## Review sheet 1: Associated primes and primary decomposition

We give a brief treatment of associated primes and primary decomposition.

## 1. Associated primes and zero-divisors

When dealing with associated primes, it is convenient to work more generally with modules, instead of just with the ring itself. Let us fix a Noetherian ring R.

**Definition 1.1.** If M is a finitely generated R-module, an associated prime of M is a prime ideal  $\mathfrak{p}$  in R such that

$$\mathfrak{p} = \operatorname{Ann}_R(u)$$
 for some  $u \in M, u \neq 0$ .

The set of associated primes of M is denoted  $\mathrm{Ass}(M)$  (we write  $\mathrm{Ass}_R(M)$  if the ring is not understood from the context).

Recall that if M is an R-module, an element  $a \in R$  is a zero-divisor of M if au = 0 for some  $u \in M \setminus \{0\}$ ; otherwise a is a non-zero-divisor of M. Note that for M = R, we recover the usual notion of zero-divisor in R. The third assertion in the next proposition is the main reason why associated primes are important:

**Proposition 1.2.** If M is a finitely generated R-module, then the following hold:

- i) The set Ass(M) is finite.
- ii) If  $M \neq 0$ , then Ass(M) is non-empty.
- iii) The set of zero-divisors of M is equal to

$$\bigcup_{\mathfrak{p}\in \mathrm{Ass}(M)}\mathfrak{p}$$

We begin with the following easy lemma:

**Lemma 1.3.** Given an exact sequence of R-modules

$$0 \to M' \to M \to M'' \to 0$$
,

we have

$$\operatorname{Ass}(M') \subseteq \operatorname{Ass}(M) \subseteq \operatorname{Ass}(M') \cup \operatorname{Ass}(M'').$$

Proof. The first inclusion is obvious, hence we only prove the second one. Suppose that  $\mathfrak{p} \in \mathrm{Ass}(M)$ , and let us write  $\mathfrak{p} = \mathrm{Ann}_R(u)$ , for some nonzero  $u \in M$ . If  $u \in M'$ , then clearly  $\mathfrak{p} \in \mathrm{Ass}(M')$ . Otherwise, the image  $\overline{u}$  of u in M'' is non-zero and it is clear that  $\mathfrak{p} \subseteq \mathrm{Ann}_R(\overline{u})$ . If this is an equality, then  $\mathfrak{p} \in \mathrm{Ass}_R(M'')$ , hence let us assume that there is  $a \in \mathrm{Ann}_R(\overline{u}) \setminus \mathfrak{p}$ . In this case  $au \in M' \setminus \{0\}$ , and the fact that  $\mathfrak{p}$  is prime implies that the obvious inclusion  $\mathrm{Ann}_R(u) \subseteq \mathrm{Ann}_R(au)$  is an equality. Therefore  $\mathfrak{p} \in \mathrm{Ass}(M')$ .  $\square$ 

Proof of Proposition 1.2. We may assume that M is nonzero, as otherwise all assertions are trivial. Consider the set  $\mathcal{P}$  consisting of the ideals of R of the form  $\operatorname{Ann}_R(u)$ , for some  $u \in M \setminus \{0\}$ . Since R is Noetherian, there is a maximal element  $\mathfrak{p} \in \mathcal{P}$ . We show that in this case  $\mathfrak{p}$  is a prime ideal, so that  $\mathfrak{p} \in \operatorname{Ass}(M)$ .

By assumption, we can write  $\mathfrak{p} = \operatorname{Ann}_R(u)$ , for some  $u \in M \setminus \{0\}$ . Since  $u \neq 0$ , we have  $\mathfrak{p} \neq R$ . If  $b \in R \setminus \mathfrak{p}$ , then  $bu \neq 0$  and we clearly have

$$\operatorname{Ann}_R(u) \subseteq \operatorname{Ann}_R(bu).$$

By the maximality of  $\mathfrak{p}$ , we conclude that this is an equality, hence for every  $a \in R$  such that  $ab \in \mathfrak{p}$ , we have  $a \in \mathfrak{p}$ .

