SINGULAR COHOMOLOGY AS SHEAF COHOMOLOGY WITH CONSTANT COEFFICIENTS

Given a topological space X and an Abelian group A, we temporarily denote by $H^i_{\text{sing}}(X,A)$ the i^{th} singular cohomology group of X with coefficients in A. If R is a commutative ring and A is an R-module, then $H^i_{\text{sing}}(X,A)$ has a natural structure of R-module.

Our goal is to prove is to prove the following result relating sheaf cohomology and singular cohomology on "nice" topological spaces.

Theorem 0.1. If X is a paracompact, locally contractible topological space, then for every commutative ring R and every R-module A, we have a canonical isomorphism of R-modules

$$H^i(X, A) \simeq H^i_{\rm sing}(X, A).$$

Remark 0.2. Note that one can't hope to have an isomorphism as in the above theorem for all X. For example, we have $H^0(X, \mathbf{Z}) \simeq \mathbf{Z}^{(I_X)}$, where I_X is the set of connected components of X, while $H^0_{\text{sing}}(X, \mathbf{Z}) \simeq \mathbf{Z}^{(J_X)}$, where J_X is the set of path-wise connected components of X.

Remark 0.3. An obvious example of a locally contractible space is a topological manifold. Other examples are provided by CW-complexes (see [Hat02, Proposition A.4]).

The key ingredient in the proof of the above theorem is the following general proposition about certain presheaves on paracompact spaces.

Proposition 0.4. Let X be a paracompact topological space and \mathcal{F} a presheaf of Abelian groups on X that satisfies the following condition: for every open cover $X = \bigcup_{i \in I} U_i$ and for every $s_i \in \mathcal{F}(U_i)$ such that $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all i and j, there is $s \in \mathcal{F}(X)$ such that $s|_{U_i} = s_i$ for all i. If $\mathcal{F} \to \mathcal{F}^+$ is the canonical morphism to the associated sheaf, then the morphism $\mathcal{F}(X) \to \mathcal{F}^+(X)$ is surjective.

Proof. A section $s \in \mathcal{F}^+(X)$ is given by a map $s \colon X \to \sqcup_{x \in X} \mathcal{F}_x$ such that we have an open cover $X = \bigcup_{i \in I} U_i$ and sections $s_i \in \mathcal{F}(U_i)$ such that $s(x) = (s_i)_x$ for every $x \in U_i$. After passing to a refinement, we may assume that the cover is locally finite. We choose another open cover $X = \bigcup_{i \in I} U_i'$ with $\overline{U_i'} \subseteq U_i$ for all i. Note that if $x \in U_i \cap U_j$, then $(s_i)_x = (s_j)_x$, hence there is an open neighborhood $V_{i,j}(x) \subseteq U_i \cap U_j$ such that $s_i|_{V_{i,j}(x)} = s_j|_{V_{i,j}(x)}$.

Given any $x \in X$, we choose an open neighborhood V(x) of x, such that the following conditions are satisfied:

- 1) If $x \in U_i \cap U_j$, then $V(x) \subseteq V_{i,j}(x)$.
- 2) If $x \in U_i$, then $V(x) \subseteq U_i$.

¹A topological space is *locally contractible* if every point has a basis of contractible open neighborhoods.

- 3) If $x \in U'_i$, then $V(x) \subseteq U'_i$.
- 4) If $V(x) \cap \overline{U_i'} \neq \emptyset$, then $x \in \overline{U_i'}$.

This is possible since the cover given by the U_i is locally finite, hence every x lies in only finitely many U_i . Note that in this case we also have: if $x, y \in X$ are such that $V(x) \cap V(y) \neq \emptyset$, then there is i such that $V(x), V(y) \subseteq U_i$. Indeed, if $x \in U'_i$, then by 3) we have $V(x) \subseteq U'_i$; therefore $V(y) \cap \overline{U'_i} \neq \emptyset$, and thus $y \in \overline{U'_i}$ by 4). We thus get $V(y) \subseteq U_i$ by 2).

For every $x \in X$, it follows from 2) that if $x \in U_i$, then $V(x) \subseteq U_i$, and we put $\alpha^{(x)} = s_i|_{V(x)}$; this does not depend on i by 1). Moreover, we have seen that if $V(x) \cap V(y) \neq \emptyset$, then there is i such that $V(x), V(y) \subseteq U_i$, in which case it is clear that

$$\alpha^{(x)}|_{V(x)\cap V(y)} = s_i|_{V(x)\cap V(y)} = \alpha^{(y)}|_{V(x)\cap V(y)}.$$

By hypothesis, we can find $t \in \mathcal{F}(X)$ such that $t|_{V(x)} = \alpha^{(x)}$ for all $x \in X$. In particular, we have $t_x = \alpha_x^{(x)} = s(x)$ for every $x \in X$, and thus $s = \varphi(t)$.

