CHAPTER 5

INTEGRALS AND DERIVATIVES

N THE preceding chapters we introduced the central elements of computer pro-
I gramming using Python and solved some simple physics problems using what
we learned. You will get plenty of further opportunities to polish your pro-
gramming skills, but our main task from here on is to learn about the ideas and
techniques of computational physics, the physical and mathematical insights that
allow us to perform accurate calculations of physical quantities on the computer.
One of the most basic but also most important applications of computers in
physics is the evaluation of integrals and derivatives. Numerical evaluation of in-
tegrals is a particularly crucial topic because integrals occur widely in physics cal-
culations and, while some integrals can be done analytically in closed form, most
cannot. They can, however, almost always be done on a computer. In this chapter
we examine a number of different techniques for evaluating integrals and derivatives,
as well as taking a brief look at the related operation of interpolation.

5.1 FUNDAMENTAL METHODS FOR EVALUATING INTEGRALS

Suppose we are given a mathematical function and we wish to evaluate its integral
over a specified domain. Let us consider initially the simplest case, the integral of a
function of a single variable over a finite range. We will study a number of techniques
for the numerical evaluation of such integrals, but we start with the most basic—and
also most widely used—the trapezoidal rule.

5.1.1 THE TRAPEZOIDAL RULE

Suppose we have a function f(x) and we want to calculate its integral with respect
to x from x = a to x = b, which we denote I(q, b):

b
I(a,b) = / £(x) dx. (5.1)

This is equivalent to calculating the area under the curve of f(x) from a to b. There
is no known way to calculate such an area exactly in all cases on a computer, but
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Figure 5.1: Estimating the area under a curve. (a) A simple scheme for estimating the area under a curve by dividing
the area into rectangular slices. The gray shaded area approximates the area under the curve, though not very well. (b) The
trapezoidal rule approximates the area as a set of trapezoids, and is usually more accurate. (c) With a larger number of
slices, the shaded area is a better approximation to the true area under the curve.
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we can do it approximately by the method shown in Fig. 5.1a: we divide the area up
into rectangular slices, calculate the area of each one, and then add them up. This,
however, is a pretty poor approximation. The area under the rectangles is not very
close to the area under the curve.

A better approach, which involves very little extra work, is that shown in Fig. 5.1b,
where the area is divided into trapezoids rather than rectangles. The area under the
trapezoids is a considerably better approximation to the area under the curve, and
this approach, though simple, often gives perfectly adequate results.

Suppose we divide the interval from a to b into N slices or steps, so that each
slice has width h = (b —a)/N. Then the right-hand side of the kth slice falls at a+ kh,
and the left-hand side falls at a+ kh — h = a+ (k — 1) h. Thus the area of the trapezoid
for this slice is

Ay = 3h[f(a+ (k- 1)h) + f(a+kh)]. (5.2)

This is the trapezoidal rule. It gives us a trapezoidal approximation to the area under
one slice of our function.
Our approximation for the area under the whole curve is the sum of the areas of



5.1 | FUNDAMENTAL METHODS FOR EVALUATING INTEGRALS

the trapezoids for all N slices:

N N
I(a,b) = > Ar = 1h D[ fa+ (k= 1)h) + f(a+kh)]
k=1 k=1
h[%f(a) +fla+h)+ f(a+2h)+...+ %f(b)]

=h %f(a)+%f(b)+l\§f(a+kh) . (5.3)
k=1

This is the extended trapezoidal rule—it is the extension to many slices of the basic
trapezoidal rule of Eq. (5.2). Being slightly sloppy in our usage, however, we will
often refer to it simply as the trapezoidal rule. Note the structure of the formula: the
quantity inside the square brackets is a sum over values of f(x) measured at equally
spaced points in the integration domain, and we take a half of the values at the start
and end points but one times the value at all the interior points.

The trapezoidal rule is only an approximation to the area under the curve—it is
clear from Fig. 5.1 that the trapezoids do not follow the curve perfectly. We can im-
prove the approximation by using a larger number of slices N, as shown in Fig. 5.1c,
although the program will also take longer to reach an answer because there are
more terms in the sum to evaluate. We examine the variation in accuracy with N in
more detail in Section 5.2.

EXAMPLE 5.1: INTEGRATING A FUNCTION

Let us use the trapezoidal rule to calculate the integral of the function x* — 2x + 1
from x = 0 to x = 2. This is actually an integral we can do by hand, which means
we don’t really need to do it using the computer in this case, but it is a good first
example because we can check easily if our program is working and how accurate
an answer it gives.

