U of X, the restriction map Ox(X) —
Ox (U) induces an Ox (X )-module structure on F(U). We get in this way a functor
from Ox-mod to Shgx X,

REMARK 8.2.6. It follows easily from definition that if F is a presheaf of Ox-
modules, then for every x € X, the stalk F, has a canonical structure of Ox ;-
module. More generally, if V' is an irreducible, closed subset of X, then Fy has a
canonical structure of Ox y-module.

REMARK 8.2.7. Note that if 7 and G are sheaves of Ox-modules, then
Homp, (F,G) C Homgz(F,G)

is a subgroup. In fact, it follows from Remark 8.2.5 that Home, (F, G) has a natural
Ox (X)-module structure.
Moreover, we have a subsheaf

Homo (.F,g) c HomZ(f» g)’

whose sections over an open subset U C X consist of the morphisms of Oy-modules
Flu — Gly. Since each Home, (Flu,G|v) is an Ox(U)-module, we see that
Homoy (F,G) becomes naturally an Ox-module.

Note that for every Ox-module G, we have a canonical isomorphism of Ox (X)-
modules

Homo, (Ox,F) ~ F(X), ¢ — ¢x(1)
and therefore an isomorphism of Ox-modules
Homo, (Ox,F) ~ F.

REMARK 8.2.8. It is clear that if Fq,...,F, are sheaves of Ox-modules, then
F1...0 F, has a natural structure of Ox-module such that with respect to the
obvious maps, it is both the coproduct and the product of the F;.

REMARK 8.2.9. It follows immediately from Remark 8.2.6 that if F is a presheaf
of Ox-modules, then F* has an induced structure of sheaf of Ox-modules such
that the canonical map F — F7T is a morphism of presheaves of Ox-modules.
Moreover, this satisfies an obvious universal property with respect to morphisms
to sheaves of Ox-modules.
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REMARK 8.2.10. It follows from definitions and the previous remark that if
¢: F — G is a morphism of Ox-modules, then ker(¢), coker(¢), and Im(¢) carry
natural Ox-module structures. In particular, ker(¢) and coker(¢) are the kernel,
respectively the cokernel, of ¢ in the category of Ox-modules. Moreover, the iso-
morphism of sheaf of Abelian groups

F/ker(¢) — Im(¢)

is now an isomorphism in the category of Ox-modules. Therefore Ox-mod is an
Abelian category.

The notions of injective and surjective morphisms of Ox-modules are defined
as in the case of sheaves of R-modules. We also have a notion of Ox -submodule,
which is an Ox-module that is also a subsheaf. In particular, a sheaf of ideals is
an Ox-submodule of Ox.

ExAMPLE 8.2.11. The following notion will play an important role later: an
Ox-module F is locally free (of finite rank) if for every x € X, there is an open
neighborhood U of x such that we have an isomorphism

]:|U ~ O{G]Bn
If the integer n does not depend on z, then we say that F has rank n.

EXERCISE 8.2.12. Show that if (M;);cr in an inverse system of Ox-modules,
then the inverse limit ILHMZ can be constructed as follows. For every open subset

iel
U of X, consider the Ox (U)-module
MU) = %MZ(U)

If V C U, then the inverse limit of the restriction maps induce a restriction map
MU) - M(V) and these maps make M an Ox-module. Moreover, for every
j € 1, the projection

I&HMZ(U) — M;(U)

iel
defines a morphism of Ox-modules M — M; and M, together with these mor-
phisms; is the inverse limit of (M;);er.

EXERCISE 8.2.13. Show that if (M;);e; is a direct system of O x-modules, then
the direct limit hgl M can be constructed as follows. For every open subset U C X,
iel
consider the Ox (U)-module
M(U) = h_n;/\/lZ(U)
iel
If V is an open subset of U, then the direct limit of the restriction maps induces
a restriction map M(U) — M(V) and these maps make M a presheaf of Ox-
modules. Moreover, for every j € I, the canonical morphisms M ;(U) — thz(U )
iel
give a morphism of presheaves M; — M.
i) Show that the compositions M; — M — M™T make M™ the direct limit
of the direct system (M,);er.



8.2. SHEAVES OF Ox-MODULES 157

ii) Deduce that for every x € X, we have a canonical isomorphism
(lig M)y > i M, ..
i€l i€l
8.2.1. Multilinear algebra for Ox-modules. Operations like tensor prod-
uct, exterior, and symmetric products have analogues for Ox-modules. If F and

G are Ox-modules, the we can consider the presheaf that associates to an open
subset U of X, the Ox (U)-module

FU) ®oxw) d(U).
If V is an open subset of U, the restriction map
FU) @ox ) G(U) = F(V) ®oxv) G(V)

is the tensor product of the restriction maps of F and G. The associated sheaf is
the tensor product of F and G, and it is denoted by F ®p, G. It is easy to see that
we have a bilinear map of sheaves

F®G - FRo,y G

that satisfies the same universal property in Ox-mod as the usual tensor product
in the category of R-modules.

While the sections of F ®p, G over some U are not vert explicit, the stalks of
this sheaf are easier to understand. In fact, using the fact that a presheaf and its
associated sheaf have the same stalks, and the fact that tensor product commutes
with direct limits, we obtain for every x € X a canonical isomorphsim

(8.2.1) (F ®ox G)a = lim F(U) @ox ) 9(U) ~ Fr @ox, Ga-
Usx
Similarly, given an Ox-module F and a non-negative integer m, we define Ox-
modules A™F and Sym™(F) by taking the sheaf associated to the presheaf that
maps an open subset U to /\@X(U)}'(U), respectively to Symg, (nF(U). Again,
for every z € X, we have canonical isomorphisms

(A" F)a = NG Fo and  (Sym™(F)), =~ Symg,  (Fy).
Similar isomorphisms hold for the stalks at irreducible closed subsets of X.

8.2.2. Push-forward and pull-back for Ox-modules. A morphism of
ringed spaces (X,0x) — (Y,0y) is given by a pair (f, f#), where f: X — Y
is a continuous map and f#: Oy — f,Ox is a morphism of sheaves of rings. By
a slight abuse, f# is sometimes dropped from the notation and the morphism is
simply denoted by f. The main example for us is that given by a morphism of
algebraic varieties. A special feature in this case is that f# is determined by the
continuous map f.

Note that morphisms of ringed spaces can be composed: if f: (X,0x) —
(Y,Oy) and g: (Y,Oy) — (Z,Oz) are morphisms of ringed spaces, with associated
morphisms of sheaves of rings

f#: 0y = f.O0x and g¢": Oy — .0y,

then the composition (X,Ox) — (Z,Oz) is given by the continuous map go f and
the morphism of sheaves of rings

g ()
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It is easy to see that in this way the ringed spaces form a category.
Let f: X — Y be a morphism of ringed spaces. If F is an Ox-module, we see
that for every open subset V of Y, the Abelian group

L(V. f(F)) =T(fH(V), F)

is a module over F(f’l(V), OX), hence via the given homomorphism I'(V, Oy ) —
L(f~1(V),0Ox) it becomes a module over I'(V,Ov). This makes f.(F) an Oy-
module. We thus obtain a left exact functor, the push-forward functor

f+: Ox-mod — Oy-mod.

We now construct a left adjoint of this functor, the pull-back. Recall that
we have a left adjoint f~! for the corresponding functor between the categories
of sheaves of Abelian groups. Note also that by the adjointness of (f~1, f.) the
structure morphism Oy — f.(Ox) corresponds to a morphism of sheaves of rings
i f7HOy) = Ox. It is straightforward to see that if G is an Oy-module, then
f71(G) has a natural structure of f~1(Oy)-module. We put

f5(G) == f1(9) ®s-1(0y) Ox

and this has a natural structure of O-module. Again, it is not easy to describe
the sections of f*(G) over an open subset of X, but for every z € X, we have a
homomorphism Oy, f(,) — Ox . induced by f# and a canonical isomorphism

(8.2.2) [ (@)e ~ Gp@) ®0y sy Ox-

Since the functor —®o, ,,, Ox s is right-exact, it follows that the functor f* is right

exact. More generally, if V is an irreducible, closed subset of X and W = f(V),
then for every Oy-module G, we have a canonical isomorphism

I (G)v ~Gw ®oy.w Ox,v.

ExXAMPLE 8.2.14. It follows from definition that, with the above notation, we
have f*(Oy) = Ox.

ExaMPLE 8.2.15. If U is an open subset of X and Oy = Ox|y, then we
have a morphism of ringed spaces i: (U, Oy) — (X,0Ox), where i: U — X is the
inclusion and the morphism of sheaves Ox — .0y maps ¢ € Ox (V) to ¢lunv.
The corresponding morphism i '!Ox = Op — Oy is the identity, so that we have
a canonical isomorphism i*(F) ~ F|y for every Ox-module F. In particular, in
this case the functor ¢* is exact.

ExaMPLE 8.2.16. If f: X — Y is a flat morphism of algebraic varieties, then
the functor f* is exact. This follows from the fact that for every Oy-module G and
every x € X we have the isomorphism (8.2.2) and Ox . is a flat Oy, (,)-module.

PROPOSITION 8.2.17. The pair of functors (f*, f«) is an adjoint pair, that is,
for every Ox-module F and every Oy -module G, we have a natural isomorphism
of Abelian groups

Homo, (f*(G), F) ~ Homo, (G, f«(F)).

PRrROOF. The assertion follows easily from the fact that (f~!, f.) is an adjoint
pair of functors between the corresponding categories of sheaves of Abelian groups,
together with the universal property of the tensor product. (I
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REMARK 8.2.18. The push-forward and pull-back functors are compatible with
compositions of morphisms of ringed spaces: if f: X — Y and g: Y — Z are
morphisms of ringed spaces, then for every Ox-modules F and every Oz-module
G, we have

(g0 f)(F) = g (f:(F))
and a natural isomorphism
(g0 f)"(G) = f(97(9)).

Indeed, the first assertion follows directly from definition, and the second one follows
from the fact that both functors (g o f)* and f* o g* are left adjoints of (g o f)..

We end this section by showing that the pull-back is compatible with multilinear
operations. For example, we have the following:

ProprosiTION 8.2.19. If F and G are Oy-modules, then we have a natural
isomorphism

[ (F@oy G) = f5(F) ®ox [7(9)

PROOF. Note first that if M and N are Ox-modules, we have a canonical
morphism of Oy-modules

(8.2.3) filM) oy f+N) = fu(M &0y N)

defined as follows. Let S be the presheaf of Oy-modules such that for an open
subset V of Y, we have

S(V) = f(M)(V) @0y vy FWN)V) = M(FHV)) ®oy vy N(F7HV))

and T the presheaf of Ox-modules such that for an open subset U of X, we have
T(U) = M(U) ®ox ) N(U).
It thus follows from definition that
Mo, N=T" and f.(M)®o, f.(N)=ST.
It is clear that we have a morphism of Oy-modules
S = f(T)

which for an open subset V C Y is given by the canonical morphism

M(FHV)) @0y iy N(FTHV)) = M(FTHV)) @ox -1 vy N (FTHV)).
mapping u ®o, (v) v — U Qo (f-1(v)) v- By composing this with the morphism
f«(T) = f«(TT), we obtain a morphism S — f,(7T) and since the target is a
sheaf, this corresponds to a unique morphism of Oy-modules

ST = fu(TT)

which is the morphism in (8.2.3).

