
Review sheet 3: Modules of finite length

We review the definition of modules of finite length and their characterization over
Noetherian rings.

Let R be a commutative ring. Recall that an R-module M is simple if M 6= 0 and
for every submodule M ′ of M , we have either M ′ = 0 or M ′ = M . It is straightforward
to see that a module M is simple if and only if it is isomorphic to A/m, for some maximal
ideal m of R.

Definition 0.1. An R-module M is of finite length if it has a composition series, that is,
a sequence of submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M

such that Mi/Mi−1 is a simple module for 1 ≤ i ≤ r. It is a consequence of the Jordan-
Hölder theorem that if M satisfies this property, then the quotients Mi/Mi−1 are inde-
pendent of the choice of composition series, up to reordering. In particular, the length r
only depends on M ; this is the length of M , denoted `(M) (or `R(M) if the ring is not
clear from the context).

Example 0.2. If R is a DVR with discrete valuation v, then for every a ∈ R, we have
`
(
R/(a)

)
= v(a).

We begin with some easy properties regarding finite length modules.

Proposition 0.3. Given an exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

the module M has finite length if and only if both M ′ and M ′′ have finite length, and in
this case

`(M) = `(M ′) + `(M ′′).

Proof. It is clear that if M ′ and M ′′ have finite length, then we obtain a composition
series for M by concatenating the composition series for M ′ and M ′′. This implies that
`(M) = `(M ′) + `(M ′′). The converse follows from the fact, easy to check, that given a
composition series for M , by intersecting each submodule with M ′ (respectively, by taking
the image of each submodule in M ′′) we obtain after removing repeated submodules a
composition series for M ′ (respectively, M ′′). �

Remark 0.4. Every R-module of finite length is Artinian: if

M = M0 ) M1 ) . . .

is a strictly decreasing sequence of submodules, then it follows from the above proposition
that we have a strictly decreasing sequence of non-negative integers

`(M0) > `(M1) > . . . ,

a contradiction.
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Proposition 0.5. If R is a Noetherian ring, then an R-module M has finite length if and
only if M is finitely generated and dim

(
R/AnnR(M)

)
= 0.

Proof. Suppose first that M has a composition series

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M,

with Mi/Mi−1 ' R/mi for 1 ≤ i ≤ r, where each mi is a maximal ideal of R. Since each
Mi/Mi−1 is finitely generated, we conclude that M is finitely generated. Moreover, we
have

∏r
i=1 mi ⊆ AnnR(M), hence the only primes containing Ann(R) are the mi. This

implies that dim
(
R/AnnR(M)

)
= 0.

Conversely, if M is finitely generated over a Noetherian ring, then it follows from
Corollary 1.4 in Review Sheet 1 that we have submodules

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M,

such that Mi/Mi−1 ' A/pi for 1 ≤ i ≤ r, where each pi is a prime ideal in R. If we have
dim

(
R/AnnR(M)

)
= 0, then every prime ideal in R/AnnR(M) is a maximal ideal. Since

we clearly have AnnR(M) ⊆ pi for all i, we conclude that each quotient Mi/Mi−1 is a
simple module, hence M has finite length. �

Example 0.6. If (R,m) is a Noetherian local ring, then an R-module M has finite length
if and only if it is finitely generated and mr ·M = 0 for some r ≥ 1.

Example 0.7. If k is a field and A is a finite k-algebra, then A is clearly Noetherian and
dim(A) = 0 (if p is a prime ideal in A, then A/p is a domain which is a finite k-algebra,
hence it is a field). In particular, we see that A has finite length as a module over itself.

We also note that in this case A is a product of local, finite k-algebras. Indeed,
given a minimal primary decomposition

(0) = q1 ∩ . . . ∩ qr,

by the Chinese Remainder theorem we have

R '
r∏

i=1

R/qi

(note that the ideals rad(qi) are mutually distinct maximal ideals, hence qi + qj = R
whenever i 6= j).