In particular, this proves ii). We thus know that if M is non-zero, then we can find  $u \in M \setminus \{0\}$  such that  $\operatorname{Ann}_R(u) = \mathfrak{p}_1$  is a prime ideal. The map  $R \to M$ ,  $a \to au$  induces thus an injection  $R/\mathfrak{p} \hookrightarrow M$ , so that we have a short exact sequence

$$0 \to M_1 \to M \to M/M_1 \to 0$$
,

with  $M_1 \simeq R/\mathfrak{p}_1$ . Note now that since  $\mathfrak{p}_1$  is a prime ideal in R, then we clearly have  $\mathrm{Ass}(R/\mathfrak{p}_1) = \{\mathfrak{p}_1\}$ , and the lemma implies

$$\operatorname{Ass}(M) \subseteq \operatorname{Ass}(M/M_1) \cup \{\mathfrak{p}\}.$$

Therefore in order to prove that  $\operatorname{Ass}(M)$  is finite it is enough to show that  $\operatorname{Ass}(M/M_1)$  is finite. If  $M_1 \neq 0$ , we can repeat this argument and find  $M_1 \subseteq M_2$  such that  $M_2/M_1 \simeq R/\mathfrak{p}_2$ , for some prime ideal  $\mathfrak{p}_2$  in R. Since M is a Noetherian module, this process must terminate, hence after finitely many steps we conclude that  $\operatorname{Ass}_R(M)$  is finite.

We now prove the assertion in iii). It is clear from definition that for every  $\mathfrak{p} \in \mathrm{Ass}(M)$ , the ideal  $\mathfrak{p}$  is contained in the set of zero-divisors of M. On the other hand, if  $a \in R$  is a zero-divisor, then  $a \in I$ , for some  $I \in \mathcal{P}$ . If we choose a maximal  $\mathfrak{p}$  in  $\mathcal{P}$  that contains I, then we have seen that  $\mathfrak{p} \in \mathrm{Ass}_R(M)$ , hence a lies in the union of the associated primes of M. This completes the proof of the proposition.  $\square$ 

We record in the next corollary a useful assertion that we obtained in the above proof.

**Corollary 1.4.** If M is a finitely generated R-module, then there is a sequence of sub-modules

$$0 = M_0 \subset M_1 \subset \ldots \subset M_r = M$$

such that  $M_i/M_{i-1} \simeq R/\mathfrak{p}_i$  for  $1 \leq i \leq r$ , where each  $\mathfrak{p}_i$  is a prime deal in R.

**Remark 1.5.** The results in Proposition 1.2 are often applied as follows: if an ideal I in R has no non-zero-divisors on M, then it is contained in the union of the associated primes. Since there are finitely such prime ideals, the Prime Avoidance lemma implies that I is contained in one of them. Therefore there is  $u \in M$  non-zero such that  $I \cdot u = 0$ .

**Remark 1.6.** If M is a finitely generated R-module, then for every multiplicative system S in R, if we consider the finitely generated  $S^{-1}R$ -module  $S^{-1}M$ , we have

$$\operatorname{Ass}_{S^{-1}R}(S^{-1}M) = \{ S^{-1}\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Ass}(M), S \cap \mathfrak{p} \neq 0 \}.$$

Indeed, if  $\mathfrak{p} = \operatorname{Ann}_R(u)$  and  $\mathfrak{p} \cap S = \emptyset$ , then  $S^{-1}\mathfrak{p} = \operatorname{Ann}_{S^{-1}R}\left(\frac{u}{1}\right)$ . Conversely, if  $S^{-1}\mathfrak{p} = \operatorname{Ann}_{S^{-1}R}\left(\frac{v}{s}\right)$ , for some prime ideal  $\mathfrak{p}$  in R, with  $\mathfrak{p} \cap S = \emptyset$ , then it is easy to see that  $\mathfrak{p} = \operatorname{Ann}_R(v)$ .

**Remark 1.7.** Let M be a finitely generated R-module and  $I = \operatorname{Ann}_R(M)$ . It is clear from definition that if  $\mathfrak{p} \in \operatorname{Ass}(M)$ , then  $I \subseteq \mathfrak{p}$ . Moreover, we have

$$\operatorname{Ass}_{R/I}(M) = \{ \mathfrak{p}/I \mid \mathfrak{p} \in \operatorname{Ass}_R(M) \}.$$

We recall the easy fact that since M is a finitely generated R-module, for every prime ideal  $\mathfrak{p}$  in R, we have  $M_{\mathfrak{p}} \neq 0$  if and only if  $I \subseteq \mathfrak{p}$ . We note that every prime ideal in R that contains I and is minimal with this property lies in  $\mathrm{Ass}_R(M)$ . Indeed, the  $R_{\mathfrak{p}}$ -module  $M_{\mathfrak{p}}$  is nonzero, hence  $\mathrm{Ass}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}})$  is non-empty by Proposition 1.2. However, there is a unique prime ideal in  $R_{\mathfrak{p}}$  that contains  $\mathrm{Ann}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) = I_{\mathfrak{p}}$ , namely  $\mathfrak{p}R_{\mathfrak{p}}$ . Using again the previous remark, we see that  $\mathfrak{p} \in \mathrm{Ass}_R(M)$ . The primes in  $\mathrm{Ass}_R(M)$  that are not minimal over  $\mathrm{Ann}_R(M)$  are called *embedded primes*.

