Math 420

Homework Set 4

This assignment is due on Wednesday, October 23.

Recall that for every finite-dimensional vector space V, we defined a linear map $\alpha_V \colon V \to (V^*)^*$, such that for every $u \in V$, the linear map $\alpha_V(u) \colon V^* \to F$ is given by $\alpha_V(u)\varphi = \varphi(u)$. We showed in class that α_V is an isomorphism.

Problem 1. Let $f: V \to W$ be a linear map between finite-dimensional vector spaces.

i) Show that the following diagram is commutative

$$V \xrightarrow{f} W \qquad \qquad \downarrow^{\alpha_W} \qquad \qquad \downarrow^{$$

that is, $\alpha_W \circ f = (f^*)^* \circ \alpha_V$.

ii) Recall that we showed in class that f^* is injective if and only if f is surjective. Use this and the assertion in part i) to show the following: given a linear map $f: V \to W$, f^* is surjective if and only if f is injective.

Problem 2. Let V be a finite-dimensional vector space. Show that if A_1 and A_2 are affine subspaces of V, then $A_1 \cap A_2$ is either empty or an affine subspace of V.

Problem 3. Show that if W is a vector subspace of the finite-dimensional vector space V and e_1, \ldots, e_n is a basis of V such that e_1, \ldots, e_r is a basis of W, then $\overline{e_{r+1}}, \ldots, \overline{e_n}$ give a basis for V/W, where $\overline{e_i} = e_i + W$.

The result in the next problem is important, showing that for every surjective linear map $V \to W$, there is an isomorphism between W and a quotient space of V.

Problem 4. Let $f: V \to W$ be a linear map between finite-dimensional vector spaces and let U = null(f).

1

- i) Show that if we define $g: V/U \to W$ by g(a+U) = f(a), then g is well-defined and it is a linear map.
- ii) Show that g is injective and range(g) = range(f).
- iii) Deduce that range(f) is isomorphic to V/U.