Here is a program to do the integration using the trapezoidal rule with N = 10
slices:

def f(x): File: trapezoidal .py
return x*x4 - 2xx + 1

N =10
a=20.9
b=2.0

h = (b-a)/N

s = 0.5%f(a) + 0.5xf(b)
for k in range(1,N):

s += f(atkxh)
print(hxs)
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This is a straightforward translation of the trapezoidal rule formula into computer
code: we create a function that calculates the integrand, set up all the constants used,
evaluate the sum in Eq. (5.3) term by term, and then multiply it by h and print it out.
If we run the program it prints

4.50656

The correct answer is

2
/ (x*-2x+1)dx = [%xS —-xt+ x]z =44. (5.4)
0
So our calculation is moderately accurate but not exceptionally so—the answer is off
by about 2%.
We can make the calculation more accurate by increasing the number of slices N.
If we increase N to 100 and run the program again we get 4.40107, which is now
accurate to 0.02%, which is pretty good. And if we use N = 1000 we get 4.40001,
which is accurate to 0.0002%. In Section 5.2 we will study in more detail the accuracy
of the trapezoidal rule.

Exercise 5.1: In the online resources you will find a file called velocities. txt, which con-
tains two columns of numbers, the first representing time ¢ in seconds and the second the
x-velocity in meters per second of a particle, measured once every second from ¢t = 0 to
t = 100. The first few lines look like this:

0 0

1 0.069478
2 0.137694
3 0.204332
4 0.269083
5 0.331656

Write a program to do the following:

a) Read in the data and, using the trapezoidal rule, calculate the approximate distance
traveled by the particle in the x direction as a function of time. See Section 2.4.3 on
page 55 if you want a reminder of how to read data from a file.

b) Extend your program to make a graph that shows the original velocity curve and the
distance traveled as a function of time, both on the same plot.

5.1.2 SIMPSON’S RULE

The trapezoidal rule is the simplest of numerical integration methods, requiring only
a few lines of code to implement, but it is often perfectly adequate for calculations
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Figure 5.2: Simpson’s rule. Simpson’s rule involves fitting quadratic curves to pairs of slices
and then calculating the area under the quadratics.

where no great accuracy is required. It happens frequently in physics calculations
that we don’t need an answer accurate to many significant figures and in such cases
the ease and simplicity of the trapezoidal rule can make it the method of choice. One
should not turn up one’s nose at simple methods like this; they play an important
role and are used widely. Moreover, the trapezoidal rule is the basis for several other
more sophisticated methods of evaluating integrals, including the adaptive methods
that we will study in Section 5.3 and the Romberg integration method of Section 5.4.

However, there are also cases where greater accuracy is required. As we have
seen we can increase the accuracy of the trapezoidal rule by increasing the number N
of steps used in the calculation. But in some cases a very large number of steps
may be needed to achieve the desired accuracy, which means the calculation can
become slow. There are other, more advanced schemes for calculating integrals that
can achieve high accuracy with a smaller number of steps and quicker running time.
In this section we study one such scheme, Simpson’s rule.

In effect, the trapezoidal rule estimates the area under a curve by approximating
the curve with straight-line segments—see Fig. 5.1b. We can often get a better result
if we approximate the function instead with curves of some kind. Simpson’s rule
does this using quadratic curves, as shown in Fig. 5.2. In order to specify a quadratic
completely one needs three points, not just two as with a straight line. So in this
method we take a pair of adjacent slices and fit a quadratic through the three points
that mark the boundaries of those slices. In Fig. 5.2 there are two quadratics, fitted to
four slices. Simpson’s rule involves approximating the integrand with quadratics in

137



CHAPTER 5

138

INTEGRALS AND DERIVATIVES

this way, then calculating the area under those quadratics, which gives an approxi-
mation to the area under the true curve.

Suppose, as before, that our integrand is f(x) and the spacing of adjacent points
is h. And suppose for the purposes of argument that we have three points at x = —h,
0, and +h. If we fit a quadratic Ax? + Bx + C through these points, then by definition
we will have

f(=h) = Ah* - Bh +C, f(0)=C, f(h) = Ah* + Bh+ C. (5.5)

Solving these equations simultaneously for A, B, and C gives

A= S[SR-FO+ W] B= i -f(-h]. C=f0), 60

and the area under the curve of f(x) from —h to +h is given approximately by the
area under the quadratic:

h
/ (Ax* +Bx +C) dx = %Ah3 +2Ch = %h[f(—h) +4f(0)+f(b)]. (57
~h

This is Simpson’s rule. It gives us an approximation to the area under two adjacent
slices of our function. Note that the final formula for the area involves only the value
of the function at evenly spaced points, just as with the trapezoidal rule. So to use
Simpson’s rule we don’t actually have to fit a quadratic—we just plug numbers into
this formula and it gives us an answer. This makes Simpson’s rule almost as simple
to use as the trapezoidal rule, and yet Simpson’s rule often gives much more accurate
results, as we will see.

