
Review sheet 1: Associated primes and primary decomposition

We give a brief treatment of associated primes and primary decomposition.

1. Associated primes and zero-divisors

When dealing with associated primes, it is convenient to work more generally with
modules, instead of just with the ring itself. Let us fix a Noetherian ring R.

Definition 1.1. If M is a finitely generated R-module, an associated prime of M is a
prime ideal p in R such that

p = AnnR(u) for some u ∈M,u 6= 0.

The set of associated primes of M is denoted Ass(M) (we write AssR(M) if the ring is
not understood from the context).

Recall that if M is an R-module, an element a ∈ R is a zero-divisor of M if au = 0
for some u ∈M r {0}; otherwise a is a non-zero-divisor of M . Note that for M = R, we
recover the usual notion of zero-divisor in R. The third assertion in the next proposition
is the main reason why associated primes are important:

Proposition 1.2. If M is a finitely generated R-module, then the following hold:

i) The set Ass(M) is finite.
ii) If M 6= 0, then Ass(M) is non-empty.
iii) The set of zero-divisors of M is equal to⋃

p∈Ass(M)

p.

We begin with the following easy lemma:

Lemma 1.3. Given an exact sequence of R-modules

0→M ′ →M →M ′′ → 0,

we have

Ass(M ′) ⊆ Ass(M) ⊆ Ass(M ′) ∪ Ass(M ′′).

Proof. The first inclusion is obvious, hence we only prove the second one. Suppose that
p ∈ Ass(M), and let us write p = AnnR(u), for some nonzero u ∈ M . If u ∈ M ′, then
clearly p ∈ Ass(M ′). Otherwise, the image u of u in M ′′ is non-zero and it is clear that
p ⊆ AnnR(u). If this is an equality, then p ∈ AssR(M ′′), hence let us assume that there
is a ∈ AnnR(u)r p. In this case au ∈M ′r {0}, and the fact that p is prime implies that
the obvious inclusion AnnR(u) ⊆ AnnR(au) is an equality. Therefore p ∈ Ass(M ′). �
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Proof of Proposition 1.2. We may assume that M is nonzero, as otherwise all assertions
are trivial. Consider the set P consisting of the ideals of R of the form AnnR(u), for some
u ∈ M r {0}. Since R is Noetherian, there is a maximal element p ∈ P . We show that
in this case p is a prime ideal, so that p ∈ Ass(M).

By assumption, we can write p = AnnR(u), for some u ∈M r {0}. Since u 6= 0, we
have p 6= R. If b ∈ Rr p, then bu 6= 0 and we clearly have

AnnR(u) ⊆ AnnR(bu).

By the maximality of p, we conclude that this is an equality, hence for every a ∈ R such
that ab ∈ p, we have a ∈ p.

In particular, this proves ii). We thus know that if M is non-zero, then we can find
u ∈M r{0} such that AnnR(u) = p1 is a prime ideal. The map R→M , a→ au induces
thus an injection R/p ↪→M , so that we have a short exact sequence

0→M1 →M →M/M1 → 0,

with M1 ' R/p1. Note now that since p1 is a prime ideal in R, then we clearly have
Ass(R/p1) = {p1}, and the lemma implies

Ass(M) ⊆ Ass(M/M1) ∪ {p}.
Therefore in order to prove that Ass(M) is finite it is enough to show that Ass(M/M1)
is finite. If M1 6= 0, we can repeat this argument and find M1 ⊆M2 such that M2/M1 '
R/p2, for some prime ideal p2 in R. Since M is a Noetherian module, this process must
terminate, hence after finitely many steps we conclude that AssR(M) is finite.

We now prove the assertion in iii). It is clear from definition that for every p ∈
Ass(M), the ideal p is contained in the set of zero-divisors of M . On the other hand, if
a ∈ R is a zero-divisor, then a ∈ I, for some I ∈ P . If we choose a maximal p in P
that contains I, then we have seen that p ∈ AssR(M), hence a lies in the union of the
associated primes of M . This completes the proof of the proposition. �

We record in the next corollary a useful assertion that we obtained in the above
proof.

Corollary 1.4. If M is a finitely generated R-module, then there is a sequence of sub-
modules

0 = M0 ⊆M1 ⊆ . . . ⊆Mr = M

such that Mi/Mi−1 ' R/pi for 1 ≤ i ≤ r, where each pi is a prime deal in R.

Remark 1.5. The results in Proposition 1.2 are often applied as follows: if an ideal I
in R has no non-zero-divisors on M , then it is contained in the union of the associated
primes. Since there are finitely such prime ideals, the Prime Avoidance lemma implies
that I is contained in one of them. Therefore there is u ∈M non-zero such that I ·u = 0.

Remark 1.6. If M is a finitely generated R-module, then for every multiplicative system
S in R, if we consider the finitely generated S−1R-module S−1M , we have

AssS−1R(S−1M) = {S−1p | p ∈ Ass(M), S ∩ p 6= 0}.
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Indeed, if p = AnnR(u) and p ∩ S = ∅, then S−1p = AnnS−1R

(
u
1

)
. Conversely, if S−1p =

AnnS−1R

(
v
s

)
, for some prime ideal p in R, with p ∩ S = ∅, then it is easy to see that

p = AnnR(v).

Remark 1.7. Let M be a finitely generated R-module and I = AnnR(M). It is clear
from definition that if p ∈ Ass(M), then I ⊆ p. Moreover, we have

AssR/I(M) = {p/I | p ∈ AssR(M)}.