We can now relate sheaf cohomology and singular cohomology.

Proof of Theorem 0.1. Recall that for every $p \geq 0$, a p-simplex in X is a continuous map $\Delta^p \to X$ from the standard p-dimensional simplex to X. The group of p-chains in X, denoted $C_p(X)$, is the free Abelian group on the set of p-simplices and the R-module of p-cochains with values in A, denoted $C^p(X,A)$, is equal to $\operatorname{Hom}_{\mathbf{Z}}(C_p(X),A)$. Therefore a p-cochain can be identified to a map from the set of p-simplices in X to A. For every $p \geq 0$ we have maps $\partial: C^p(X,A) \to C^{p+1}(X,A)$ induced by corresponding maps $C_{p+1}(X) \to C_p(X)$. Then $C^{\bullet}(X,A)$ is a complex and we have

(1)
$$H^p(X,A) = \mathcal{H}^p(\mathcal{C}^{\bullet}(X,A)).$$

Note that if $f: Y \to X$ is a continuous map, then we have a morphism of complexes $\mathcal{C}^{\bullet}(X, A) \to \mathcal{C}^{\bullet}(Y, A)$.

Since A is fixed, we will denote by \mathcal{C}_X^p the presheaf that associates to an open subset of X the Abelian group $\mathcal{C}^p(U,A)$, with the restriction map corresponding to $U\subseteq V$ given by the map $\mathcal{C}_X^p(V,A)\to \mathcal{C}_X^p(U,A)$ induced by the inclusion. It is clear that we have a complex \mathcal{C}_X^{\bullet} of presheaves on X. For every p, let $\mathcal{S}_X^p:=(\mathcal{C}_X^p)^+$, so that we also have a complex \mathcal{S}_X^{\bullet} of sheaves of R-modules on X. Note that we have a morphism of sheaves $A\to\mathcal{C}_X^0$ that associates to $s\in\Gamma(X,A)$, viewed as a locally constant function $X\to A$, the cocycle which associates to every 0-simplex in A, viewed as a point $x\in X$, the element $s(x)\in A$.

We claim that $A \to \mathcal{S}_X^{\bullet}$ is a resolution. Note first that if U is a contractible open subset of X, then $H^p(U,A) = 0$ for all $p \ge 1$ and $H^0(U,A) = A$, hence $\Gamma(U,A) \to \Gamma(U,\mathcal{C}_X^{\bullet})$ is a resolution. Since X is locally contractible, we conclude that for every $x \in X$, at the level of stalks we have a resolution $A \to (\mathcal{C}_X^{\bullet})_x = (\mathcal{S}_X^{\bullet})_x$. This implies our claim.

If we are in a situation in which every open subset of X is paracompact (for example, if X is a topological manifold), then it is easy to deduce from Proposition 0.4 that each sheaf \mathcal{S}_X^p is flasque. In general, we will show only that each sheaf \mathcal{S}_X^p is soft, and the

argument is a bit more involved. Note first that if Y is any subspace of X, with $i: Y \hookrightarrow X$ being the inclusion map, then for every open subset U of X, we have a canonical morphism of R-modules $\mathcal{C}^p(U,A) \to \mathcal{C}^p(U \cap Y,A)$. We thus obtain a morphism of presheaves $\mathcal{C}^p_X \to i_*\mathcal{C}^p_Y$ and thus a morphism of sheaves of R-modules $\mathcal{S}^p_X \to i_*\mathcal{S}^p_Y$. By the adjoint property of (i^{-1},i_*) , this corresponds to a morphism of sheaves $\mathcal{S}^p_X|_Y \to \mathcal{S}^p_Y$. It is clear that if we restrict this to an open subset V of X that is contained in Y, then both sides are canonically isomorphic to \mathcal{S}^p_V and the map is the identity.