To use Simpson’s rule to perform a general integral we note that Eq. (5.7) does
not depend on the fact that our three points lie at x = —h, 0, and +h. If we were to
slide the curve along the x-axis to either higher or lower values, the area underneath
it would not change. So we can use the same rule for any three uniformly spaced
points. Applying Simpson’s rule involves dividing the domain of integration into
many slices and using the rule to separately estimate the area under successive pairs
of slices, then adding the estimates for all pairs to get the final answer. If, as before,
we are integrating from x = a to x = b in slices of width h then the three points
bounding the first pair of slices fall at x = a, a + h and a + 2h, those bounding the
second pair at a + 2h, a + 3h, a + 4h, and so forth. Then the approximate value of the
entire integral is given by

I(a,b) ~ th[f(a) +4f (a+h) + f(a+2h)]
+2h[f(a+2h) +4f(a+3h) + f(a+4h)| +...
+1h[f(a+ (N =2)h) +4f(a+ (N - 1h) + f(b)]. (5.8)
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Note that the total number of slices must be even for this to work. Collecting terms
together, we now have

I(a,b) =~ ih[f(a) +4f(a+h) +2f(a+2h) +4f(a+3h) +...+ f(b)]

=ihlf(@+f(b)+4 > fla+kh)+2 > fla+kh)|. (5.9)

k odd k even

1..N-1 2..N-2
This formula is sometimes called the extended Simpson’s rule, by analogy with the
extended trapezoidal rule of Section 5.1.1, although for the sake of brevity we will

just refer to it as Simpson’s rule.

The sums over odd and even values of k can be conveniently accomplished in
Python using a for loop of the form “for k in range(1,N,2)” for the odd terms or
“for k in range(2,N,2)” for the even terms. Alternatively, we can rewrite Eq. (5.9)

as
N/2 N/2-1
I(a,b) = 1h|f(a) + f(b) +4 D) fla+ (2k—Dh)+2 >, f(a+2kh)|, (5.10)
k=1 k=1

and just use an ordinary for loop (although this form is usually less convenient).

Comparing Egs. (5.3) and (5.9) we see that Simpson’s rule is modestly more com-
plicated than the trapezoidal rule, but not enormously so. Programs using it are still
straightforward to create.

As an example of the use of Simpson’s rule, suppose we apply it with N = 10
slices to the integral from Example 5.1, _/02 (x* — 2x + 1) dx, whose true value, as we
saw, is 4.4. As shown in Exercise 5.2, Simpson’s rule gives an answer of 4.400427 in
this case, which is already accurate to better than 0.01%, orders of magnitude better
than the trapezoidal rule with N = 10. Results for N = 100 and N = 1000 are better
still—see the exercise.

If you need an accurate answer for an integral, Simpson’s rule is a good choice
in many cases, giving precise results with relatively little effort. Alternatively, if you
need to evaluate an integral quickly—perhaps because you will be evaluating many
integrals as part of a larger calculation—then Simpson’s rule may again be a good
choice, since it can give accurate answers even with only a small number of steps.

Exercise 5.2:

a) Write a program to calculate an approximate value for the integral _/02 (x* —2x+1) dx
from Example 5.1, but using Simpson’s rule with 10 slices instead of the trapezoidal
rule. You may wish to base your program on the trapezoidal rule program on page 135.

b) Run the program and compare your result to the known correct value of 4.4. What is
the fractional error on your calculation?
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The diffraction pattern
produced by a point
source of light.
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¢) Modify the program to use a hundred slices instead, then a thousand. Note the im-
provement in the result. How do the results compare with those from Example 5.1 for
the trapezoidal rule with the same numbers of slices?

Exercise 5.3: Consider the integral

E(x) =/ e dt.
0

a) Write a program to calculate E(x) for values of x from 0 to 3 in steps of 0.1. Choose for
yourself what method you will use for performing the integral and a suitable number
of slices.

b) When you are convinced your program is working, extend it further to make a graph of
E(x) as a function of x. If you want to remind yourself of how to make a graph, consult
Section 3.1, starting on page 86.

There is no known way to perform this particular integral analytically, so numerical ap-
proaches are the only way forward.

Exercise 5.4: The diffraction limit of a telescope

Our ability to resolve detail in astronomical observations is limited by the diffraction of light
in our telescopes. Light from stars can be treated effectively as coming from a point source
at infinity. When such light, with wavelength A, passes through the circular aperture of a
telescope (which we will assume to have unit radius) and is focused by the telescope in the
focal plane, it produces not a single dot, but a circular diffraction pattern consisting of a central
spot surrounded by a series of concentric rings. The intensity of the light in this diffraction
pattern is given by

k) \2
10) = Io (]1( V)) ’
kr
where Ij is a constant, r is the distance in the focal plane from the center of the diffraction
pattern, k = 2x/A, and J; (x) is a Bessel function. The Bessel functions J,,;(x) are given by

Vs
Jm(x) = l/ cos(mf — x sin 0) d6,
T Jo

where m is a nonnegative integer and x > 0.

a) Write a Python function J(m, x) that calculates the value of Ji,; (x) using Simpson’s rule
with N = 1000 points. Use your function in a program to make a plot, on a single graph,
of the Bessel functions Jy, J1, and J, as a function of x from x = 0 to x = 20.

b) Write a second program that makes a density plot of the intensity of the circular diffrac-
tion pattern of a point light source with A = 500 nm, in a square region of the focal plane,
using the formula given above. Your picture should cover values of r from zero up to
about 1 ym.

