Problem session 6

Problem 1. Let $f: X \to Y$ be an arbitrary morphism of (quasi-affine) varieties. For every $x \in X$, we put

 $e(x) := \max\{\dim(Z) \mid Z = \text{irreducible component of } f^{-1}(f(x)), x \in Z\}.$

Show that the function $x \to e(x)$ is upper semicontinuous, that is, for every $m \in \mathbb{Z}$, the set $\{x \in X \mid e(x) \ge m\}$ is closed in X.

Problem 2. Let $f: X \to Y$ be any morphism of (quasi-affine) varieties. One can ask whether the function $Y \to \mathbb{Z}$, that takes y to $\dim(f^{-1}(y))$ is upper semi-continuous (recall our convention that $\dim(\emptyset) = -1$). We will see later that this is the case for the so-called *proper morphisms*. However, show that this is not true in general: given any nonnegative integers r < s, give an example of a morphism $f: X \to Y$ such that for some $y_0 \in Y$ we have $\dim(f^{-1}(y_0)) = r$, and $\dim(f^{-1}(y)) = s$ for every $y \neq y_0$.

Problem 3. (Automorphisms of \mathbf{A}^n).

- i) Give examples of automorphisms of \mathbf{A}^n .
- ii) Let $f: \mathbf{A}^n \to \mathbf{A}^n$ be a morphism defined by $f_1, \ldots, f_n \in k[x_1, \ldots, x_n]$. Denote by $J(f) := \det(\partial f_i/\partial x_j)$ the determinant of the Jacobian matrix of f. Show that if f is an automorphism, then J(f) is a nonzero element of k.

Remark. The converse of the assertion in ii) is a famous open problem, the *Jacobian Conjecture*. It is open even in the case n = 2.

Problem 4. Suppose that $\operatorname{char}(k) = p > 0$, and let $X \subseteq \mathbf{A}^n$ be a closed subset. We say that X is defined over the finite field \mathbf{F}_q (where $q = p^e$) if the ideal I(X) of X can be generated by polynomials in $\mathbf{F}_q[x_1, \ldots, x_n]$. Recall that $F \colon \mathbf{A}^n \to \mathbf{A}^n$ is the Frobenius morphism given by $F(u_1, \ldots, u_n) = (u_1^p, \ldots, u_n^p)$.

- i) Show that if X is defined over \mathbf{F}_q , with $q=p^e$, then F^e induces a morphism $\operatorname{Frob}_{X,e}\colon X\to X$.
- ii) Show that $\text{Frob}_{X,e}$ is a finite surjective morphim.
- iii) Show that the fixed points of $\operatorname{Frob}_{X,e}$ are the \mathbf{F}_q -points of X, that is, the points of X that lie in $\mathbf{F}_q^n \subseteq k^n$.

Problem 5. Show that every positive-dimensional variety over k has the same cardinality as k. Deduce that any two irreducible curves over k are homeomorphic (a *curve* is a variety of pure dimension one).