Problem session 7

As usual, all schemes are assumed to be of finite type over an algebraically closed field k.

Problem 1. Show that if X is a reduced scheme, then X is affine if and only if each irreducible component of X is affine.

Problem 2. Prove the following theorem of Chevalley: if $f: X \to Y$ is a finite surjective morphism of schemes, and X is affine, then Y is affine.

Hint: use the following steps:

- i) Reduce to the case when both X and Y are integral schemes.
- ii) Show that if X and Y are integral, then there is a coherent sheaf \mathcal{F} on X, and a morphism of sheaves $f: \mathcal{O}_Y^{\oplus r} \to f_*(\mathcal{F})$ for some $r \geq 1$, such that f is an isomorphism over an open subset of Y.
- iii) Deduce that under the assumptions in ii), given a coherent sheaf \mathcal{N} on Y, there is a coherent sheaf \mathcal{M} on X and a morphism $f_*(\mathcal{M}) \to \mathcal{N}^{\oplus r}$ that is an isomorphism over an open subset of Y.
- iv) Prove Chevalley's theorem by Noetherian induction.

Problem 3. Let X be a scheme, and U an open subscheme. Prove the following assertions:

- i) If \mathcal{F} is a coherent sheaf on U, then there is a coherent sheaf \mathcal{G} on X such that $\mathcal{G}|_{U} \simeq \mathcal{F}$.
- ii) Furthermore, if \mathcal{M} is a coherent sheaf on X such that \mathcal{F} is a subsheaf of $\mathcal{M}|_{U}$, then we may take \mathcal{G} to be a subsheaf of \mathcal{M} .

Hint: consider the following intermediate steps:

- a) Show that if X is an affine scheme and \mathcal{P} is a quasicoherent sheaf on X, and if $(\mathcal{P}_i)_i$ is the family of coherent subsheaves of \mathcal{P} , then for every open subset U of X we have $\mathcal{P}(U) = \bigcup_i \mathcal{P}_i(U)$.
- b) Prove i) and ii) above when X is affine.
- c) Prove ii), and then i) above in the general case.