Problem session 2

Problem 1. Show that if X and Y are topological spaces, with X irreducible, and $f \colon X \to Y$ is a continuous map, then $\overline{f(X)}$ is irreducible. Use this to show that the closed subset

$$M_{m,n}^r(k) = \{ A \in M_{m,n}(k) \mid \operatorname{rank}(A) \le r \}$$

of \mathbf{A}^{mn} is irreducible.

Problem 2. Let X be a topological space.

- i) Show that if Y is a subset of X (with the induced topology), then Y is irreducible if and only if its closure \overline{Y} is irreducible.
- ii) Suppose that X is Noetherian, and that Y is a subset X. Show that if $Y = Y_1 \cup \ldots \cup Y_r$ is the irreducible decomposition of Y, then $\overline{Y} = \overline{Y_1} \cup \ldots \cup \overline{Y_r}$ is the irreducible decomposition of \overline{Y} .

Problem 3.

- i) Show that $A^1 \setminus \{0\}$ is an affine variety (recall: this means that it is isomorphic to a closed subset of an affine space).
- ii) Let $U = \mathbf{A}^2 \setminus \{(0,0)\}$. What is $\mathcal{O}(U)$?
- iii) Deduce that U is not an affine variety.

Problem 4. Show that the set

$$B = \left\{ (a, b, c, d) \in \mathbf{A}^4 \mid \operatorname{rank} \left(\begin{array}{cc} a & b & c \\ b & c & d \end{array} \right) \le 1 \right\}$$

is an irreducible closed subset of A^4 . Determine its ideal.