Homework Set 5

Solutions are due Monday, December 14th.

Problem 1. Let $S = k[x_0, \ldots, x_n]$ be the homogeneous coordinate ring of \mathbf{P}^n , and let $\mathfrak{m} = (x_0, \ldots, x_n)$ be the "irrelevant" ideal.

- i) Show that two homogeneous ideals I and J in S define the same closed subscheme of \mathbf{P}^n if and only if there is N > 0 such that $\mathfrak{m}^N \cdot I \subseteq J$ and $\mathfrak{m}^N \cdot J \subseteq I$.
- ii) An ideal $I \subseteq S$ is called \mathfrak{m} -saturated if for every $u \in S$ such that $\mathfrak{m} \cdot u \subseteq I$, we have $u \in I$. Show that

$$I^{\text{sat}} := \{ u \in I \mid \mathfrak{m}^N \cdot u \subseteq I \text{ for some } N \}$$

is an \mathfrak{m} -saturated ideal, and it is the smallest such ideal containing I.

- iii) Show that I^{sat} is the largest ideal that defines the same closed subscheme of \mathbf{P}^n as I does. Deduce that there is a bijection between closed subschemes of \mathbf{P}^n and homogeneous \mathfrak{m} -saturated ideals in S (you can use the fact that we will prove later, saying that every closed subscheme of \mathbf{P}^n is defined by some homogeneous ideal in S).
- iv) Show that every radical ideal different from \mathfrak{m} is \mathfrak{m} -aturated. Furthermore, given a homogeneous ideal I in S, the subscheme of \mathbf{P}^n defined by I is reduced if and only if I^{sat} is a radical ideal.

Problem 2. The Veronese embedding. Let n and d be positive integers, and let M_0, \ldots, M_N be the monomials in $k[x_0, \ldots, x_n]$ of degree d, suitably ordered (hence $N = \binom{n+d}{d} - 1$).

- 1) Show that there is a morphism of schemes $\rho_{n,d} \colon \mathbf{P}^n \to \mathbf{P}^N$ that takes the point (a_0, \ldots, a_n) to the point $(M_0(a), \ldots, M_N(a))$.
- 2) Consider the ring homomorphism $f_{n,d} : k[z_0, \ldots, z_N] \to k[x_0, \ldots, x_n]$ defined by $f_d(z_i) = M_i$. Show that $\ker(f_{n,d})$ is a homogeneous prime ideal that defines in \mathbf{P}^N the image of $\rho_{n,d}$ (in particular, this image is closed).
- 3) Show that $\rho_{n,d}$ is a closed immersion, called the d^{th} Veronese embedding of \mathbf{P}^n .
- 4) Show that if Z is a hypersurface of degree d in \mathbf{P}^n (this means that Z is the closed subscheme defined by a homogeneous ideal generated by a polynomial of degree d), then there is a hyperplane H in \mathbf{P}^N such that for every projective variety $X \subseteq \mathbf{P}^d$, the morphism $\rho_{n,d}$ induces an isomorphism between $X \cap Z$ and $\rho_{n,d}(X) \cap H$. (In other words, the Veronese embedding allows to reduce the intersection with a hypersurface to the intersection with a hyperplane).
- 5) The rational normal curve in \mathbf{P}^n is the image of the Veronese embedding $\nu_{1,d} \colon \mathbf{P}^1 \to \mathbf{P}^d$, given by $\rho_{1,d}(a,b) = (a^d, a^{d-1}b, \dots, b^d)$. Show that the rational normal curve is defined (as a subscheme) by the 2×2 -minors of the matrix

$$\begin{pmatrix} z_0 & z_1 & \dots & z_{d-1} \\ z_1 & z_2 & \dots & z_d \end{pmatrix}.$$

For "extra credit", you can show that the ideal generated by the 2×2 -minors of the above matrix is the prime ideal corresponding to the rational normal curve.

Problem 3. Use the previous problem to show that if $f \in S = k[x_0, ..., x_n]$ is a homogeneous polynomial of positive degree, then the open subset $D_+(f) \subseteq \mathbf{P}^n$ is an affine variety.

Problem 4. Show that if X is a separated scheme, and U and V are open affine subsets of X, then $U \cap V$ is affine.

Problem 5. Show that if $f: X \to Y$ is a morphism, and Y is separated, then the induced graph morphism $X \to X \times Y$ induced by (id_X, f) is a closed immersion.

Problem 6. Show that if

$$X' \longrightarrow X$$

$$\downarrow f' \qquad \qquad \downarrow f$$

$$Y' \longrightarrow Y$$

is a Cartesian diagram and f is separated, then so is f'. Hint: show that there is a Cartesian diagram

$$\begin{array}{ccc} X' & \longrightarrow & X' \times_{Y'} X' \\ \downarrow & & \downarrow \\ X & \longrightarrow & X \times_Y X \end{array}$$

where the horizontal maps are the diagonal morphisms.

Problem 7. Let \mathcal{P} be a property of morphisms of schemes such that

- (a) A closed immersion has \mathcal{P} .
- (b) \mathcal{P} is stable under compositions.
- (c) \mathcal{P} is stable under base extensions.

Show that if $f: X \to Y$ and $g: Y \to Z$ are morphisms such that $g \circ f$ has \mathcal{P} and g is separated, then f has \mathcal{P} .

N.B. This problem applies if \mathcal{P} is one of the following properties: closed immersion, finite, affine, separated, proper.