If you have done the calculation correctly, your density plot should look something like the
figure shown here.

Hint 1: You may find it useful to know that limy_,¢ J1(x)/x = % Hint 2: The central spot
in the diffraction pattern is so bright that it may be difficult to see the rings around it on the
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computer screen. If you run into this problem a simple way to deal with it is to use one of
the other color schemes for density plots described in Section 3.3. The “hot” scheme works
well. For a more sophisticated solution to the problem, the imshow function has an additional
argument vmax that allows you to set the value that corresponds to the brightest point in the
plot. For instance, if you say “imshow(x,vmax=0.1)”, then elements in x with value 0.1, or any
greater value, will produce the brightest (most positive) color on the screen. By lowering the
vmax value, you can reduce the total range of values between the minimum and maximum
brightness, and hence increase the sensitivity of the plot, making subtle details visible. For
this exercise a value of vmax=0.01 appears to work well. (There is also a vmin argument that
can be used to set the value that corresponds to the dimmest (most negative) color.)

5.2 ERRORS ON INTEGRALS

Our numerical integrals are only approximations. As with most numerical calcula-
tions there is usually a rounding error when we calculate an integral, as described
in Section 4.2, but this is not the main source of error. The main source of error is
the so-called approximation error—the fact that our integration rules themselves are
only approximations to the true integral. Both the trapezoidal and Simpson rules cal-
culate the area under an approximation (either linear or quadratic) to the integrand,
not the integrand itself. How big an error does this approximation introduce?

Consider again an integral fa b f(x)dx, and let us look first at the trapezoidal rule
of Eq. (5.3). To simplify our notation a little, let us define x; = a + kh as a shorthand
for the positions at which we evaluate the integrand f(x). We will refer to these
positions as sample points. Now consider one particular slice of the integral, the one
that falls between x;_; and x, and let us perform a Taylor expansion of f(x) about
Xi—1 thus:

F) = fx-1) + (6 = x) f (1) + 5 (6 = x5e-1)°f7 Gorma) + - (5.11)

where f” and f”* denote the first and second derivatives of f respectively. Integrating
this expression from xj_; to xj gives

Xf Xk Xk
[ rwa= g [T ave e [Caoxoa
Xk—1 Xk—1 Xk—1
Xk
+ %f"(xk_l)/ (x—xp_)%dx+... (5.12)
Xk-1
Now we make the substitution u = x — x_;, which gives
Xk h h h
/ f(x)dx = f(xk_l)/ du+ [ (xk-1) / udu+ %f”(xk_l)/ wdu+...
X1 0 0 0

= hf (xk-1) + 3h*f (k1) + EH° 7 (ko) + O(RY), (5.13)

where O(h*) denotes the rest of the terms in the series, those in h* and higher, which
we are neglecting.

ERRORS ON INTEGRALS
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We can do a similar expansion around x = xj and again integrate from xj_; to
xi to get

Xk
[ 0 = R - 2 G + 2 )~ O, (514
Xk-1
Then, taking the average of Egs. (5.13) and (5.14), we get

/Xk f(x) dx = 3h[f (oeor) + F)] + 3R [f (xem1) = f7 ()]

+ SR [f (xk-1) + £ (x)] + O(h?). (5.15)

Finally, we sum this expression over all slices k to get the full integral that we want:

b N Xk
/ fede=> [ ) dx

k=1 ¥ Xk-1

N
= 1h D [f (k1) + f(xi)] + 3R [F7 (@) = £ (B)]
k=1

N
+ 15h° kZ_] (£ (xk=1) + f7 ()] + O(RY).  (5.16)

Let us take a close look at this expression to see what is going on.

The first sum on the right-hand side of the equation is precisely equal to the
trapezoidal rule, Eq. (5.3). When we use the trapezoidal rule, we evaluate only this
sum and discard all the terms following. The size of the discarded terms—the rest of
the series—measures the amount we would have to add to the trapezoidal rule value
to get the true value of the integral. In other words it is equal to the error we incur
when we use the trapezoidal rule, the so-called approximation error.

In the second term, the term in h%, notice that almost all of the terms have can-
celed out of the sum, leaving only the first and last terms, the ones evaluated at a
and b. Although we haven’t shown it, a similar cancellation happens for the terms
in h*, h®, and all even powers of h.

