Serre’s normality criterion

This write-up supplements the characterization of normal domains that we gave in
class, now that we also discussed the notion of depth. The general characterization of
normal rings is the content of a criterion due to Serre. We first introduce Serre’s conditions
(R;) and (S;) and then prove the normality criterion.

1. SERRE’S CONDITIONS

Definition 1.1. Given a Noetherian ring R, we say that R satisfies Serre’s condition (R;)
if for every prime ideal p in R, with codim(R,) < i, the local ring R, is regular.

Example 1.2. If X is an affine variety and A = O(X), then A satisfies property R; if
and only if codimx (Xging) > @ + 1.

Definition 1.3. We say that a Noetherian ring R satisfies Serre’s condition (.S;) if for
every prime ideal p in R, we have

depth(R,) > min{dim(R,),}.

Example 1.4. A Noetherian ring R satisfies (S7) if and only if every associated prime of
R is minimal. It satisfies both (Ry) and (.S;) if and only if for every associated prime p of
R, we have pR, = 0. It is clear that this holds if R is reduced. The converse also holds:
if 0 =¢qyN...Ng, is a minimal primary decomposition, then conditions (Ry) and (5)
imply that if p; = rad(q;), then each p; is a minimal prime ideal and q;R,, C p;R,, = 0;
since q; is p;-primary, it follows that q; = p; for all ¢, hence R is reduced.

2. THE NORMALITY CRITERION

As in the geometric setting, we say that an arbitrary Noetherian ring R is normal if
R, is an integrally closed domain for every prime ideal p in R (or, equivalently, for every
maximal ideal p in R).

Remark 2.1. We note that a normal ring is isomorphic to a product of normal domains.
Indeed, if R is normal and py, ..., p, are the minimal prime ideals of R, then p; +p; = R
for every i # j (this is due to the fact that R, is a domain for every maximal ideal p
in R). Moreover, since al localizations of R are reduced, it follows that R is reduced,
hence p; N...Np, = 0. We thus conclude from the Chinese Remainder theorem that the
canonical morphism

R — R/py x ... X R/p,

is an isomorphism. Furthermore, for every prime ideal q containing p;, the localization
R, is a normal domain, hence (R/p;)q = R, is normal. We thus deduce that each R/p; is
a normal domain.

Theorem 2.2 (Serre). A Noetherian ring R is normal if and only if it satisfies conditions
(Ry) and (S2).
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Proof. After localizing, we may assume that (R, m) is a local ring. It is straightforward
to see that if R is a domain, then having (R;) + (S2) is just a reformulation of conditions
i) + ii) in Proposition E.5.1 in the notes. In particular, the “only if” assertion in the
theorem is clear. For the “if” part, the subtlety is that we don’t know a priori that R is
a domain.

Suppose now that R satisfies conditions (R;) and (S2). In particular, it satisfies
(Ro) + (S1), and thus R is reduced by Example 1.4. Let py,...,p, be the minimal prime
ideals of R, and let S = R~ |J;_, pi be the set of non-zero-divisors in R. Consider the in-
clusion map ¢: R — K = S~'R. The Chinese Remainder theorem gives an isomorphism
K ~ I[,_, K;, where K; = Frac(R/p;) = R,,. If we can show that r = 1, then R is a
domain, in which case we are done. We follow the proof of Proposition E.5.1 in the notes
to show that R is integrally closed in K. If we know this, and e; € K is the idempotent
corresponding to 1 € Kj, then e = ¢; implies that e; lies in R. Since R is local, the only
idempotents it has are 0 and 1, and these are mapped by ¢ to 0 and 1, respectively, in
K. We thus see that r = 1.

Suppose that % € K is a non-zero element that is integral over R (note that a is a
non-zero-divisor). Consider a minimal primary decomposition

(@) =q1N...Ngs.

If §; = rad(q;), then §; € Ass(R/(a)) by Remark E.3.13 in the notes. Condition (S5)
implies that codim(q;) = 1, and condition (R;) implies that Ry, is a DVR. Let j be fixed
and consider i such that p; C ¢g;. Since g is integral over R, its image in K is integral
over R, and since Rz, C K; is a DVR, hence integrally closed, we conclude that there is
s € R~ q; such that sb € (a). Since q; is a primary ideal, it follows that b € q;. Since
this holds for every j, we conclude that b € (a) and thus g € R. This completes the proof
of the theorem. O



