Math 632. Homework Set 2

Solutions are due Thursday, February 18th.

As usual, all schemes are assumed of finite type over k.

Problem 1. Let X be a scheme, and \mathcal{F} a quasicoherent sheaf on X.

i) Show that if $(\mathcal{F}_i)_i$ is a family of \mathcal{O}_X -submodules of \mathcal{F} , then we have an \mathcal{O}_X -submodule $\bigcap_i \mathcal{F}_i$ of \mathcal{F} given by

$$\Gamma(U, \cap_i \mathcal{F}_i) = \cap_i \Gamma(U, \mathcal{F}_i).$$

- ii) Show that if all \mathcal{F}_i are quasicoherent, and the family is finite, then $\bigcap_i \mathcal{F}_i$ is quasicoherent. Give an example to show that this is not necessarily true if the family is infinite.
- iii) Use this to give a new proof of the fact that if $(Y_i)_i$ is a finite family of closed subschemes of X, then there is a unique smallest closed subscheme $\bigcup_i Y_i$ of X with the property that each Y_i is a closed subscheme of $\bigcup_i Y_i$.

Problem 2. Let X be a scheme, and \mathcal{F} a quasicoherent sheaf on X.

- i) Suppose that $(\mathcal{F}_i)_i$ is a family of quasicoherent \mathcal{O}_X -submodules of \mathcal{F} . Show that if $\sum_i \mathcal{F}_i$ is the sheaf associated to the presheaf \mathcal{P} given by $\Gamma(U, \mathcal{P}) = \sum_i \Gamma(U, \mathcal{F}_i)$, then $\sum_i \mathcal{F}_i$ is a quasicoherent \mathcal{O}_X -submodule of \mathcal{F} . Furthermore, show that if $U \subseteq X$ is an affine open subset, then $\Gamma(U, \sum_i \mathcal{F}_i) = \sum_i \Gamma(U, \mathcal{F}_i)$.
- ii) Use this to give a new proof of the fact that $\overline{\text{if}}(Y_i)_i$ is a family of closed subschemes of X, then there is a unique largest closed subscheme $\bigcap_i Y_i$ of X with the property that it is a closed subscheme of each of the Y_i .

Problem 3. Let X be a scheme. Show that if

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

is an exact sequence of \mathcal{O}_X -modules on X and if \mathcal{F}' and \mathcal{F}'' are (quasi)coherent, then so is \mathcal{F} .

Problem 4. Prove that if $f: X \to Y$ is a morphism of schemes, and if \mathcal{F} is a quasicoherent sheaf on X, and \mathcal{E} is a locally free sheaf on Y, then there is a canonical isomorphism

$$f_*(\mathcal{F} \otimes_{\mathcal{O}_X} f^*(\mathcal{E})) \simeq f_*(\mathcal{F}) \otimes_{\mathcal{O}_Y} \mathcal{E}.$$

This is the projection formula.

Problem 5. Let X be a topological space. Show that if

$$0 \to \mathcal{F}' \xrightarrow{u} \mathcal{F} \xrightarrow{v} \mathcal{F}'' \to 0$$

is an exact sequence of sheaves of abelian groups on X such that \mathcal{F}' is flasque, then the following sequence is exact

$$0 \to \Gamma(X, \mathcal{F}') \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}'') \to 0.$$

(Hint: given $s'' \in \Gamma(X, \mathcal{F}'')$, consider the set

$$\{(U, s) \mid U \text{ open in } X, s \in \mathcal{F}(U), v(s) = s''|_U\}$$

ordered by $(U, s) \leq (V, t)$ if $U \subseteq V$ and $t|_{U} = s$. Show that this set has a maximal element and that if \mathcal{F}' is flasque and (V, t) is maximal, then V = X).

Problem 6. Let (X, \mathcal{O}_X) be a ringed space.

- (1) If U is an open subset of X and $i: U \to X$ the inclusion, show that there is a sub- \mathcal{O}_X -module $i_!(\mathcal{O}_U)$ of \mathcal{O}_X such that $i_!(\mathcal{O}_U)(V) = \mathcal{O}_X(V)$ if $V \subseteq U$, and $i_!(\mathcal{O}_U)(V) = 0$, otherwise.
- (2) Show that if $x \in U$, then we have a canonical isomorphism $\mathcal{O}_{U,x} \simeq i_!(\mathcal{O}_U)_x$ and if $x \notin U$, then $i_!(\mathcal{O}_U)_x = 0$. The sheaf $i_!(\mathcal{O}_U)$ is called the *extension by zero* of \mathcal{O}_U .
- (3) Show that for every \mathcal{O}_X -module \mathcal{F} , we have a canonical isomorphism

$$\operatorname{Hom}_{\mathcal{O}_X}(i_!\mathcal{O}_U,\mathcal{F}) \simeq \mathcal{F}(U).$$

- (4) Deduce that if \mathcal{I} is an injective \mathcal{O}_X -module, then it is flasque.
- (5) Give an example of a scheme X and an open subset U such that $i_!\mathcal{O}_U$ is not quasicoherent.