Note now that the adjoint property of (f*,f«) gives canonical morphisms
a: F = fo(f*(F)) and B: G — f.(f*(G)). We thus obtain the following com-
position

]:@OX Gg— f*(f*(]:)) ®ox f*(f*(g)) — f*(f*(]:) Koy f*(g)),
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where the first morphism is o ® § and the second morphism is given by (8.2.3).
Using the fact that (f*, f.) is an adjoint pair, this corresponds to a morphism of
Ox-modules

(8.2.4) [T (F@oy G) — [1(F) @ox f(9)-

In order to complete the proof, it is enough to show that this is an isomorphism
and this follows if we show that it induces an isomorphism at the level of stalks (see
Exercise 2.1.20). This is a consequence of the formulas in (8.2.1) and (8.2.2). O

REMARK 8.2.20. A similar argument shows that if F is an Oy-module, then
for every non-negative integer m, we have canonical isomorphisms

fr(Sym™(F)) = Sym™ (f*(F)) and f*(A"F) = A" f(F).
8.3. Quasi-coherent sheaves on affine varieties

We now introduce quasi-coherent sheaves in the setting of affine varieties. We
will see that these correspond to modules over the coordinate ring of the affine
variety.

We begin with a general proposition about constructing sheaves in the presence
of a suitable basis of open subsets. We will use it for the principal affine open subsets
of an affine variety and later, for the principal affine open subsets of varieties of
the form MaxProj(S). We state it for Ox-modules, but the reader will see that a
similar statement holds in other settings (for example, for sheaves of R-algebras).

Let (X, Ox) be aringed space and P a family of open subsets of X that satisfies
the following two properties:

i) Every open subset of X is a union of subsets in P (that is, P gives a basis
of open subsets), and
ii) For every U,V € P, we have UNV € P.

We define a P-sheaf of Ox-modules on X to be a map « that associates to every
U € P an Ox (U)-module a(U) and to every inclusion U C V a map a(V) — a(U),
s — s|u, such that

(a-s)|ly =aly-sly forevery ae€ Ox(V),sealV).

These restriction maps are supposed to satisfy the usual compatibility conditions.
Furthermore, the map a should satisfy the following gluing condition: for every
cover U = |J,c; Ui, with U and U; in P, and for every family (s;)icr, with s; €
a(U;) for all i, such that s;|u,nu; = sjlu,ny; for all i and j, there is a unique
s € a(U) such that s|y, = s; for all 4. If @ and 3 are P-sheaves of Ox-modules,
a morphism g: a — [3 associates to every U € P a morphism of Ox (U)-modules
gu: a(U) — B(U) and these are compatible with the restriction maps in the obvious
sense. It is clear that P-sheaves form a category.

PRrOPOSITION 8.3.1. The functor from the category of sheaves of Ox-modules
to the category of P-sheaves of O x-modules, given by only recording the information
for the open subsets in P, is an equivalence of categories.

PROOF. Given a P-sheaf of Ox-modules o, we define a corresponding sheaf
Fa, such that for an open subset W C X, we let F, (W) be the kernel of the map

[[ eo- 11 aUNV), (su)u = (sulunv = sv]vnv)uv.
UeP;UCW UVEPUVCW
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Component-wise addition makes this an Abelian group and we get a structure of
Ox (U)-module by putting

a-(sy)u = (aly -sp)u forall a€ Ox(W),(sy)v € FalU).
Note that if W’ C W, then we have a restriction map given by

(sv)u = (sv)v,

where the second tuple is indexed by those V' that lie inside W’'. It is clear that this
is compatible with scalar multiplication and makes F,, a presheaf of Ox-modules.
Moreover, it is a straightforward (though somewhat tedious) to check that the
glueing condition on « implies that F, is a sheaf.

Suppose now that g: @ — S is a morphism of P-sheaves of O x-modules. Given
any open subset W of X, we have a commutative diagram

[vepvew aU) —=Ilvvepvyvew a(UNV)

HU gUi lnuyv gunv

HUeP;UgW BU) — HU,veP;U,ng sUNYV),

which induces a morphism of Ox (U)-modules Fo(U) — F(U). It is straightfor-
ward to check that these maps are compatible with the restriction maps and that
in this way we get a functor from the category of P-sheaves of Ox-modules to
the category of sheaves of Ox-modules. Checking that this is an inverse of the
functor in the statement of the proposition is an easy exercise that we leave for the
enthusiastic reader. O

Suppose now that (X, Ox) is an affine variety and A = Ox(X). We consider
the set P consisting of the principal affine open subsets of X. Recall that Dx (f) N
Dx(g9) = Dx(fg). Let M be an A-module. Given any U € P, say U = Dx(f), we
put
OZ(U) = Mf.

Note that if Dx(f) 2 Dx(g), then V(f) C V(g), hence \/(f) 2 /(g). We thus
have a localization morphism Ay — A, and a corresponding canonical morphism of

Ag-modules My — M,. In particular, we see that a(U) only depends on U (up to
a canonical isomorphism) and that we have restriction maps that satisfy the usual
compatibility relations. The next lemma allows us to apply Proposition 8.3.1 to
conclude that we have a sheaf of Ox-modules on X, that we denote M, such that
for every f € A, we have a canonical isomorphism

T(Dx(f), M) =~ M;.

LEMMA 8.3.2. If X is an affine variety, with A = O(X), and M is an A-
module, then for every cover

Dx(f) = Dx(9:);
i€l
the sequence
0 — My — [[ My, — My,
iel
s exact.
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PrOOF. The proof is similar to the proof of Proposition 1.4.7. After replacing
X by Dx(f) and M by My, we may assume that f = 1. The condition X =
Uier Dx(gi) is equivalent to the fact that the ideal (g; | @ € I) is the unit ideal.
The injectivity of the map M — [],.; My, is clear: if uw € M is such that ¥ =0 in
My, for all 4, then there is m; such that g;"" € Anny(u). Since the elements g;"
generate the unit ideal, it follows that Ann(u) = A, hence u = 0.

