Homework Set 10

Solutions are due Thursday, March 29.

Problem 1. Let \mathcal{L} and \mathcal{M} be line bundles on a variety X. Show that the following hold:

- i) If \mathcal{F}_1 and \mathcal{F}_2 are globally generated \mathcal{O}_X -modules, then $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ is globally generated.
- ii) If \mathcal{L} and \mathcal{M} are ample, then $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{M}$ is ample.
- iii) If m is a positive integer, then \mathcal{L} is ample if and only if \mathcal{L}^m is ample.
- iv) If \mathcal{L} is ample and \mathcal{M} is globally generated, then $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{M}$ is ample.
- v) If \mathcal{L} is ample, then there is q_0 such that $\mathcal{L}^q \otimes_{\mathcal{O}_X} \mathcal{M}$ is ample for all $q \geq q_0$.

Problem 2. Let X be an algebraic variety. Show that the following hold:

- i) If \mathcal{M} is a globally generated \mathcal{O}_X -module, then for every morphism $f: Y \to X$, the \mathcal{O}_Y -module $f^*(\mathcal{F})$ is globally generated.
- ii) If \mathcal{L} is an ample line bundle on the algebraic variety X and Z is a locally closed subset of X, then $\mathcal{L}|_X$ is ample on Z.

Problem 3. If we denote by $\operatorname{Aut}(\mathbb{P}^n)$ the group of automorphisms of \mathbb{P}^n , we have seen that we have a group homomorphism

$$PGL_{n+1}(k) \to \operatorname{Aut}(\mathbb{P}^n).$$

Show that this is an isomorphism.

Problem 4. Let $f: X \to Y$ be a proper morphism of algebraic varieties.

- i) Show that there is a morphism of Abelian groups $f_*: K_0(X) \to K_0(Y)$ such that $f_*([\mathcal{F}]) = \sum_{i>0} (-1)^i [R^i f_*(\mathcal{F})].$
- ii) Show that we have the following version of the projection formula: if $\alpha \in K^0(Y)$ and $\beta \in K_0(X)$, then

$$f_*(f^*(\alpha) \cap \beta) = \alpha \cap f_*(\beta)$$

(where we denote by $-\cap$ – the action of K^0 on K_0 .

iii) Show that if $g: Y \to Z$ is another proper morphism, then $g_* \circ f_* = (g \circ f)_*$.

1