
Review sheet 2: Completion

In these we review the basic results about completion of rings and modules. For
a more general treatment, we refer to [Mat89, §8]. By way of motivation, let us recall
the construction of the ring of p-adic integers, where p is a positive prime integer. One
defines a topology on Z such that two integers are “close” if their difference is divisible
by a large power of p; in other words, a basis of neighborhoods of m ∈ Z is given by
(m+pnZ)n≥1. The topology comes from a metric space structure, but the choice of metric
is not important. The ring of p-adic integers Zp is the completion of Z with respect to this
topology. It can be described as the quotient of the set of Cauchy sequences in Z modulo
a suitable equivalence relation; however, algebraically it is more convenient to describe it
as

Zp = lim←−
n≥1

Z/pnZ.

In what follows we consider a similar construction for rather general rings and modules.

1. Completion with respect to an ideal

In what follows we fix a Noetherian ring A and let I be a fixed ideal in A. Note
that for every n ≥ 1 we have a canonical surjective homomorphism A/In+1 → A/In.
By taking the inverse limit of these homomorphisms we obtain the completion of A with
respect to I:

Â := lim←−
n≥1

A/In.

This is a ring and we have a canonical ring homomorphism ψA : A→ Â that maps a ∈ A
to (amod In)n≥1.

Suppose now that M is an A-module. For every n ≥ 1, we have a surjective
morphism of A-modules M/In+1M → M/InM . The completion of M with respect to I
is

M̂ := lim←−
n≥1

M/InM.

This is an A-module and we have a canonical morphism of A-modules ψM : M → M̂ that
maps u ∈M to (umod InM)n≥1. In fact, since each M/InM is an A/In-module, we have

a natural Â-module structure on M̂ that induces, by restriction of scalars via ψA, the

original A-module structure on M̂ .

If φ : M → N is a morphism of A-modules, we obtain an induced morphism of

Â-modules M̂ → N̂ . This gives a functor from A-modules to Â-modules.

Example 1.1. If A = R[x1, . . . , xn] for some Noetherian ring R, and I = (x1, . . . , xn),

then Â is isomorphic, as an A-algebra, to R[[x1, . . . , xn]].
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Remark 1.2. If we have a sequence of submodules (Mn)n≥1 of M such that Mn+1 ⊆Mn

for every n ≥ 1, then we have canonical morphisms M/Mn+1 → M/Mn and we can
consider lim←−

n≥1
M/Mn. If InM ⊆Mn for every n, then we have an induced morphism

(1) M̂ → lim←−
n≥1

M/Mn.

If, in addition, for every n we can find ` such that M` ⊆ InM , then (1) is an isomorphism
(this follows easily using the fact that the inverse limit does not change if we pass to a
final subset).

In particular, we see that the completion of M with respect to two ideals I and J
are canonically isomorphic if rad(I) = rad(J).

Remark 1.3. If there is n such that InM = 0, then it is clear that the morphism M → M̂
is an isomorphism.

Remark 1.4. By definition, the kernel of the morphism ψM : M → M̂ is equal to⋂
n≥1 I

nM = 0. We thus see that if (A,m) is a local Noetherian ring, I ⊆ m, and M
is a finitely generated A-module, then ψM is injective by Krull’s Intersection theorem.

Remark 1.5. If φ : A→ B is a ring homomorphism and I ⊆ A and J ⊆ B are ideals such

that I ·B ⊆ J , then we have a ring homomorphism φ̂ : Â→ B̂ such that φ̂ ◦ ψA = ψB ◦ φ
(where the completions of A and B are taken with respect to I and J , respectively).
Indeed, for every n, we have an induced homomorphism A/In → B/Jn, and by taking

the inverse limit over n, we get the morphism φ̂ that satisfies the required commutativity
condition.

2. Basic properties of completion

We now derive some properties of Â and of the completion functor. We assume that
A is a Noetherian ring and I is an ideal in A.

Proposition 2.1. Given a short exact sequence of finitely generated A-modules

0 −→M ′ α−→M
β−→M ′′ −→ 0,

the induced sequence

0 −→ M̂ ′ −→ M̂ −→ M̂ ′′ −→ 0

is exact, too.

Proof. For every n ≥ 1, we have an induced exact sequence of A/In-modules

0→M ′/(InM ∩M ′)→M/InM →M ′′/InM ′′ → 0.

A well-known (and easy to check) property of inverse limits implies that by passing to
inverse limit we obtain an exact sequence

0→ lim←−
n≥1

M ′/(InM ∩M ′)→ M̂ → M̂ ′′.
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Note first that we have a canonical morphism

M̂ ′ = lim←−
n≥1

M ′/InM ′ → lim←−
n≥1

M ′/(InM ∩M ′)

and we deduce from the Artin-Rees lemma and Remark 1.2 that this is an isomorphism.

In order to complete the proof it is thus enough to show that the morphism M̂ → M̂ ′′

is surjective. Consider u ∈ M̂ ′′ given by (un mod InM)n≥1, where the elements un ∈ M ′′

are such that un − un+1 ∈ InM ′′. We construct recursively elements vn ∈ M such that
the following hold for all n ≥ 1:

i) un = β(vn) and
ii) vn − vn+1 ∈ InM .

We begin by choosing v1 ∈M such that β(v1) = u1 (this is possible since β is surjective).
Suppose now that v1, . . . , vr are chosen such that i) holds for 1 ≤ n ≤ r and ii) holds for
1 ≤ n ≤ r−1. Since ur−ur+1 ∈ IrM ′′, we can write ur−ur+1 =

∑s
j=1 ajwj, with aj ∈ Ir

and wj ∈M ′′. We choose w̃j ∈M such that β(w̃j) = wj and put vr+1 = vr −
∑s

j=1 ajw̃j.

It is then clear that i) holds also for n = r+ 1 and ii) holds also for n = r. By ii), we can

thus consider v = (vn mod InM)n≥1 ∈ M̂ and it follows from i) that v maps to u ∈ M̂ ′′.
This completes the proof of the proposition. �

Corollary 2.2. For every finitely generated A-module M , the canonical morphism

Â⊗AM → M̂

induced by ψM is an isomorphism. In particular, M̂ is a finitely generated Â-module.

Proof. The assertion is clear if M is a finitely generated, free A-module. For the general
case, consider an exact sequence of A-modules

F1 → F0 →M → 0,

where F1 and F0 are finitely generated, free modules. We then obtain a commutative
diagram

Â⊗A F1

��

// Â⊗A F0

��

// Â⊗AM

��

// 0

F̂1
// F̂0

// M̂ // 0.

The top row is exact by right-exactness of the tensor product, while the bottom row is
exact by the proposition. Since the first and the second vertical maps are isomorphisms,
it follows that the third one is an isomorphism as well. �

Corollary 2.3. The A-algebra Â is flat.

Proof. We need to show that for every injective morphism of A-modules φ : M ′ ↪→M , the
induced morphism

1Â ⊗ φ : Â⊗AM ′ → Â⊗AM
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is injective. We can write M = lim−→
i∈I

Mi, where the Mi are the finitely generated submodules

of M and similarly M ′ = lim−→
i∈I

φ−1(Mi). Since the tensor product commutes with direct

limits and a filtered direct limit of injective morphisms is injective, we see that it is enough
to consider the case when M (and thus also M ′) is finitely generated. In this case, the
assertion follows by combining the proposition and the previous corollary. �

Corollary 2.4. For every n ≥ 1 and every finitely generated A-module M , we have

ÎnM = InM̂ = ÎnM̂.

Moreover, the morphism M → M̂ induces an isomorphism M/InM → M̂/InM̂ .