Suppose now that we have u; € My, for all ¢ € I, such that for all 4,5 € I, the
images of u; and u; in My, 4, coincide. Note first that we may assume that I is finite.
Indeed, we may choose a finite subset J C I such that (g; | i € J) = A. If we can
find v € M such that T = u; € My, for all i € J, then it follows that T = u; € My,
also for all i € I. Indeed, Dx(g:) = U;c; Dx(9:9;), and we deduce using the first
part of the proof that it is enough to show that § and u; have the same image in
My, 4, for all j € J. This is a consequence of the fact that T = u; € My, and the
fact that by hypothesis, u; and u; have the same image in M, ..

Suppose now that [ is finite and let us write

v;
ulz% for all i€l
9

After replacing each g; by a suitable power, we may assume that n; = 1 for all 4.
The condition that u; and u; have the same image in My, . implies that

(9i95)"7 (gjvi — givj) =0 for some ¢ ;.
After replacing one more time each g; by a suitable power, we may assume that
giv; = gjv; for all i and j. In this case, if we write 1 = } ,_;a;g; and take

u=3c;a;v; € M, we have ¥ =u; € My, for all i. Indeed, we have

giv = Zajgmj = Zajgjui = Uj.

jerI jeI

This completes the proof of the lemma. O

ExAMPLE 8.3.3. With the above notation, the sheaf A is the structure sheaf
Ox. This follows from the fact that for every f € A, the canonical morphism
Ox(X)s — Ox(Dx(f)) is an isomorphism.

REMARK 8.3.4. If F = M , then for every irreducible, closed subset V C X, we
have a canonical isomorphism

fV:Mpv

where p C A is the prime ideal corresponding to V. Indeed, it follows from definition
that
Fo= lm  F(Dx(f) = lim My~ M,
VNDx (f)#0 fé&p

Given a morphism of A-modules ¢: M — N, for every f € A, we have an
induced morphism of A;-modules My — Ny and these satisfy the obvious com-
patibility conditions with respect to inclusions of principal affine open subsets. By
Proposition 8.3.1, we thus get a morphism of sheaves ¢: M — N such that over
every Dx(f), this is given by My — Ny. It is clear that in this way we get a
functor from the category of A-modules to the category of Ox-modules.
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DEFINITION 8.3.5. Let X be an affine variety and A = Ox(X). A quasi-
coherent sheaf on X is an Ox-module isomorphic to M , for some A-module M.
The sheaf is coherent if, in addition, M is a finitely generated A-module. The
category of quasi-coherent (or coherent) sheaves on X is a full subcategory of the
category of Ox-modules on X.

TO BE CONTINUED






APPENDIX A

Finite and integral homomorphisms

A running assumption for all the appendices is that all rings are commutative,
unital (that is, they have multiplicative identity), and all homomorphisms are of
unital rings (that is, they map the identity to the identity). In this appendix we dis-
cuss the definition and basic properties of integral and finite ring homomorphisms.

A.1. Definitions

Let ¢: R — S be a ring homomorphism. One says that ¢ is of finite type if
S becomes, via ¢, a finitely generated R-algebra. Onme says that ¢ is finite if S
becomes, via , a finitely generated R-module. One says that ¢ is integral if every
element y € S is integral over R, that is, there is a positive integer n, and elements
ai,-..,a, € R, such that

y"+ay" ' 4+...4a,=0 in 8.

REMARK A.1.1. It is clear that if ¢ is finite, then it is of finite type: if
Y1,.--,Ym € S generate S as an R-module, then they also generate it as an R-
algebra. The converse is of course false: for example, the inclusion R — RJx] is
finitely generated, but not finite (the R-submodule of R[z] generated by finitely
many polynomials consists of polynomials of bounded degree).

REMARK A.1.2. If ¢ is of finite type and integral, then it is finite. Indeed, if
Y1i,--.,Y- generate S as an R-algebra, and we can write

Y +aiq, =0

y,d’ + ai,lygi_
for some positive integers d; and some a; ; € R, then it is easy to see that
{yi* - ypm [0<a; <di — 1}
generate S as an R-module.
ProrosITION A.1.3. If ¢ is finite, then it is integral.
PROOF. The assertion follows from the Determinant Trick: suppose that by, ...
generate S as an R-module. For every y € S, we can write for each 1 < i < n:

n
yb; = Zai,jbj for some a;; € R.
=1

If A is the matrix (a;j)i1<i j<n and I is the identity matrix, then we see that

by
(yI—A)-|...] =0
bn
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By multiplying with the classical adjoint of yI — A, we see that if D = det(yl — A),
then Db; = 0 for all 4. This implies D-S = 0, and in particular D-1g = 0. However,
it is clear that we can write

D=y"+cy" ' +...4+¢, forsome eci,...,cn €R.
We thus see that y is integral over R. O
REMARK A.1.4. We will almost always consider homomorphisms of finite type.

For such a homomorphism ¢, it follows from Remark A.1.2 and Proposition A.1.3
that ¢ is finite if and only if it is integral.

A.2. Easy properties
The following property of integral morphisms is very useful.

ProroSITION A.2.1. If p: R < S is an integral injective homomorphism of
integral domains, then R is a field if and only if S is a field.

PROOF. Suppose first that R is a field, and let u € S\ {0}. Since u is integral
over R, it follows that we can write
Wt au 4. +a, =0

for some positive integer n, and some ay,...,a, € R. We may assume that n is
chosen to be minimal; in this case, since u # 0, we have a,, # 0. We see that we
have uv = 1, where

v="(=a,)" - (U . apoutan_1),

hence u is invertible. Since this holds for every nonzero wu, it follows that S is a
field.

Conversely, suppose that S is a field and let a € R~ {0}. Let b = % € S. Since
b is integral over R, we can write

B +ab" P+ +a,=0

for some positive integer r and some aq,...,a, € R. Since

1

S ——ai—asa—...—apa"Tl €A,

a
we conclude that a in invertible in R. Since this holds for every nonzero a, it follows
that R is a field. O

PRrROPOSITION A.2.2. Given a ring homomorphism p: R — S, the subset
S":={y € S| yintegral over R}
is a subring of S. This is the integral closure of R in S.

PROOF. Since it is clear that 1g € S’, we only need to check that for every
y1,y2 € S’, we have y1 — yo,y1y2 € S’. Since y; and ys are integral over R, the
subring R[y;,y2] of S is finite over R (the argument is the same as in Remark A.1.2).
In particular, it is integral over R by Proposition A.1.3. This implies that y; — y2
and y1y2, which lie in R[y1, y2], are integral over R. O

PROPOSITION A.2.3. Let R 25 5 ~U5 T be two ring homomorphisms. If both
v and ¢ are of finite type (respectively finite, integral), then 1 o ¢ has the same
property.
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PROOF. The assertion is straightforward for finite and finite type morphisms.
Suppose now that ¢ and 1 are integral. Given u € T', we can write

Wb+ 40, =0

for some positive integer n and by,...,b, € S. Since by, ...,b, are integral over R,
it follows that R’ := R[by,...,b,] is finite over R (see Remark A.1.2). Since u is
integral over R', it follows that R'[u] is finite over R’, and therefors it is finite over
R. By Proposition A.1.3, we conclude that u is integral over R. (]






APPENDIX B

Noetherian rings and modules

In this appendix we discuss the definition and basic properties of Noetherian
rings and modules. The main result is Hilbert’s basis theorem.

B.1. Definitions

ProprosiTION B.1.1. Given a ring R and an R-module M, the following are
equivalent:

i) Every submodule N of M is finitely generated.
ii) There is no infinite strictly increasing chain of submodules of M :

Ny C Ny C N3 Q...
iii) Fvery nonempty family of submodules of M contains a mazimal element.

An R-module M is Noetherian if it satisfies the equivalent conditions in the
proposition. The ring R is Noetherian if it is Noetherian as an R-module.

PROOF OF PROPOSITION B.1.1. Suppose first that i) holds. If there is an
infinite strictly increasing sequence of submodules of M as in ii), consider N :=
U;>1 Ni. This is a submodule of M, hence it is finitely generated by i). If us, ..., u,
generate N, then we can find m such that u; € N,, for all m. In this case we have
N = N,,, contradicting the fact that the sequence is strictly increasing.

The implication ii)=-iii) is clear: if a nonempty family F has no maximal
element, let us choose N7 € F. Since this is not maximal, there is Ny € F such
that N1 C Ns, and we continue in this way to construct an infinite strictly increasing
sequence of submodules of M.

In order to prove the implication iii)=-1), let N be a submodule of M and
consider the family F of all finitely generated submodules of N. This is nonempty,
since it contains the zero submodule. By iii), F has a maximal element N”. If N” =
N, then there is u € N . N” and the submodule N” + Ru is a finitely generated
submodule of N strictly containing N”, a contradiction. Therefore N = N and
thus N is finitely generated. O

PROPOSITION B.1.2. Given a short exact sequence
0—->M —-M-—M"—0
of R-modules, M is Noetherian if and only if both M' and M" are Noetherian.

PROOF. Suppose first that M is Noetherian. Since every submodule of M’ is a
submodule of M, hence finitely generated, it follows that M’ is Noetherian. Since
every submodule of M" ~ M /M’ is isomorphic toN/M’, for a submodule N of M
that contains M’, and since N being finitely generated implies that N/M’ is finitely
generated, we conclude that M" is Noetherian.

169
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Conversely, suppose that both M’ and M"” ~ M/M’ are Noetherian, and let N
be a submodule of M. Since N N M’ is a submodule of M’ it is finitely generated,
and since N/(NNM') is isomorphic to a submodule of M/M’, we have that N/(NN
M) is finitely generated. Finally, since both N N M’ and N/(N N M') are finitely
generated, it is clear that N is finitely generated. O

COROLLARY B.1.3. If R is a Noetherian ring, then an R-module M is Noe-
therian if and only if it is finitely generated.

PROOF. We only need to show that if M is finitely generated, then it is Noe-
therian, since the converse follows from definition. Since M is finitely generated, we
have a surjective morphism R®" — M, and it follows from the proposition that it
is enough to show that R®" is Noetherian. This follows again from the proposition
by induction on n. O

REMARK B.1.4. If R is a Noetherian ring and I is an ideal in R, then R/I is
a Noetherian ring. This is an immediate application of Corollary B.1.3.

REMARK B.1.5. If R is a Noetherian ring and S C R is a multiplicative system,
then the fraction ring S~!'R is Noetherian. Indeed, every ideal in S™!'R is of the
form S—1'I for some ideal I of R. If I is generated by ay,...,a,, then S7'I is

: -1
generated as an ideal of S™" R by 4,..., %=,

tor
B.2. Hilbert’s basis theorem
The following theorem is one of the basic results in commutative algebra.

THEOREM B.2.1 (Hilbert). If R is a Noetherian ring, then the polynomial ring
RJx] is Noetherian.

PROOF. Let I be an ideal in R[z]. We consider the following recursive con-
struction. If T #£ 0, let f; € I be a polynomial of minimal degree. If I = (f1), then
let fo € I~ (f1) be a polynomial of minimal degree. Suppose now that fi,..., fn
have been chosen. If I # (f1,...,fn), let fuy1 € I~ (f1,..., fn) be a polynomial
of minimal degree.

If this process stops, then I is finitely generated. Let us assume that this is not
the case, aiming for a contradiction. We write

fi= a;z% + lower degree terms, with a; # 0.