We recall the easy fact that since M is a finitely generated R-module, for every
prime ideal p in R, we have Mp 6= 0 if and only if I ⊆ p. We note that every prime
ideal in R that contains I and is minimal with this property lies in AssR(M). Indeed, the
Rp-module Mp is nonzero, hence AssRp(Mp) is non-empty by Proposition 1.2. However,
there is a unique prime ideal in Rp that contains AnnRp(Mp) = Ip, namely pRp. Using
again the previous remark, we see that p ∈ AssR(M). The primes in AssR(M) that are
not minimal over AnnR(M) are called embedded primes.

Example 1.8. If I is a radical ideal in R, then it is easy to see that the set of zero-
divisors in R/I is the union of the minimal prime ideals containing I. We deduce using
Proposition 1.2 and the Prime Avoidance lemma that every p ∈ AssR(R/I) is a minimal
prime containing I.

2. Primary decomposition

We discussing primary decomposition and its connection to associated primes. Since
we will only need this for ideals, for the sake of simplicity, we stick to this case.

Definition 2.1. An ideal q in R is primary if whenever a, b ∈ R are such that ab ∈ q and
a 6∈ q, then b ∈ rad(q). It is straightforward to see that in this case p := rad(q) is a prime
ideal; one also says that q is a p-primary ideal. A primary decomposition of an ideal I is
an expression

I = q1 ∩ . . . ∩ qn,

where all qi are primary ideals.

Remark 2.2. It follows from definition that if I ⊆ q are ideals in R, then q/I is a primary
ideal in R/I if and only if q is a primary ideal in R.

Proposition 2.3. If q is an ideal in R, then q is a primary ideal if and only if AssR(R/q)
has only one element. Moreover, in this case the only associated prime of R/q is rad(q).

Proof. Suppose first that q is p-primary. Note that p is the only minimal prime containing
q, hence p ∈ Ass(R/q) by Remark 1.7. On the other hand, since q is p-primary, it follows
that every zero-divisor of R/q lies in p. Since the set of zero-divisors of R/q is the union
of the associated primes of R/q by Proposition 1.2, and each of these associated primes
contains AnnR(R/q) = q, we conclude that p is the only element of AssR(R/q).

Conversely, suppose that AssR(R/q) has only one element p. In this case, it follows
from Remark 1.7 that p is the unique minimal prime containing q, hence p = rad(p).
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Moreover, it follows from Proposition 1.2 that the set of non-zero-divisors of R/q is equal
to p, which implies, by definition, that q is a primary ideal. �

Proposition 2.4. Every ideal I in R has a primary decomposition.

Proof. After replacing R by R/I, we may assume that I = 0. We claim that for every
p ∈ Ass(R), there is a primary ideal q in R such that p 6∈ Ass(q). Indeed, consider the
ideals J in R such that p 6∈ Ass(J) (the set is non-empty since it contains 0) and since
R is Noetherian, we may choose an ideal q which is maximal with this property. Note
that q 6= R, hence Ass(R/q) is non-empty. By Proposition 2.3, in order to show that
q is a primary ideal, it is enough to show that for every prime ideal p′ 6= p, we have
p′ 6∈ Ass(R/q). If p′ ∈ Ass(R/q), then we obtain an ideal q′ ⊇ q such that q′/q ' R/p′.
We assumed q′ 6= q, while Lemma 1.3 implies

Ass(q′) ⊆ Ass(q) ∪ Ass(q′/q) = Ass(q) ∪ {p′},
hence p 6∈ Ass(q′), contradicting the maximality of q.

We thus conclude that if p1, . . . , pr are the associated primes of R, we can find
primary ideals q1, . . . , qr such that pi 6∈ Ass(qi) for all i. If a = q1 ∩ . . . ∩ qr, then
Ass(a) ⊆ Ass(R) and at the same time Ass(a) ⊆ Ass(qi) for all i, hence pi 6∈ Ass(ai).
This implies that a has no associated primes, hence a = 0. �

Remark 2.5. Note that if q1, . . . , qn are p-primary ideals, then q1 ∩ . . . ∩ qn is a p-
primary ideal. It is thus straightforward to see that given any ideal I and any primary
decomposition I = q1, . . .∩ qr, we can obtain a minimal such decomposition, in the sense
that the following conditions are satisfied:

i) We have rad(qi) 6= rad(qj) for all i and j, and
ii) For every i, with 1 ≤ i ≤ r, we have

⋂
j 6=i qj 6= I.

Given such a reduced primary decomposition, if pi = rad(qi), then p1, . . . , pr are the
distinct associated primes of R/I. Indeed, the injective morphism

R/I ↪→
r⊕

i=1

R/qi

implies that Ass(R/I) ⊆ {p1, . . . , pr}. On the other hand, for every i, there is u ∈
⋂

j 6=i qj
such that u 6∈ qi. Moreover, after multiplying u by a suitable element in pmi , for some
non-negative integer m, we may assume that u · pi ⊆ qi. In this case, pi is the annihilator
of the image of u in R/I, hence pi ∈ Ass(R/I).

Remark 2.6. In general, the primary ideals in a minimal primary decomposition of I
are not unique. However, if p is a minimal prime containing I, then the corresponding
p-primary ideal q in a primary decomposition of I is unique. Indeed, it is easy to check
that I ·Rp = q ·Rp and deduce, using that q is p-primary, that q = I ·Rp ∩R.