Proof. Since Â is flat over A, the canonical morphism Â⊗A In → Â is injective; its image

is InÂ = (IÂ)n. Moreover, by Proposition 2.1 and Corollary 2.2, this is also the image of

the morphism În → Â, which is injective. By taking n = 1, we see that IÂ = Î, and thus

În = InÂ = În.

Given the finitely generated A-module M , by applying Proposition 2.1 to the exact
sequence

0→ InM →M →M/InM → 0,

we obtain an exact sequence

0→ ÎnM → M̂
p→ M̂/InM → 0.

Note also that we have an isomorphism

M/InM ' M̂/InM

such that p gets identified to the canonical projection M̂ → M/InM that comes from
the definition of the projective limit (see Remark 1.3). On one hand, it follows from
Corollary 2.2 that

ÎnM = Im(Â⊗A InM → Â⊗AM = M̂) = InM̂.

On the other hand, it follows from what we have already proved that

InM̂ = (InÂ) · M̂ = ÎnM̂.

This completes the proof of the proposition. �

Given a ring A, an ideal I in A, and an A-module M , we say that M is complete

(with respect to I) if the canonical morphism M → M̂ is an isomorphism. This applies,
in particular, in the case M = A.

Example 2.5. Given a Noetherian ring A and a finitely generated A-module M , it

follows from Corollary 2.4 that M̂ is complete as an A-module (with respect to I) and as

an Â-module (with respect to Î = IÂ).
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Remark 2.6. Let φ : A → B be a ring homomorphism and I ⊆ A and J ⊆ B be ideals

such that I · B ⊆ J . If ψA : A → Â is the morphism to the completion (with respect to
I) and if B is complete (with respect to J), then there is a unique ring homomorphism

ρ : Â→ B such that ρ ◦ ψA = φ.

Indeed, recall from Remark 1.5 that we have a homomorphism φ̂ : Â→ B̂ such that

φ̂ ◦ ψA = ψB ◦ φ. Since ψB is an isomorphism by assumption, we may take ρ = ψ−1B ◦ φ̂
and this clearly satisfies the required condition.

In order to prove uniqueness, note that if φ̂ is as in the statement, then φ̂ induces for

every n a morphism φn : Â/In · Â → B/JnB, whose composition with the isomorphism

A/In → Â/InÂ is the morphism A/In → B/Jn induced by φ. Since we have ψB ◦ φ̂ =

lim←−
n≥1

φn, we obtain the uniqueness of φ̂.

Remark 2.7. If A is Noetherian and I is an ideal in A, then the completion Â is again
Noetherian. We do not use this property, so we refer to [Mat89, Theorem 8.12] for the
proof.

Remark 2.8. An important case is that when (A,m) is a local Noetherian ring and

I = m. Note that in this case the morphism ψA : A → Â is injective (see Remark 1.4).

Note also that mÂ is a maximal ideal, with Â/mÂ ' A/m (see Corollary 2.4).

In fact, mÂ is the unique maximal ideal of Â. In order to see this, it is enough

to show that if u ∈ Â r mÂ, then 1 − u is invertible. This follows from the fact that

Â ' lim←−
n≥1

Â/(mÂ)n and if we put an =
∑n−1

j=0 u
j for every n ≥ 1, then the element in Â

corresponding to (an)n≥1 is an inverse of 1− u.

Remark 2.9. We did not mention the topology on the ring A associated to the ideal I,
since we do not need it. However, for the interested reader, we mention the notions of
Cauchy sequences and convergent sequences that come out of the topological consider-
ations. Given a ring A, the ideal I in A, and an A-module M , we say that a sequence
(xn)n≥1 of elements in M is a Cauchy sequence if for every m, there is N such that
xn − xn+1 ∈ ImM for all n ≥ N . The sequence has a limit x ∈M if for every m, there is
N such that xn − x ∈ ImM for all n ≥ N . One can show that M is complete if and only
if every Cauchy sequence in M has a limit and this limit is unique. We leave the proof as
an exercise for the reader.
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