By our minimality assumption, we have

dy <dy < ...,
Let J be the ideal of R generated by the a;, with ¢ > 1. Since R is Noetherian, J is
a finitely generated ideal, hence there is m such that J is generated by aq, ..., am.
In particular, we can find uq,...,u, € R such that

m
Am+1 = E Q;Uj.
i=1

In this case, we have
= frer — Y wab b f e TN (fr,. o fn)
i=1
and deg(h) < dy,41, a contradiction. This completes the proof of the theorem. O
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By applying Theorem B.2.1 several times, we obtain

COROLLARY B.2.2. If R is a Noetherian ring, then the polynomial ring Rlx1, . .., Zy]
is Noetherian for every positive integer n.

In particular, since a field is clearly Noetherian, we obtain

COROLLARY B.2.3. For every field k and every positive integer n, the polyno-
mial ring klx1, ..., x,] is Noetherian.






APPENDIX C

Nakayama’s lemma and Krull’s intersection
theorem

In this appendix we collect a few basic results on local rings and localization.
We begin with Nakayama’s lemma and an application to finitely generated projec-
tive modules over local rings. We then overview some general results concerning
the behavior of certain properties of modules under localization. We prove the
Artin-Rees lemma and deduce Krull’s Intersection theorem. In the last section we
introduce discrete valuation rings (we will return to this topic in a later appendix).

C.1. Nakayama’s lemma

The following is one of the most basic results in commutative algebra, known
as Nakayama’s lemma.

ProposiTiON C.1.1. If (A,m) is a local ring and M is a finitely generated
module over A such that M = mM, then M = 0.

PROOF. The proof is another application of the determinant trick. Let uy, ..., u,
be generators of M over A. Since M = mM, for every i we can write

n
U; = E a;ju; for some a;; € m.
j=1

If A is the matrix (a;;)i<i,j<n and I is the identity matrix, then we can rewrite
the above relations as
Uy
(I-A4)-|...]=0.

Unp

By multiplying with the classical adjoint of T— A, we conclude that det(I—A)-u; =0
for all 7. Since all entries of A lie in m, it is clear that

det(I — A) = 1 (mod m).

Since A is local, it follows that det(I — A) is invertible, and therefore we conclude
that u; = 0 for all 4, hence M = 0. O

This is sometimes applied in the following form.

COROLLARY C.1.2. If (A,m) is a local ring, M is a finitely generated module
over A, and N is a submodule of M such that M = N +mM, then N = M.

PROOF. The assertion follows by applying the proposition to M/N. (I
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REMARK C.1.3. The above corollary implies, in particular, that given elements
U, ..., u, of M, they generate M if and only if their classes @y, ..., @, € M/mM
generate M /mM over k = A/m. We thus see that the cardinality of every minimal
system of generators of M is equal to dimg M/mM.

C.2. Projective modules over local rings

ProrosITION C.2.1. If (A,m) is a local Noetherian ring and M is a finitely
generated A-module, then M is projective if and only if M is free.

PRrROOF. Consider a minimal system of generators uy,...,u, for M and the
surjective morphism of A-modules

¢ F=A%" 5 M, ole;) =u; for 1<i<n.

If N = ker(¢), since A is Noetherian and F' is a finitely generated A-module, it
follows that N is a finitely generated A-module. Since M is projective, the exact
sequence

0O-N—=-F—-M-=0

is split, hence tensoring with kK = A/m gives an exact sequence
0 — N/mN — k%" — M/mM — 0.

However, we have seen in Remark C.1.3 that the elements uy,...,a, € M/mM
form a basis, so that we deduce from the above exact sequence that N/mN = 0.
Since N is finitely generated, it follows from Nakayama’s lemma that N = 0, hence
M ~ F is free. ([

REMARK C.2.2. It is a result of Kaplansky (see | ]) that if M is any
projective module over a local ring, then M is free.

C.3. Modules and localization

We collect in this section some easy properties relating statements about mod-
ules to corresponding statements about certain localizations.

ProprosiTIiON C.3.1. Given an A-module M, the following are equivalent:
i) M =0.

ii) M, =0 for all mazimal ideals p in A.

ili) My =0 for all prime ideals p in A.
)

iv) There are elements fi,..., f, € A such that (f1,...,fr) = A and My, =0
for all i.
PROOF. The implication iv)=-iii) follows from the fact that if f1,..., f, gener-

ate the unit ideal, then for every prime ideal p in A, there is i such that f; € p, in
which case M, is a localization of My,. Since the implications i)=-iv) and iii)=-ii)
are trivial, in order to complete the proof it is enough to prove the implication
ii)=-1). Let v € M and consider Ann4(u). For every maximal ideal p in A, we
have ¥ = 0 in M,, hence Anng(u) Z p. This implies that Anny(u) = A, hence

1
u=0. O

REMARK C.3.2. The same argument in the proof of the above proposition shows
that if M is an A-module and u € M, then the following assertions are equivalent:
i) u=0.

ii) ¥ =0 in M, for all maximal ideals p in A.
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iii) § = 0in M, for all prime ideals p in A.
iv) There are elements fi,..., f. € A such that (f1,...,f;) = Aand § =0
in My, for all 4.

CoOROLLARY C.3.3. If M is an A-module and M', M" are submodules of M,
then the following are equivalent:
i) M'C M.
ii) My C M,/ for all mazimal ideals p in A.
iii) M, C M, for all prime ideals p in A.
) There are elements fi1,..., fr € A such that (f1,...,f,) = A and M} C
M7 for alli.

v

PROOF. We can simply apply Proposition C.3.1 for the A-module (M'+M")/M".
([l

COROLLARY C.3.4. Given two morphisms of A-modules

M2 MY v

the following are equivalent:
i) The above sequence is exact.
ii) The induced sequence
!/ "
M, — My — M,

is exact for every prime (maximal) ideal p in A.
iii) There are elements fi,...,fr € A such that (f1,...,fr) = A and each
induced sequence

! 2
18 exact

PROOF. The exactness of the sequence in the statement is equivalent to the
two inclusions

Im(¢) C ker(¢) and ker(¢) C Im(¢).