**Example 1.8.** If I is a radical ideal in R, then it is easy to see that the set of zero-divisors in R/I is the union of the minimal prime ideals containing I. We deduce using Proposition 1.2 and the Prime Avoidance lemma that every  $\mathfrak{p} \in \mathrm{Ass}_R(R/I)$  is a minimal prime containing I.

## 2. Primary decomposition

We discussing primary decomposition and its connection to associated primes. Since we will only need this for ideals, for the sake of simplicity, we stick to this case.

**Definition 2.1.** An ideal  $\mathfrak{q}$  in R is *primary* if whenever  $a, b \in R$  are such that  $ab \in \mathfrak{q}$  and  $a \notin \mathfrak{q}$ , then  $b \in \operatorname{rad}(\mathfrak{q})$ . It is straightforward to see that in this case  $\mathfrak{p} := \operatorname{rad}(\mathfrak{q})$  is a prime ideal; one also says that  $\mathfrak{q}$  is a  $\mathfrak{p}$ -primary ideal. A *primary decomposition* of an ideal I is an expression

$$I = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$$

where all  $\mathfrak{q}_i$  are primary ideals.

**Remark 2.2.** It follows from definition that if  $I \subseteq \mathfrak{q}$  are ideals in R, then  $\mathfrak{q}/I$  is a primary ideal in R/I if and only if  $\mathfrak{q}$  is a primary ideal in R.

**Proposition 2.3.** If  $\mathfrak{q}$  is an ideal in R, then  $\mathfrak{q}$  is a primary ideal if and only if  $\mathrm{Ass}_R(R/\mathfrak{q})$  has only one element. Moreover, in this case the only associated prime of  $R/\mathfrak{q}$  is  $\mathrm{rad}(\mathfrak{q})$ .

*Proof.* Suppose first that  $\mathfrak{q}$  is  $\mathfrak{p}$ -primary. Note that  $\mathfrak{p}$  is the only minimal prime containing  $\mathfrak{q}$ , hence  $\mathfrak{p} \in \mathrm{Ass}(R/\mathfrak{q})$  by Remark 1.7. On the other hand, since  $\mathfrak{q}$  is  $\mathfrak{p}$ -primary, it follows that every zero-divisor of  $R/\mathfrak{q}$  lies in  $\mathfrak{p}$ . Since the set of zero-divisors of  $R/\mathfrak{q}$  is the union of the associated primes of  $R/\mathfrak{q}$  by Proposition 1.2, and each of these associated primes contains  $\mathrm{Ann}_R(R/\mathfrak{q}) = \mathfrak{q}$ , we conclude that  $\mathfrak{p}$  is the only element of  $\mathrm{Ass}_R(R/\mathfrak{q})$ .

Conversely, suppose that  $\operatorname{Ass}_R(R/\mathfrak{q})$  has only one element  $\mathfrak{p}$ . In this case, it follows from Remark 1.7 that  $\mathfrak{p}$  is the unique minimal prime containing  $\mathfrak{q}$ , hence  $\mathfrak{p} = \operatorname{rad}(\mathfrak{p})$ .

Moreover, it follows from Proposition 1.2 that the set of non-zero-divisors of  $R/\mathfrak{q}$  is equal to  $\mathfrak{p}$ , which implies, by definition, that  $\mathfrak{q}$  is a primary ideal.