We can now show that \mathcal{S}_X^p is soft. Suppose that Z is a closed subset of X and $s \in \mathcal{S}_X^p(Z)$. By assertion i) in Lemma 2.3 in the write-up about soft sheaves, there is an open subset U of X containing Z, and $s_U \in \mathcal{S}_X^p(U)$ such that $s_U|_Z = s$. Let us choose an open subset V of X, with $Z \subseteq V \subseteq \overline{V} \subseteq U$. Let $t \in \mathcal{S}_{\overline{V}}^p(\overline{V})$ be the image of $(s_U)|_{\overline{V}}$ via the morphism $\mathcal{S}_X^p|_{\overline{V}} \to \mathcal{S}_{\overline{V}}^p$. Since X is paracompact, \overline{V} is paracompact, too. It is straightforward to see that $\mathcal{C}_{\overline{V}}^p$ satisfies the hypothesis of Proposition 0.4: given an open cover $\overline{V} = \bigcup_{i \in I} U_i$ and cochains $\alpha_i \in \mathcal{S}_{\overline{V}}^p(U_i)$ such that $\alpha_i|_{U_i \cap U_j} = \alpha_j|_{U_i \cap U_j}$ for all i and j, we define $\alpha \in \mathcal{S}_{\overline{V}}^p(\overline{V})$ such that for a p-simplex σ in \overline{V} , we have $\alpha(\sigma) = \alpha_i(\sigma)$ if the image of σ lies in some U_i , and 0 otherwise; it is clear that α is well-defined and $\alpha|_{U_i} = \alpha_i$ for all i. We conclude, using the proposition, that t is the image of some $t' \in \mathcal{C}_{\overline{V}}^p(\overline{V})$. Since the map $\mathcal{C}_X^p(X) \to \mathcal{C}_{\overline{V}}^p(\overline{V})$ is clearly surjective, there is $s' \in \mathcal{C}_X^p(X)$ that maps to t'. Since $t|_V = s_U|_V$, it is straightforward to see that the image of s' in $\mathcal{S}_X^p(X)$ restricts to $(s_U)|_V \in \mathcal{S}_X^p(V)$, and thus farther to $s \in \mathcal{S}_X^p(Z)$. This shows that \mathcal{S}_X^p is soft.

We thus have a soft resolution $A \to \mathcal{S}_X^{\bullet}$ of sheaves of R-modules, hence Proposition 2.6 in the write-up about soft sheaves gives a canonical isomorphism

(2)
$$H^p(X,A) \simeq \mathcal{H}^p(\mathcal{S}_X^{\bullet}(X)).$$

Applying as above Proposition 0.4 for the sheaves \mathcal{C}_X^p , we see that for every p, we have a surjection

$$\mathcal{C}_X^p(X) \to \mathcal{S}_X^p(X).$$

Let V^p be the kernel. This consists of the p-cochains β with the property that there is some open cover $X = \bigcup_{i \in I} U_i$ such that β vanishes on each p-simplex whose image is contained in some of the U_i . By considering the long exact sequence associated to the exact sequence of complexes

$$0 \to V^{\bullet} \to \mathcal{C}_X^{\bullet}(X) \to \mathcal{S}_X^{\bullet}(X) \to 0,$$

we see that if we show that $\mathcal{H}^p(V^{\bullet}) = 0$ for all p, then we are done by the isomorphisms (1) and (2),

By definition, V^{\bullet} is the filtering direct limit of the complexes $V^{\bullet}(\mathcal{U})$, where $\mathcal{U} = (U_i)_{i \in I}$ is an open cover of X and where $V^p(\mathcal{U})$ consists of the p-cochains that vanish on \mathcal{U} small simplices, that is, p-simplexes in X whose image is contained in some of the U_i . Since filtering direct limits form an exact functor, it is enough to show that $\mathcal{H}^p(V^{\bullet}(\mathcal{U})) = 0$ for all \mathcal{U} and all p.

If $\mathcal{C}_p^{\mathcal{U}}(X)$ is the subgroup of $\mathcal{C}_p(X)$ generated by simplices whose image is contained in some open subset in \mathcal{U} , then $\mathcal{C}_{\bullet}^{\mathcal{U}}(X)$ is a subcomplex of $\mathcal{C}_{\bullet}(X)$. A basic result, proved

4 SINGULAR COHOMOLOGY AS SHEAF COHOMOLOGY WITH CONSTANT COEFFICIENTS

using barycentric subdivisions, says that the inclusion

$$\mathcal{C}^{\mathcal{U}}_{\bullet}(X) \hookrightarrow \mathcal{C}_{\bullet}(X)$$

is a homotopy equivalence 2 (see [Hat02, Proposition 2.21]). In this case, applying $\operatorname{Hom}_{\mathbf{Z}}(-,A)$ gives a homotopy equivalence

$$u \colon \mathcal{C}^{\bullet}(X, A) \to \operatorname{Hom}_{\mathbf{Z}}(\mathcal{C}^{\mathcal{U}}_{\bullet}, A),$$

which thus induces isomorphisms in cohomology. On the other hand, u is a surjective morphism of complexes, whose kernel is equal to $V^{\bullet}(\mathcal{U})$. By considering the corresponding long exact sequence in cohomology, we conclude that $\mathcal{H}^p(V^{\bullet}(\mathcal{U})) = 0$ for all p. This completes the proof of the theorem.

References

[Hat02] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. 1, 4

²This means that there is a morphism of complexes in the opposite direction such that both compositions are homotopic to the respective identity maps.