Now take a look at the term in h* and note the following useful fact: the sum
in this term is itself, to within an overall constant, just the trapezoidal rule approxi-
mation to the integral of f”/(x) over the interval from a to b. Specifically, if we take
Eq. (5.16) and make the substitution f (x) = f”(x) on the left-hand side, we get

/ Fre0 b= 1 f”(xk )+ f7 ()] + O, (5.17)
Multiplying by %hz and rearranging, we then get
N b
L3 SV () + £ ()] = A2 / £ (x) dx + O(hY)
k=1 a
SR () - F@] 4O, (5.18)
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since the integral of f”’(x) is just f’(x). Substituting this result into Eq. (5.16) and
canceling some terms, we find that

b N
/ f) dx = 3h D31 (i) + f(x)] + 382 [f (@) = £/ (D)1 + O(AY).  (5.19)
a k=1

Thus, to leading order in h, the value of the terms dropped when we use the trape-
zoidal rule, which equals the approximation error § on the integral, is

5= LR [f (@) - £ (b)]. (5.20)

This is the Euler-Maclaurin formula for the error on the trapezoidal rule. More cor-
rectly it is the first term in the Euler-Maclaurin formula; the full formula keeps the
terms to all orders in h. We can see from Eq. (5.19) that the next term in the series is
of order h*. We might imagine it would be of order h®, but the h* term cancels out,
and in fact it is fairly straightforward to show that only even powers of h survive in
the full formula at all orders, so the next term after A* is h®, then A8, and so forth.
So long as h is small, however, we can neglect the h* and higher terms—the leading
term, Eq. (5.20), is usually enough.

Equation (5.19) tells us that the trapezoidal rule is a first-order integration rule,
which means it is accurate up to and including terms proportional to h and the
leading-order approximation error is of order h%. That is, a first-order rule is accurate
to O(h) and has an error O(h?).

In addition to approximation error, there is also a rounding error on our calcu-
lation. As discussed in Section 4.2, this rounding error will have approximate size €
times the value of the integral, where € is the machine precision, which is about 10716
in current versions of Python.! Equation (5.20) tells us that the approximation error
gets smaller as h gets smaller, so we can make our integral more accurate by using
smaller h or, equivalently, a larger number N of slices. However, there is no point
making h so small that the approximation error becomes smaller than the rounding
error. Further decreases in h beyond this point will only make our program slower,
by increasing the number of terms in the sum for Eq. (5.3), without improving the
accuracy of our calculation significantly, since accuracy will be dominated by the
rounding error.

Thus decreases in h will only help us up to the point at which the approximation

1One might imagine that the rounding error would be larger than this because the trapezoidal rule
involves a sum of terms in Eq. (5.3) and each term will incur its own rounding error, the individual errors
accumulating over the course of the calculation. However, standard results for random variables tell us
that the size of such cumulative errors goes up only as VN, while the trapezoidal rule equation (5.3)
includes a factor of h, which falls off as 1/N. The net result is that the theoretical cumulative error on the
trapezoidal rule actually decreases as 1/VN, rather than increasing, so the final error is well approximated
by the error incurred on the final operation of the calculation, which will have size € times the final value.

ERRORS ON INTEGRALS
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and rounding errors are roughly equal, which is the point where

b
Lh[f'(a) - £ (b)] = e/ f(x) dx. (5.21)

12 [7 f(x) dx s
h ~ m €. (5.22)

Or we can set h = (b —a)/N to get

N = (b-a) we—”? (5.23)
12 [7 f(x) dx

Thus if, for example, all the factors except the last are of order unity, then rounding
error will become important when N ~ 108. This is the point at which the accuracy of

Rearranging for h we get

the trapezoidal rule reaches the limits of accuracy of the computer. There is no point
increasing the number of integration slices beyond this point; the calculation will not
become any more accurate. However, N = 10® would be an unusually large number
of slices for the trapezoidal rule—it would be rare to use such a large number when
equivalent accuracy can be achieved using much smaller N with a more accurate
rule such as Simpson’s rule. In most practical situations, therefore, we will be in
the regime where approximation error is the dominant source of inaccuracy for the
trapezoidal rule and it is safe to assume that rounding error can be ignored.

We can do an analogous error analysis for Simpson’s rule. The algebra is similar
but more tedious. Here we will just quote the results. For an integral over the interval
from a to b, the approximation error is given to leading order by

§=qgh*[f" (@) - f"(B)]. (5.24)

Thus Simpson’s rule is a third-order integration rule—two orders better than the
trapezoidal rule—with a fourth-order approximation error. For small values of h this
means that the error on Simpson’s rule will typically be much smaller than the error
on the trapezoidal rule and it explains why Simpson’s rule gave such superior results
in our example calculations (see Section 5.1.2).

The rounding error for Simpson’s rule is again of order e fa b f(x) dx and the
equivalent of Eq. (5.23) is

111 o 1/4
f (a) f (b)) 6_1/4. (525)

N=(b- )(
¢ 180 [ f(x) dx

If, again, the leading factors are roughly of order unity, this implies that rounding
error will become important when N =~ 10 000. Beyond this point Simpson’s rule is so
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accurate that it exceeds the accuracy of the computer itself and there is no point using
larger values of N. By contrast with the case for the trapezoidal rule, N = 10000 is
not an unusually large number of slices to use in a calculation. Calculations with
ten thousand slices can often be done in a fraction of a second. Thus it is worth
bearing this result in mind: there is no point using more than a few thousand slices
with Simpson’s rule because the calculation will reach the limits of precision of the
computer and larger values of N will do no further good.