The equivalence in the statement now follows by applying Corollary C.3.3 for the
submodules Im(¢) and ker(¢) of M (note that localization is an exact functor,
hence it commutes with taking the image and kernel). ([

COROLLARY C.3.5. Given an A-module M, the following are equivalent:

i) M is a finitely generated A-module.
ii) There are elements fi1,...,f. € A such that (f1,...,fr) = A and each
My, is a finitely generated Ay, -module.

PRrooF. For every i, we may choose finitely many wu; ; € M such that { u’IJ | j}
generate My, as an Ay-module. It follows that if IV is the A-submodule of M
generated by all u; j, then NN is finitely generated and (M/N);, = 0 for all i. We
then deduce from Proposition C.3.1 that M = N. (I
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C.4. Krull’s Intersection theorem

THEOREM C.4.1. If I is an ideal in a Noetherian ring A, M is a finitely gen-
erated A-module, and N = (,,~, I"™M, then IN = N. In particular, if (A, m) is
a local ring and I C m, then N=0.

We will deduce the theorem from the following result, known as the Artin-Rees
lemma.

LEMMA C.4.2. Let A be a Noetherian ring and I an ideal in A. If M is a
finitely generated A-module and N is a submodule of M, then for every n > 0,
there is m > 0 such that

I"MNN CI™N.

ProoFr. Consider the N-graded ring
R(AI):= @1t C A[t].
j=0
Note that if I is generated by ai,...,a,, then R(A,I) is generated over A by
ait,...,a.t. In particular, R(A,I) is a Noetherian ring.
Consider now the N-graded R(A, I)-module
T=ErMt C M[t]=M @4 Alt].
Jj=0
Since M is finitely generated over A, it is clear that T is a finitely generated
R(A, I)-module. Consider the R(A, I')-submodule of T given by
P nrm.
j=0
Since M is a finitely generated module over a Noetherian ring, it follows that M
is Noetherian, hence N is finitely generated. Choose generators of N of the form
ujtdi for some u; € NNI%M, with 1 <j<r. Given any u € N NI"™M we can

thus write i,

ut™ =" "(ajt") - (u;th)
j=1
for some a; € I%  where bj = m —d;. We thus see that if m > n+d; for all j, then
NNI™M CI™N.
This completes the proof of the lemma. (I

ProOF OF THEOREM C.4.1. Of course, we only need to show that N C IN.
We apply the lemma for the submodule N of M to get a non-negative integer m
such that ™M NN C IN. However, since N C I"™ M, this implies N C IN. The
last assertion in the theorem is a consequence of Nakayama’s lemma. 0

C.5. Discrete Valuation Rings

Recall that a discrete valuation on a field K is a surjective map v: K — ZU{co}
that satisfies the following properties:
i) v(a) = oo if and only if a = 0.
ii) v(a + b) > min{v(a),v(b)} for all a,b € K.
iii) v(ab) =v(a) +v(b) for all a,b € K.
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ProrosiTiON C.5.1. Given an integral domain R, with fraction field K, the
following are equivalent:

i) There is a discrete valuation v on K such that R = {a € K | v(a) > 0}.
il) R is a local PID.
iii) R is local and the maximal ideal is principal.

A ring that satisfies the above equivalent properties is a discrete valuation ring
(or DVR, for short).

PROOF. Let us show first that i)=-i). Let m = {a € K | v(a) > 0}. It follows
from the definition of a discrete valuation that m is an ideal in R and that for every
u € R~m, we have u~! € R. Therefore R is local and m is the maximal ideal of R.
Given any non-zero ideal I in R, consider a € I such that v(a) is minimal. Given
any other b € I, we have v(b) > v(a), hence v(ba™') > 0, and therefore b € (a).
This shows that I = (a) and therefore R is a PID.

Since the implication ii)=riii) is trivial, in order to complete the proof, it is
enough to prove iii)=-i). Suppose that (R, m) is a local domain and m = (), for
some ™ # 0. Given any non-zero element «, it follows from Theorem C.4.1 that
there is j > 0 such that a € m? ~ m/*!1. Therefore we can write o = un/, with u
invertible. Since K is the fraction ring of R, it follows that every non-zero element
B in K can be written as 8 = un? for some j € Z and v € R~ m. If we put
v(B) = j, then it is straightforward to check that v is a discrete valuation and
R={a€ K |v(a) >0} O






APPENDIX D

The norm map for finite field extensions

In this appendix we define and prove some basic properties of the norm map
for a finite field extension.

D.1. Definition and basic properties

Let K/L be a finite field extension. Given an element u € K, we define
Ngyr(u) € L as the determinant of the L-linear map

Yu: K = K, v—uv.

This is the norm of u with respect to K/L.
We collect in the first proposition some easy properties of this map.

PROPOSITION D.1.1. Let K/L be a finite field extension.
i) We have Ng,1,(0) =0 and Nk, (u) # 0 for every nonzero u € K.
ii) We have
Ngyp(uiuz) = Ngyp(u1) - Niyp(u2)  for every wui,ug € K.
iii) For every u € L, we have
NK/L(U’) = U[K:L].

