Math 632. Homework Set 1

Solutions are due Tuesday, February 2nd.

Recall that all our schemes are of finite type over an algebraically closed field k (for the purpose of this problem set, what matters is that they are Noetherian).

Problem 1. Let $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of ringed spaces. Show that if \mathcal{F} is an \mathcal{O}_X -module, and \mathcal{G} is an \mathcal{O}_Y -module, then there is a canonical isomorphism (of abelian groups)

$$\operatorname{Hom}_{\mathcal{O}_{X}}(f^{*}(\mathcal{G}), \mathcal{F}) \simeq \operatorname{Hom}_{\mathcal{O}_{Y}}(\mathcal{G}, f_{*}(\mathcal{F})).$$

Problem 2. Let \mathcal{F} and \mathcal{G} be sheaves of \mathcal{O}_X -modules on a scheme X.

- i) Show that if \mathcal{F} is coherent, and \mathcal{G} is quasicoherent (coherent), then $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ is quasicoherent (coherent). Show also that if X is affine, then $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ is the sheaf associated to the $\mathcal{O}(X)$ -module $\operatorname{Hom}_{\mathcal{O}(X)}(\mathcal{F}(X),\mathcal{G}(X))$.
- ii) Show that if \mathcal{F} is quasicoherent, but not coherent, then $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ might not be quasicoherent, even if \mathcal{G} is coherent.

Problem 3. Let \mathcal{F} be a coherent \mathcal{O}_X -module on a scheme X. The *support* of \mathcal{F} is the set

$$\operatorname{Supp}(\mathcal{F}) = \{ x \in X \mid \mathcal{F}_x \neq 0 \}.$$

- i) Describe this set when X is affine.
- ii) Deduce that $Supp(\mathcal{F})$ is closed in X.
- iii) Show that this might fail if \mathcal{F} is only quasicoherent, but not coherent.

Problem 4. Let \mathcal{F} be a quasicoherent sheaf on a scheme X, and \mathcal{I} a quasicoherent sheaf of ideals. Let $\mathcal{I} \cdot \mathcal{F}$ be the sheaf associated to the presheaf that takes an open subset U of X to $\Gamma(U, \mathcal{I}) \cdot \Gamma(U, \mathcal{F})$.

- i) Show that $\mathcal{I} \cdot \mathcal{F}$ is a quasicoherent \mathcal{O}_X -submodule of \mathcal{F} .
- ii) Show that if X is affine, then

$$\Gamma(X, \mathcal{I} \cdot \mathcal{F}) = \Gamma(X, \mathcal{I}) \cdot \Gamma(X, \mathcal{F}).$$

Problem 5. Show that if $f: X \to Y$ is an affine morphism of schemes, then the functor $f_*: \operatorname{Qcoh}(X) \to \operatorname{Qcoh}(Y)$ between the two categories of quasicoherent sheaves, is exact.

Problem 6. Let $i: Z \hookrightarrow X$ be a closed immersion, and consider the functor $i_*: \operatorname{Qcoh}(Z) \to \operatorname{Qcoh}(X)$.

- i) Show that i_* is fully faithful (hence it gives an equivalence of $\operatorname{Qcoh}(Z)$ with a full subcategory of $\operatorname{Qcoh}(X)$ (recall that we have seen in class that if $\mathcal{I} = \operatorname{Ker}(\mathcal{O}_X \to i_*(\mathcal{O}_Z))$), then a sheaf $\mathcal{F} \in \operatorname{Qcoh}(X)$ is isomorphic to some $i_*(\mathcal{G})$ if and only if $\mathcal{I} \cdot \mathcal{F} = 0$).
- ii) Show that if \mathcal{F} is a coherent sheaf on X such that $\mathrm{Supp}(\mathcal{F})\subseteq i(Z)$, then there are coherent subsheaves

$$\mathcal{F}_0 = (0) \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_r = \mathcal{F}$$

such that $\mathcal{F}_j/\mathcal{F}_{j-1}$ is isomorphic to some $i_*(\mathcal{G}_j)$ for every $j \geq 1$.