Finally in this section, let us note that while Simpson’s rule does in general give
superior accuracy, it is not always guaranteed to do better than the trapezoidal rule,
since the errors on the trapezoidal and Simpson rules also depend on derivatives of
the integrand function via Eqgs. (5.20) and (5.24). It would be possible, for instance,
for " (a) by bad luck to be large in some particular instance, making the error in
Eq. (5.24) similarly large, and possibly worse than the error for the trapezoidal rule.
It is fair to say that Simpson’s rule usually gives better results than the trapezoidal
rule, but the prudent scientist will bear in mind that it can do worse on occasion.

5.2.1 PRACTICAL ESTIMATION OF ERRORS

The Euler-Maclaurin formula of Eq. (5.20), or the equivalent for Simpson’s rule in
Eq. (5.24), allows us to calculate the error on our integrals provided we have a known
closed-form expression for the integrand f(x), so that we can calculate the deriva-
tives that appear in the formulas. Unfortunately, in many cases—perhaps most—we
have no such expression. For instance, the integrand may not be a mathematical
function at all but a set of measurements made in the laboratory, or it might itself be
the output of another computer program. In such cases Eq. (5.20) or (5.24) will not
work. There is, however, still a way to calculate the error.

Suppose, as before, that we are evaluating an integral over the interval fromx = a
to x = b and let us assume that we are using the trapezoidal rule—it makes the
argument simpler, although the method described here extends to Simpson’s rule
too. Let us perform the integral with some number of steps Nj, so that the step size
is hy = (b — a) /Ny, and let us denote by I; the value of the integral that we calculate.

Here is the trick: we now double the number of steps and perform the integral
again. That is we define a new number of steps N, = 2N; and a new step size hy =
(b-a)/N, = %hl and we reevaluate the integral using the trapezoidal rule, giving
a new answer I, which will normally be more accurate than the previous one. As
we have seen, the trapezoidal rule introduces an error of order O(h?), which means
that when we half the value of h we quarter the size of the error. Knowing this fact
allows us to estimate how big the error is.

Suppose that the true value of the integral is I. The difference between the true
value and our first estimate I; is equal by definition to the error on that estimate,
which as we have said is proportional to h2, so let us write it as ch?, where ¢ is a
constant. Then I and I; are related by I = I + ch?, neglecting higher-order terms.

ERRORS ON INTEGRALS
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We can also write a similar formula for our second estimate I, of the integral,
with Ny steps: I = I + ch?. Equating the two expressions for I we then get

I +chi = I, + chj, (5.26)

or
I, — I, = ch? — ch? = 3chZ, (5.27)

where we have made use of the fact that hy = 2h,. Rearranging this expression now
gives the error §, on the second estimate of the integral:

52 = Chg = %(IZ — 11) (528)

As we have written it, this expression can be either positive or negative, depending
on which way the error happens to go. If we want only the absolute size of the error
then we can take the absolute value %l[z — I|, which in Python would be done using
the built-in function abs.

This method gives us a simple way to estimate the error on the trapezoidal rule
without using the Euler—-Maclaurin formula. Indeed, even in cases where we could
in principle use the Euler-Maclaurin formula because we know the mathematical
form of the integrand, it is often simpler to use the method of Eq. (5.28) instead—it is
easy to program and gives reliable answers.

The same principle can be applied to integrals evaluated using Simpson’s rule
too. The equivalent of Eq. (5.28) in that case turns out to be

82 = %(IZ - Il) (529)

The derivation is left to the reader (see Exercise 5.5).

Exercise 5.5: Error on Simpson’s rule

Following the same line of argument that led to Eq. (5.28), show that the error on an integral
evaluated using Simpson’s rule is given, to leading order in A, by Eq. (5.29).

Exercise 5.6: Write a program, or modify an earlier one, to once more calculate the value of
the integral f02 (x* — 2x + 1) dx from Example 5.1, using the trapezoidal rule with 20 slices,
but this time have the program also print an estimate of the error on the result, calculated
using the method of Eq. (5.28). To do this you will need to evaluate the integral twice, once
with N; = 10 slices and then again with N, = 20 slices. Then Eq. (5.28) gives the error. How
does the error calculated in this manner compare with a direct computation of the error as the
difference between your value for the integral and the known true value of 4.4? Why do the
two not agree perfectly?
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5.3 CHOOSING THE NUMBER OF STEPS

So far we have not specified how the number N of steps used in our integrals is to
be chosen. In our example calculations we just chose round numbers and looked
to see if the results seemed reasonable. This is fine for quick calculations, but for
serious physics we want a more principled approach. In some calculations we may
know in advance how many steps we want to use. Sometimes we have a “budget,” a
certain amount of computer time that we can spend on a calculation, and our goal
is simply to make the most accurate calculation we can in the given amount of time.
If we know, for instance, that we have time to do a thousand steps, then that’s what
we do.

