Homework Set 10 ## Solutions are due Thursday, March 29. **Problem 1**. Let \mathcal{L} and \mathcal{M} be line bundles on a variety X. Show that the following hold: - i) If \mathcal{F}_1 and \mathcal{F}_2 are globally generated \mathcal{O}_X -modules, then $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ is globally generated. - ii) If \mathcal{L} and \mathcal{M} are ample, then $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{M}$ is ample. - iii) If m is a positive integer, then \mathcal{L} is ample if and only if \mathcal{L}^m is ample. - iv) If \mathcal{L} is ample and \mathcal{M} is globally generated, then $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{M}$ is ample. - v) If \mathcal{L} is ample, then there is q_0 such that $\mathcal{L}^q \otimes_{\mathcal{O}_X} \mathcal{M}$ is ample for all $q \geq q_0$. **Problem 2**. Let X be an algebraic variety. Show that the following hold: - i) If \mathcal{M} is a globally generated \mathcal{O}_X -module, then for every morphism $f: Y \to X$, the \mathcal{O}_Y -module $f^*(\mathcal{F})$ is globally generated. - ii) If \mathcal{L} is an ample line bundle on the algebraic variety X and Z is a locally closed subset of X, then $\mathcal{L}|_X$ is ample on Z. **Problem 3**. If we denote by $\operatorname{Aut}(\mathbb{P}^n)$ the group of automorphisms of \mathbb{P}^n , we have seen that we have a group homomorphism $$PGL_{n+1}(k) \to \operatorname{Aut}(\mathbb{P}^n).$$ Show that this is an isomorphism. **Problem 4.** Let $f: X \to Y$ be a proper morphism of algebraic varieties. - i) Show that there is a morphism of Abelian groups $f_*: K_0(X) \to K_0(Y)$ such that $f_*([\mathcal{F}]) = \sum_{i>0} (-1)^i [R^i f_*(\mathcal{F})].$ - ii) Show that we have the following version of the projection formula: if $\alpha \in K^0(Y)$ and $\beta \in K_0(X)$, then $$f_*(f^*(\alpha) \cap \beta) = \alpha \cap f_*(\beta)$$ (where we denote by $-\cap$ – the action of K^0 on K_0 . iii) Show that if $g: Y \to Z$ is another proper morphism, then $g_* \circ f_* = (g \circ f)_*$. 1