Math 420

Homework Set 1

This assignment is due on Wednesday, September 18.

Problem 1. Show that if V is a vector space over F, then for $a \in F$ and $v \in V$ we have av = 0 if and only if a = 0 or v = 0.

Problem 2. For each of the following subsets of F^3 , determine whether it is a vector subspace. If it is, prove that this is the case; if it is not, illustrate why it is not.

- $\begin{array}{ll} \mathrm{i)} \ V_1 = \{(x_1, x_2, x_3) \in F^3 \mid x_1 + x_2 = 2x_3\}. \\ \mathrm{ii)} \ V_2 = \{(x_1, x_2, x_3) \in F^3 \mid x_1 + 2x_2 + 3x_3 = 1\}. \end{array}$
- iii) $V_3 = \{(x_1, x_2, x_3) \in F^3 \mid x_1 = x_2 x_3\}.$

Problem 3. Prove that if W_1 and W_2 are vector subspaces of the vector space V, then $W_1 \cup W_2$ is a vector subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Problem 4. Prove or give a counterexample: if W_1 , W_2 , and W_3 are vector subspaces of the vector space V such that

$$W_1 + W_2 = W_1 + W_3$$
,

then $W_2 = W_3$.

Problem 5. Let M be a nonempty set and F(M) be the real vector space of all functions $f: M \to \mathbb{R}$, with addition and scalar multiplication of functions. Show that if $b \in M$ is any element and

$$W_1 = \{ f \in F(M) \mid f(b) = 0 \}$$

and

$$W_2 = \{ f \in F(M) \mid f \text{ is a constant function} \},$$

then $F(M) = W_1 \oplus W_2$.