But a more common situation is that we want to calculate the value of an integral
to a given accuracy, such as four decimal places, and we would like to know how
many steps will be needed. So long as the desired accuracy does not exceed the
fundamental limit set by the machine precision of our computer—the rounding error
that limits all calculations—then it should always be possible to meet our goal by
using a large enough number of steps. At the same time, we want to avoid using
more steps than are necessary, since more steps take more time and our calculation
will be slower. Ideally we would like an N that gives us the accuracy we want and
no more.

A simple way to achieve this is to start with a small value of N and repeatedly
increase it until we achieve the accuracy we want. As we saw in Section 5.2.1, there is
a simple formula, Eq. (5.28), for calculating the error on an integral when we double
the number of steps. By using this formula with repeated doublings we can evaluate
an integral to exactly the accuracy we want.

The procedure is straightforward. We start off by evaluating the integral with
some small number of steps N;. For instance, we might choose N; = 10. Then we
double the number to N; = 2N, evaluate the integral again, and apply Eq. (5.28) to
calculate the error. If the error is small enough to satisfy our accuracy requirements,
then we’re done—we have our answer. If not, we double again to N3 = 2N, and we
keep on doubling until we achieve the required accuracy. The error on the ith step
of the process is given by the obvious generalization of Eq. (5.28):

i = 3L = Iim), (5.30)

where I; is the ith estimate of the integral. This method is an example of an adaptive
integration method, one that varies its own parameters to get a desired answer.

A particularly nice feature of this method is that when we double the number of
steps we do not actually have to recalculate the entire integral again. We can reuse
our previous calculation rather than just throwing it away. To see this, take a look
at Fig. 5.3. The top part of the figure depicts the locations of the sample points, the
values of x at which the integrand is evaluated in the trapezoidal rule. The sample
points are regularly spaced, and bear in mind that the first and last points are treated
differently from the others—the trapezoidal rule formula, Eq. (5.3), specifies that the
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values of f(x) at these points are multiplied by a factor of § where the values at the
interior points are multiplied by 1.
The lower part of the figure shows what happens when we double

1 1 1 1 1 the number of slices. This adds an additional set of sample points

’ ’ ’ ’ ! half way between the old ones, as indicated by the arrows. Note that

1 X the original points are still included in the calculation and still carry

2 } } } } } } } 2 the same multiplying factors as before—% at the ends and 1 in the

A a o a middle—while the new points are all multiplied by a simple factor

T T T T of 1. Thus we have all of the same terms in our trapezoidal rule sum

that we had before, terms that we have already evaluated, but we

Figure 5.3: Doubling the number of also have a set of new ones, which we have to add into the sum to
steps in the trapezoidal rule. Top: we calculate its full value. In the jargon of computational physics we say

evaluate the integrand at evenly spaced
points as shown, with the value at each
point being multiplied by the appropri-
ate factor. Bottom: when we double the

that the sample points for the first estimate of the integral are nested
inside the points for the second estimate.
To put this in mathematical terms, consider the trapezoidal rule

number of steps, we effectively add a at the ith step of the calculation. Let the number of slices at this step
new set of points, half way between the be N; and the width of a slice be h; = (b — a)/N;, and note that on
previous points, as indicated by the ar- the previous step there were half as many slices of twice the width,
rows.
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so that N;_; = %Ni and h;_; = 2h;. Then

N;—-1

Ii=h [%f(a) F1F0)+ S fla+khy)
k=1

=h [%f(a) +1f(0)+ D) fla+kh)+ > fla+kh)]|. (5.31)

k even k odd
2..N;—=2 1..N;—-1
But
N;/2-1 Ni_1—1
ST fla+kh)= > fla+2kh;) = fla+khi_y), (5.32)
k even k=1 k=1
2...N;—2
and hence
N;_1—-1
Ii=3his |3/ @+ 3f(B)+ 3 flavkhio) | +hi D) flatkh).  (533)
k=1 k odd
1...N;-1

But the term h;_;[...] in this equation is precisely the trapezoidal rule estimate I;_;
of the integral on the previous iteration of the process, so

I; = % -1+ h,‘ kzdd f(a + khl) (5.34)
1...1(\)11-—1

In effect, our old estimate gives us half of the terms in our trapezoidal rule sum and
we only have to calculate the other half. In this way we avoid ever recalculating
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any term that has already been calculated, meaning that each term is calculated only
once, regardless of how many levels of the calculation it is used in. This means it
takes only about as much work to calculate I; going through all the successive levels
I, L, I, . .. as it does to calculate I; outright using the ordinary trapezoidal rule. Thus
we pay very little extra price in terms of the running time of our program to use
this adaptive method and we gain the significant advantage of a guarantee in the
accuracy of the integral.
The entire process is as follows:
1. Choose an initial number of steps N; and decide on the target accuracy for the
value of the integral. Calculate the first approximation [; to the integral using
the chosen value of N; with the standard trapezoidal rule formula, Eq. (5.3).
2. Double the number of steps and use Eq. (5.34) to calculate an improved estimate
of the integral. Also calculate the error on that estimate from Eq. (5.30).
3. If the absolute magnitude of the error is less than the target accuracy for the
integral, stop. Otherwise repeat from step 2.

