Homework Set 11

Solutions are due Thursday, April 5.

Problem 1. Let (X, \mathcal{O}_X) be a ringed space, U an open subset of X, and $i: U \hookrightarrow X$ the inclusion map. For an \mathcal{O}_U -module \mathcal{G} on U, we define the \mathcal{O}_X -module $i_!(\mathcal{G})$, the extension by 0 of \mathcal{G} , as follows. We put $\Gamma(V, i_!(\mathcal{G})) = \mathcal{G}(V)$ if $V \subseteq U$ and $\Gamma(V, i_!(\mathcal{G})) = 0$, otherwise (with the non-zero restriction maps given by those for \mathcal{G}).

- i) Show that for $x \in X$, we have $i_!(\mathcal{G})_x \simeq \mathcal{G}_x$ if $x \in U$ and $i_!(\mathcal{G})_x = 0$, otherwise. In particular, the map taking \mathcal{G} to $i_!(\mathcal{G})$ is an exact functor from the category of \mathcal{O}_U -modules to that of \mathcal{O}_X -modules.
- ii) Show that for every \mathcal{O}_X -module \mathcal{F} on X, we have a functorial isomorphism

$$\operatorname{Hom}_{\mathcal{O}_U}(\mathcal{G}, \mathcal{F}|_U) \simeq \operatorname{Hom}_{\mathcal{O}_X}(i_!(\mathcal{G}), \mathcal{F}).$$

In other words, $(i_!, i^*)$ is an adjoint pair.

iii) In particular, for every \mathcal{O}_X -module \mathcal{F} , we have a canonical morphism $i_!(\mathcal{F}|_U) \to \mathcal{F}$. Show that this is injective.

Problem 2. Let (X, \mathcal{O}_X) be a ringed space and U an open subset of X.

- i) Show that if \mathcal{I} is an injective \mathcal{O}_X -module, then $\mathcal{I}|_U$ is an injective \mathcal{O}_U -module. Hint: you can use the functor in Problem 1.
- ii) Deduce that if $\mathcal F$ and $\mathcal G$ are arbitrary $\mathcal O_X$ -modules, then we have a functorial isomorphism

$$\mathcal{E}xt^i_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})|_U \simeq \mathcal{E}xt^i_{\mathcal{O}_U}(\mathcal{F}|_U,\mathcal{G}|_U).$$

Problem 3. Let (X, \mathcal{O}_X) be a ringed space.

- i) Show that if \mathcal{I} is an injective \mathcal{O}_X -module, then for every \mathcal{O}_X -module \mathcal{M} , the \mathcal{O}_X -module $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{M},\mathcal{I})$ is flasque. Hint: you can use the functor in Problem 1.
- ii) Deduce that for every \mathcal{O}_X -modules \mathcal{F} and \mathcal{G} , there is a spectral sequence

$$E_2^{p,q} = H^p(X, \mathcal{E}xt_{\mathcal{O}_X}^q(\mathcal{F}, \mathcal{G})) \Rightarrow_p \operatorname{Ext}_{\mathcal{O}_X}^{p+q}(\mathcal{F}, \mathcal{G}).$$

Problem 4. Show that if \mathcal{F} and \mathcal{G} are coherent sheaves on the algebraic variety X, then the \mathcal{O}_X -modules $\mathcal{E}xt^i_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ are coherent. Moreover, if U is an affine open subset in X and $x \in X$ is an arbitrary point, then the following hold:

1

- i) $\Gamma(U, \mathcal{E}xt^i(\mathcal{F}, \mathcal{G})) \simeq \operatorname{Ext}^i_{\mathcal{O}_X(U)}(\mathcal{F}(U), \mathcal{G}(U)).$
- ii) $\operatorname{Ext}_{\mathcal{O}_U}^i(\mathcal{F}|_U,\mathcal{G}|_U) \simeq \operatorname{Ext}_{\mathcal{O}_X(U)}^i(\mathcal{F}(U),\mathcal{G}(U)).$
- iii) $\mathcal{E}xt^i(\mathcal{F},\mathcal{G})_x \simeq \operatorname{Ext}^i_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{G}_x).$