Math 420

Solutions to the problems on Homework Set 8

Problem 1. Let V be a vector space over F (where $F = \mathbf{R}$ or $F = \mathbf{C}$), with an inner product. Show that for $u, v \in V$, we have $\langle u, v \rangle = 0$ if and only if

$$||u|| \le ||u + av||$$
 for all $a \in F$.

Solution. Since the norm of a vector is nonnegative, we have

$$||u|| \le ||u + av||$$
 if and only if $||u||^2 \le ||u + av||^2$.

Since

$$\parallel u + av \parallel^2 = \langle u + av, u + av \rangle = \parallel u \parallel^2 + a\langle v, u \rangle + \overline{a}\langle u, v \rangle + |a|^2 \parallel v \parallel^2,$$

we see that $\parallel u \parallel \leq \parallel u + av \parallel$ for all $a \in F$ if and only if

(1)
$$2\operatorname{Re}(a\langle v, u\rangle) + |a|^2 \parallel v \parallel^2 \ge 0 \quad \text{for all} \quad a \in F.$$

This clearly holds if $\langle u, v \rangle = 0$ since $|a|^2 \ge 0$ and $||v||^2 \ge 0$. Conversely, if (1) holds for all $a \in F$, but $\langle u, v \rangle \ne 0$, let's take $a = \frac{t}{\langle v, u \rangle}$, with $t \in \mathbf{R}$. It follows from (1) that

$$2t + t^2 \frac{\parallel v \parallel^2}{|\langle v, u \rangle|^2}$$
 for all $t \in \mathbf{R}$.

This is clearly false, since the discriminant of this polynomial in t is 4 > 0. We thus conclude that $\langle u, v \rangle = 0$.

Problem 2. On the real vector space $\mathcal{P}_2(\mathbf{R})$ of polynomials with coefficients in \mathbf{R} , of degree at most 2, consider the inner product

$$\langle p, q \rangle = \int_0^1 p(x)q(x)dx.$$

Apply the Gram-Schmidt algorithm to the basis $1, x, x^2$ to produce an orthonormal basis of $\mathcal{P}_2(\mathbf{R})$.

This is a straightforward (though somewhat messy) application of the Gram-Schmidt algorithm. I do not include the solution.

Problem 3. Suppose that V is a real vector space with an inner product and v_1, \ldots, v_m is a linearly independent list of vectors in V. Prove that there exist exactly 2^m orthonormal lists e_1, \ldots, e_m of vectors in V such that

$$\operatorname{span}(v_1, \dots, v_j) = \operatorname{span}(e_1, \dots, e_j) \quad \text{for all} \quad j \in \{1, \dots, m\}.$$

Solution. It is enough to show that for every r, with $1 \le r \le m$, if we have chosen orthonormal e_1, \ldots, e_{r-1} such that

(2)
$$\operatorname{span}(v_1, \dots, v_j) = \operatorname{span}(e_1, \dots, e_j) \text{ for all } j \in \{1, \dots, r-1\},$$

then we have precisely 2 choices for e_r such that e_1, \ldots, e_r is an orthonormal set and

(3)
$$\operatorname{span}(v_1, \dots, v_r) = \operatorname{span}(e_1, \dots, e_r).$$

Since (2) holds, we have (3) if and only if we can write

$$e_r = \sum_{i=1}^{r-1} a_i e_i + b v_r$$

for some $a_1, \ldots, a_{r-1}, b \in \mathbf{R}$, with $b \neq 0$. Since e_1, \ldots, e_{n-1} is an orthonormal set, in order for e_1, \ldots, e_r to be orthonormal, we also need

(4)
$$\langle e_r, e_j \rangle = 0 \text{ for } 1 \le j \le r - 1$$

and $||e_r||=1$. Condition (4) says that $a_j+b\langle v_n,e_j\rangle=0$ for $1\leq j\leq r-1$. In other words, if $u=v_r-\sum_{i=1}^{r-1}\langle v_n,e_j\rangle e_i$, then $e_r=bu$. Note that $u\neq 0$, since v_1,\ldots,v_r are linearly independent (and thus e_1,\ldots,e_{r-1},v_r are linearly independent); therefore $||u||\neq 0$. The condition $||e_r||=1$ is equivalent to $|b|=\frac{1}{||u||}$. Therefore the only possibilities for b are $b=\pm\frac{1}{||u||}$. Therefore we have precisely two choices for e_r .

Problem 4. Let V be a finite dimensional vector space with an inner product. Show that if U and W are linear subspaces of V, then $P_U P_W = 0$ if and only if $\langle u, w \rangle = 0$ for every $u \in U$ and every $w \in W$.

Solution. Note that for $v \in V$, we have $P_U(v) = 0$ if and only if $v \in U^{\perp}$. Therefore $P_U P_W = 0$ if and only if $P_W(v) \in U^{\perp}$ for every $v \in V$. Also, note that we have $\langle u, w \rangle = 0$ for every $u \in U$ and every $w \in W$ if and only if $W \subseteq U^{\perp}$.

It is now clear that if $P_W(v) \in U^{\perp}$ for every $v \in V$, then for every $w \in W$, we have $w = P_W(w) \in U^{\perp}$. Therefore $W \subseteq U^{\perp}$.

Conversely, if $W \subseteq U^{\perp}$, then for every $v \in V$, we have $P_W(v) \in W \subseteq U^{\perp}$. This completes the proof.

Problem 5. Let V be a finite-dimensional inner product vector space and let $T \in \mathcal{L}(V)$. Show that if U is a linear subspace of V, then both U and U^{\perp} are invariant under T if and only if $P_U T = T P_U$.

Solution. Suppose first that both U and U^{\perp} are invariant under T. Given $v \in V$, if we write it as $v = v_1 + v_2$, with $v_1 \in U$ and $v_2 \in U^{\perp}$, then $P_U(v) = v_1$ and thus $TP_U(v) = T(v_1)$. On the other hand, we have $T(v) = T(v_1) + T(v_2)$, with $T(v_1) \in U$ and $T(v_2) \in U^{\perp}$ (we use here that U and U^{\perp} are invariant under T). Therefore $P_U T(v) = T(v_1) = TP_U(v)$.

Conversely, suppose that $P_UT = TP_U$. Note that

$$U = \{ v \in V \mid P_U(v) = v \}$$
 and $U^{\perp} = \{ v \in V \mid P_U(v) = 0 \}.$

If $v \in U$, we thus have $P_U T(v) = T P_U(v) = T(v)$, hence $T(v) \in U$. Similarly, if $v \in U^{\perp}$, then $P_U T(v) = T P_U(v) = T(0) = 0$, hence $T(v) \in U^{\perp}$. This completes the proof.

Problem 6. In \mathbb{R}^4 , let

$$U = \operatorname{span}((1, 1, 0, 0), (1, 1, 1, 2)).$$

Find $u \in U$ such that the distance between u and (1, 2, 3, 4) is as small as possible.

Solution. By the proposition we proved in class, we need to find the orthogonal projection of (1,2,3,4) onto U. In other words, we need to find u=a(1,1,0,0)+b(1,1,1,2) such that

$$\langle (1,2,3,4) - u, (1,1,0,0) \rangle = 0$$
 and $\langle (1,2,3,4) - u, (1,1,1,2) \rangle = 0$.

The two conditions are

$$3 - 2a - 2b = 0$$
 and $14 - 2a - 7b = 0$,

We obtain $a = -\frac{7}{10}$ and $b = \frac{11}{5}$, hence

$$u = \left(\frac{3}{2}, \frac{3}{2}, \frac{11}{5}, \frac{22}{5}\right).$$