**Proposition 2.4.** Every ideal I in R has a primary decomposition.

Proof. After replacing R by R/I, we may assume that I=0. We claim that for every  $\mathfrak{p} \in \mathrm{Ass}(R)$ , there is a primary ideal  $\mathfrak{q}$  in R such that  $\mathfrak{p} \notin \mathrm{Ass}(\mathfrak{q})$ . Indeed, consider the ideals J in R such that  $\mathfrak{p} \notin \mathrm{Ass}(J)$  (the set is non-empty since it contains 0) and since R is Noetherian, we may choose an ideal  $\mathfrak{q}$  which is maximal with this property. Note that  $\mathfrak{q} \notin R$ , hence  $\mathrm{Ass}(R/\mathfrak{q})$  is non-empty. By Proposition 2.3, in order to show that  $\mathfrak{q}$  is a primary ideal, it is enough to show that for every prime ideal  $\mathfrak{p}' \notin \mathfrak{p}$ , we have  $\mathfrak{p}' \notin \mathrm{Ass}(R/\mathfrak{q})$ . If  $\mathfrak{p}' \in \mathrm{Ass}(R/\mathfrak{q})$ , then we obtain an ideal  $\mathfrak{q}' \supseteq \mathfrak{q}$  such that  $\mathfrak{q}'/\mathfrak{q} \simeq R/\mathfrak{p}'$ . We assumed  $\mathfrak{q}' \neq \mathfrak{q}$ , while Lemma 1.3 implies

$$\mathrm{Ass}(\mathfrak{q}')\subseteq\mathrm{Ass}(\mathfrak{q})\cup\mathrm{Ass}(\mathfrak{q}'/\mathfrak{q})=\mathrm{Ass}(\mathfrak{q})\cup\{\mathfrak{p}'\},$$

hence  $\mathfrak{p} \notin \mathrm{Ass}(\mathfrak{q}')$ , contradicting the maximality of  $\mathfrak{q}$ .

We thus conclude that if  $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$  are the associated primes of R, we can find primary ideals  $\mathfrak{q}_1, \ldots, \mathfrak{q}_r$  such that  $\mathfrak{p}_i \not\in \mathrm{Ass}(\mathfrak{q}_i)$  for all i. If  $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_r$ , then  $\mathrm{Ass}(\mathfrak{a}) \subseteq \mathrm{Ass}(R)$  and at the same time  $\mathrm{Ass}(\mathfrak{a}) \subseteq \mathrm{Ass}(\mathfrak{q}_i)$  for all i, hence  $\mathfrak{p}_i \not\in \mathrm{Ass}(\mathfrak{a}_i)$ . This implies that  $\mathfrak{a}$  has no associated primes, hence  $\mathfrak{a} = 0$ .

**Remark 2.5.** Note that if  $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$  are  $\mathfrak{p}$ -primary ideals, then  $\mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$  is a  $\mathfrak{p}$ -primary ideal. It is thus straightforward to see that given any ideal I and any primary decomposition  $I = \mathfrak{q}_1, \ldots \cap \mathfrak{q}_r$ , we can obtain a *minimal* such decomposition, in the sense that the following conditions are satisfied:

- i) We have  $rad(\mathfrak{q}_i) \neq rad(\mathfrak{q}_j)$  for all i and j, and
- ii) For every i, with  $1 \le i \le r$ , we have  $\bigcap_{j \ne i} \mathfrak{q}_j \ne I$ .

Given such a reduced primary decomposition, if  $\mathfrak{p}_i = \operatorname{rad}(\mathfrak{q}_i)$ , then  $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$  are the distinct associated primes of R/I. Indeed, the injective morphism

$$R/I \hookrightarrow \bigoplus_{i=1}^r R/\mathfrak{q}_i$$

implies that  $\operatorname{Ass}(R/I) \subseteq \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\}$ . On the other hand, for every i, there is  $u \in \bigcap_{j \neq i} \mathfrak{q}_j$  such that  $u \notin \mathfrak{q}_i$ . Moreover, after multiplying u by a suitable element in  $\mathfrak{p}_i^m$ , for some non-negative integer m, we may assume that  $u \cdot \mathfrak{p}_i \subseteq \mathfrak{q}_i$ . In this case,  $\mathfrak{p}_i$  is the annihilator of the image of u in R/I, hence  $\mathfrak{p}_i \in \operatorname{Ass}(R/I)$ .

**Remark 2.6.** In general, the primary ideals in a minimal primary decomposition of I are not unique. However, if  $\mathfrak{p}$  is a minimal prime containing I, then the corresponding  $\mathfrak{p}$ -primary ideal  $\mathfrak{q}$  in a primary decomposition of I is unique. Indeed, it is easy to check that  $I \cdot R_{\mathfrak{p}} = \mathfrak{q} \cdot R_{\mathfrak{p}}$  and deduce, using that  $\mathfrak{q}$  is  $\mathfrak{p}$ -primary, that  $\mathfrak{q} = I \cdot R_{\mathfrak{p}} \cap R$ .