Problem session 2

Problem 1. Let \mathcal{F} be a coherent sheaf on a scheme X. Show that \mathcal{F} is locally free of rank r if and only if \mathcal{F}_x is a free $\mathcal{O}_{X,x}$ -module of rank r for every $x \in X$.

Probem 2. Let $f: X \to Y$ be a morphism of schemes. Show that if \mathcal{F}_1 and \mathcal{F}_2 are \mathcal{O}_Y -modules, then there is a canonical isomorphism

$$f^*(\mathcal{F}_1 \otimes_{\mathcal{O}_Y} \mathcal{F}_2) \simeq f^*(\mathcal{F}_1) \otimes_{\mathcal{O}_X} f^*(\mathcal{F}_2).$$

Prove a similar statement for symmetric and exterior products.

Problem 3. Let $f: X \to Y$ be a morphism of schemes, and let \mathcal{E} be a locally free \mathcal{O}_{Y} -module of rank r. Let $V(\mathcal{E}) = \mathcal{S}pec(\operatorname{Sym}(\mathcal{E}))$ be the geometric vector bundle associated to \mathcal{E} .

- i) Show that $f^*(\mathcal{E})$ is locally free of rank r.
- ii) Show that there is a Cartesian diagram

$$V(f^*(\mathcal{E})) \longrightarrow V(\mathcal{E})$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\phi}$$

$$X \stackrel{f}{\longrightarrow} Y$$

iii) Deduce that for every $y \in Y$, there is an isomorphism $\phi^{-1}(y) \simeq (\mathcal{E}_y/\mathfrak{m}_y\mathcal{E}_y)^{\vee}$, where \mathfrak{m}_y denotes the maximal ideal in $\mathcal{O}_{Y,y}$, and W^{\vee} denotes the dual of a vector space W.

Problem 4. Let X be an integral scheme, and \mathcal{F} a coherent sheaf on X. Show that \mathcal{F} is locally free of rank r if and only if for every $y \in Y$, we have $\dim_{k(y)}(\mathcal{F}_y/\mathfrak{m}_y\mathcal{F}_y) = r$, where \mathfrak{m}_y is the maximal ideal in $\mathcal{O}_{Y,y}$, and $k(y) \simeq k$ is the residue field.

Problem 5. Let X be a scheme, and \mathcal{E} , \mathcal{F} locally free \mathcal{O}_X -modules (of finite rank). A morphism of sheaves $\phi \colon \mathcal{E} \to \mathcal{F}$ is a morphism of vector bundles if $\operatorname{Coker}(\phi)$ is locally free.

- i) Show that if ϕ is a morphism of vector bundles, then $\ker(\phi)$ and $\operatorname{Im}(\phi)$ are also locally free.
- ii) Suppose that X is an integral scheme. Show that f is a morphism of vector bundles if and only if there is s such that for every $y \in Y$, the induced morphism of k(y)-vector spaces

$$\mathcal{E}_y/\mathfrak{m}_y\mathcal{E}_y o\mathcal{F}_y/\mathfrak{m}_y\mathcal{F}_y$$

has rank s.