PRrROOF. The first assertion in i) is clear and the second one follows from the
fact that o, is invertible for every nonzero u. The assertion in ii) follows from the
fact that

Ouy © Puy = Puju, fOr every wuj,ug € K
and the multiplicative behavior of determinants. Finally, iii) follows from the fact

that for u € L, the map ¢, is given by scalar multiplication. O

PROPOSITION D.1.2. Let K/L be a finite field extension andu € K. If f € L[x]
is the minimal polynomial of u over L and char(ip,,) is the characteristic polynomial

of u:
char(p,) = det(z - Id — ¢,,),

then char(p,) = f", where r = [K : L(u)]. In particular, we have
Nijp(u) = (=D)HE £(0)"

PROOF. Let char’(p,) be the characteristic polynomial of ¢}, = @u|rw). We
write
f=a2"4+az™  + ... +anm,
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where m = [L(u) : L]. By writing the linear map ¢/, in the basis 1,u,...,u™ ! of
L(u) over L, we see that = - Id — ¢!, is given by the matrix

T 0O ... O A

1 z ... 0 am_

A= ... ... ... . L ,

0 0O ... = as

0 0 e 1 al
whose determinant can be easily computed to be equal to f. If eq,..., e, is a basis

of K over L(u) and we write z - Id — ¢,, with respect to the basis given by u'’e;, for
0<i<m-—1and 1< j<r (suitably ordered), this is the block diagonal matrix

A0 ... 0

0 A ... 0

0 0 ... A
The first assertion in the proposition follows. The last assertion is a consequence
of the fact that the constant term in char(ip,) is (—1)5E] - det(ey,). O

D.2. A property of the norm for integrally closed domains

Recall that an integral domain A with fraction field K is integrally closed if
every element of K that is integral over A lies in A.

PRrROPOSITION D.2.1. Let B < A be an integral ring extension of integral do-
mains such that the corresponding field extension L — K between the two fraction
fields is finite. If B is integrally closed, then for every element u € A, we have
v:= Ng,r(u) € B. Moreover, if u € J, where J is an ideal in A, then v € J N B.

PROOF. Let f = 2™ +a12™ ' +... 4+ a,, € L[z] be the minimal polynomial of
wover L. Since w is integral over B, there is a monic polynomial g € Bx] such that
g(u) = 0. Note that f divides g in L[z]. Every other root of f (in some algebraic
closure K of K) is automatically a root of g, and therefore it is again integral over
B. Since the set of elements of K integral over B is a ring (see Proposition 2.2. in
Review Sheet 1), and every a; is (up to sign) a symmetric function of the roots of
f, we conclude that a; is integral over B. Finally, since B is integrally closed in L
and the q; lie in L, we conclude that the a; lie in B. By Proposition D.1.2, we can
write Ng/r(u), up to sign, as a power of a,,, hence Nk, (u) € B.

Suppose now that u € J, for an ideal J in A. Since

-1 -2
= —uw(u™ "+ au™ T+ L+ apet),

and a; € B C A for all ¢, we deduce that a,, € J. Arguing as before, we conclude



APPENDIX E

Zero-divisors in Noetherian rings

In the first section we prove a basic result about prime ideals, the prime avoid-
ance lemma. In the second section we give a direct proof for the fact that minimal
prime ideals consist of zero-divisors. Finally, in the last section we discuss more
generally zero-divisors on finitely generated modules over a Noetherian ring and
primary decomposition.

E.1. The prime avoidance lemma
The following result, known as the Prime Avoidance lemma, is often useful.

LEMMA E.1.1. Let R be a commutative ring, v a positive integer, and p1, ..., P,
ideals in R such that p; is prime for all i > 3. If I is an ideal in R such that
ICpiU...Up,, then I Cp; for somei > 1.

PRrROOF. The assertion is trivial for r = 1. We prove it by induction on r > 2.
Ifr=2and I € p; and I € po, then we may choose a € I \ p; and b € I \ pso.
Note that since I C p; Ups, we have a € py and b € p;. Note that a +b € I, hence
a+bepora+be ps In the first case, we see that a = (a+b) — b € p1, a
contradiction and in the second case, we see that b = (a+b) —a € po, leading again
to a contradiction. This settles the case r = 2.

Suppose now that r > 3 and that we know the assertion for r — 1 ideals. If
I & p; for every i, it follows from the induction hypothesis that given any i, we
have I & |J;,; pj. Let us choose

a; € I~ U pj-

J#i

By hypothesis, we must have a; € p; for all 7.
Since p, is a prime ideal and a; & p, for i # r, it follows that H1<j<T_1 a; & pr.

Consider now the element
U= a,+ H aj € 1.

1<j<r—1
By assumption, we have v € p; U ... Up,. If u € p,, since a, € p,., we deduce
that ngjgr—l a; € p,, a contradiction. On the other hand, if u € p; for some
i <r—1, since ngjgr—l a; € p;, we conclude that a, € p;, a contradiction. We
thus conclude that I C p; for some ¢, completing the proof of the induction step. [

E.2. Minimal primes and zero-divisors

Let R be a Noetherian ring. We refer to Exercise 3.1.4 for the definition of the
topological space Spec(R). Since R is a Noetherian ring, Spec(R) is a Noetherian
topological space, hence we can apply Proposition 1.3.12 to write it as the union
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of finitely many irreducible components. Since the irreducible closed subsets of
Spec(R) are those of the form V(p), with p a prime ideal in R, we conclude that
there are finitely many minimal primes p1,...p, in Spec(R). The decomposition

Spec(R) =V (p1) U... UV (py)
says that

T

rad(0) = ] pi.

i=1
ProrosiTIiON E.2.1. With the above notation, every minimal prime ideal p; is
contained in the set of zero-divisors of R.

Proor. Given a € p;, we choose for every j # ¢ an element b; € p; \ p;. If
b=1];,bj, then b & p;, but b € p; for all j # i. We thus have

ab € pyN...Np,. =rad(0),
hence (ab) = 0 for some positive integer N. If a is a non-zero-divisor, we would

get that bY = 0, hence b € p;, a contradiction. |

REMARK E.2.2. If R is reduced, then the set of zero-divisors of R is precisely
the union of the minimal prime ideals. Indeed, in this case we have (;_, p; = 0.
It follows that if ab = 0 and a ¢ p; for all ¢, then b € p; for all 4, hence b = 0. In
the next section we will discuss the set of zero-divisors for an arbitrary Noetherian
ring (and, more generally, for a finitely generated module over such a ring).

E.3. Associated primes and zero-divisors
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