
Serre’s normality criterion

This write-up supplements the characterization of normal domains that we gave in
class, now that we also discussed the notion of depth. The general characterization of
normal rings is the content of a criterion due to Serre. We first introduce Serre’s conditions
(Ri) and (Si) and then prove the normality criterion.

1. Serre’s conditions

Definition 1.1. Given a Noetherian ring R, we say that R satisfies Serre’s condition (Ri)
if for every prime ideal p in R, with codim(Rp) ≤ i, the local ring Rp is regular.

Example 1.2. If X is an affine variety and A = O(X), then A satisfies property Ri if
and only if codimX(Xsing) ≥ i+ 1.

Definition 1.3. We say that a Noetherian ring R satisfies Serre’s condition (Si) if for
every prime ideal p in R, we have

depth(Rp) ≥ min{dim(Rp), i}.

Example 1.4. A Noetherian ring R satisfies (S1) if and only if every associated prime of
R is minimal. It satisfies both (R0) and (S1) if and only if for every associated prime p of
R, we have pRp = 0. It is clear that this holds if R is reduced. The converse also holds:
if 0 = q1 ∩ . . . ∩ qr is a minimal primary decomposition, then conditions (R0) and (S1)
imply that if pi = rad(qi), then each pi is a minimal prime ideal and qiRpi ⊆ piRpi = 0;
since qi is pi-primary, it follows that qi = pi for all i, hence R is reduced.

2. The normality criterion

As in the geometric setting, we say that an arbitrary Noetherian ring R is normal if
Rp is an integrally closed domain for every prime ideal p in R (or, equivalently, for every
maximal ideal p in R).

Remark 2.1. We note that a normal ring is isomorphic to a product of normal domains.
Indeed, if R is normal and p1, . . . , pr are the minimal prime ideals of R, then pi + pj = R
for every i 6= j (this is due to the fact that Rp is a domain for every maximal ideal p
in R). Moreover, since al localizations of R are reduced, it follows that R is reduced,
hence p1 ∩ . . .∩ pr = 0. We thus conclude from the Chinese Remainder theorem that the
canonical morphism

R→ R/p1 × . . .×R/pr
is an isomorphism. Furthermore, for every prime ideal q containing pi, the localization
Rq is a normal domain, hence (R/pi)q = Rq is normal. We thus deduce that each R/pi is
a normal domain.

Theorem 2.2 (Serre). A Noetherian ring R is normal if and only if it satisfies conditions
(R1) and (S2).

1



2

Proof. After localizing, we may assume that (R,m) is a local ring. It is straightforward
to see that if R is a domain, then having (R1) + (S2) is just a reformulation of conditions
i) + ii) in Proposition E.5.1 in the notes. In particular, the “only if” assertion in the
theorem is clear. For the “if” part, the subtlety is that we don’t know a priori that R is
a domain.

Suppose now that R satisfies conditions (R1) and (S2). In particular, it satisfies
(R0) + (S1), and thus R is reduced by Example 1.4. Let p1, . . . , pr be the minimal prime
ideals of R, and let S = Rr

⋃r
i=1 pi be the set of non-zero-divisors in R. Consider the in-

clusion map φ : R ↪→ K = S−1R. The Chinese Remainder theorem gives an isomorphism
K '

∏r
i=1Ki, where Ki = Frac(R/pi) = Rpi . If we can show that r = 1, then R is a

domain, in which case we are done. We follow the proof of Proposition E.5.1 in the notes
to show that R is integrally closed in K. If we know this, and ei ∈ K is the idempotent
corresponding to 1 ∈ Ki, then e2i = ei implies that ei lies in R. Since R is local, the only
idempotents it has are 0 and 1, and these are mapped by φ to 0 and 1, respectively, in
K. We thus see that r = 1.

Suppose that b
a
∈ K is a non-zero element that is integral over R (note that a is a

non-zero-divisor). Consider a minimal primary decomposition

(a) = q1 ∩ . . . ∩ qs.
If q̃i = rad(qi), then q̃i ∈ Ass

(
R/(a)

)
by Remark E.3.13 in the notes. Condition (S2)

implies that codim(q̃j) = 1, and condition (R1) implies that Rq̃j is a DVR. Let j be fixed

and consider i such that pi ⊆ q̃j. Since b
a

is integral over R, its image in Ki is integral
over R, and since Rq̃j ⊆ Ki is a DVR, hence integrally closed, we conclude that there is
s ∈ R r q̃j such that sb ∈ (a). Since qj is a primary ideal, it follows that b ∈ qj. Since
this holds for every j, we conclude that b ∈ (a) and thus b

a
∈ R. This completes the proof

of the theorem. �


