Problem session 9

While we will not mention this explicitly in what follows, all schemes are assumed to be of finite type over an algebraically closed field k.

Problem 1. Show that if (X, \mathcal{O}) is a reduced scheme and if $U \subseteq X$ is a dense open subset, then the restriction map $\mathcal{O}(X) \to \mathcal{O}(U)$ is injective.

Problem 2. Let (X, \mathcal{O}) be a scheme and $f \in \mathcal{O}(X)$. Recall that we have a corresponding continuous function $\widetilde{f}: X \to k$, such that $\widetilde{f}(x)$ is the class of $f_x \in \mathcal{O}_x$ in the quotient modulo the maximal ideal, which is canonically isomorphic to k. Let

$$X_f := \{ x \in X \mid \widetilde{f}(x) \neq 0 \}.$$

- i) Describe this set when $X = \operatorname{Specm}(R)$.
- ii) Show that the restriction map induces a morphism of k-algebras $\mathcal{O}(X)_f \to \mathcal{O}(X_f)$. Prove that for every X, this is an isomorphism.

Problem 3. For an arbitrary scheme X, use the previous problem and the canonical morphism

$$X \to \operatorname{Spec} \mathcal{O}(X)$$

to prove the following criterion for X to be affine: if $f_1, \ldots, f_r \in \mathcal{O}(X)$ are such that they generate the unit ideal in $\mathcal{O}(X)$ and all X_{f_i} are affine schemes, then X is affine.

Problem 4.

- i) Show that if X_1, \ldots, X_n are schemes, then on the disjoint union $\bigsqcup_{i=1}^n X_i$ there is a unique scheme structure (up to a canonical isomorphism) such that each inclusion $X_i \subset X$ gives an open immersion.
- ii) Show that for every scheme X, its connected components are open in X.
- iii) Show that Specm(R) is disconnected if and only if there is an isomorphism $R \simeq R_1 \times R_2$ for suitable k-algebras R_1 and R_2 .