The sum over odd values of k in Eq. (5.34) can be conveniently performed in Python
with a for loop of the form “for k in range(1,N,2)”.

We can also derive a similar method for integrals evaluated using Simpson’s rule.
Again we double the number of steps on each iteration of the process and the equiv-
alent of Eq. (5.30) is

§i =5 (Ii—Iisy). (5.35)

The equivalent of Eq. (5.34) is a little more complicated. We define

Si=3f@+f(b)+2 > fla+kh)|, (5.36)
” Nee
and
=% > fla+kh). (5.37)
k odd
1...N;—1

Then we can show that
Si=Si-1+Ti-1, (5.38)

and
I = hi(Si + 2Tl) (539)

Thus for Simpson’s rule the complete process is:
1. Choose an initial number of steps and a target accuracy, and calculate the sums
Sy and Tq from Egs. (5.36) and (5.37) and the initial value I; of the integral from
Eq. (5.39).
2. Double the number of steps then use Egs. (5.37), (5.38), and (5.39) to calculate
the new values of S; and T; and the new estimate of the integral. Also calculate
the error on that estimate from Eq. (5.35).
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3. If the absolute magnitude of the error is less than the target accuracy for the
integral, stop. Otherwise repeat from step 2.

Again notice that on each iteration of the process you have to calculate only one
sum, Eq. (5.37), which includes only those terms in the Simpson’s rule formula that
have not previously been calculated. As a result, the complete calculation of I; takes
very little more computer time than the basic Simpson rule.

5.4 ROMBERG INTEGRATION

We can do even better than the adaptive method of the last section with only a little
more effort. Let us go back to the trapezoidal rule again. We have seen that the
leading-order error on the trapezoidal rule, at the ith step of the adaptive method,
can be written as ch? for some constant ¢ and is given by Eq. (5.30) to be

chf = 3(I; = Ii-y). (5.40)

But by definition the true value of the integral is I = I; + ch? + O(h?), where we
are including the O(h}) term to remind ourselves of the next term in the series—see
Eq. (5.19). (Recall that there are only even-order terms in this series.) So in other
words

I=1+ (I = Ii=y) + O(hy). (5.41)

But this expression is now accurate to third order, and has a fourth-order error, which
is as accurate as Simpson’s rule,” and yet we calculated it using only our results from
the trapezoidal rule, with hardly any extra work; we are just reusing numbers we
already calculated while carrying out the repeated doubling procedure of Section 5.3.

%In fact, though it is not obvious, Eq. (5.41) is precisely equivalent to Simpson’s rule. Using Eq. (5.3)
for I; and I;_1, we have

I=Li+ 3(I ~ L) +O(h}) = §1; = §1i-1 + O(h})

N;-1 Ni_1-1

= %hi[%f(a) +if(D)+ D) f(a+kh,-)} - %hi,l[%f(a) +1f(b)+ fla+khi1)|+0(h})
k=1 k=1
N;-1 %Ni’l

= %hiléf(a) +3f@)+ > f(a+khi)J - %hiléf(a) +3f(B)+ > fla+2kh;)|+0O(h),
k=1 k=1

where we have made use of h;_1 = 2h; and N;_; = %N,- in the third line. Gathering terms and noting
that the final sum is over only the even slices at locations 2kh;, we find that

I=1hi|f(a)+f(b)+4 D, fla+kh)+2 D), f(a+kh;)|+O(h}),
o B

which is precisely Simpson’s rule, Eq. (5.9). Similarly, the higher-order approximants of Eq. (5.51) are
equivalent to the so-called Newton-Cotes rules, higher-order integration rules that we discuss in Sec-
tion 5.5.
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We can take this process further. Let us refine our notation a little and define
Rii =1, Riz=Ii+5(Ii = Ii-1) = Rig + 5(Rig — Ri_11). (5.42)
Then, from Eq. (5.41),
I =Rz +cohi + O(R), (5.43)
where ¢, is another constant and we have made use of the fact that the series for I
contains only even powers of h;. Analogously,

I= Rifljz + Cgh?_l + O(h?fl) = Rifljz + 16C2h? + O(hf) (5.44)

Since these last two equations both give expressions for I we can equate them and
rearrange to get
Czh;-l = 11_5(Ri,2 — Ri—I,Z) + O(h?) (545)

Substituting this expression back into (5.43) gives
I=Riz+ 1= (Riz — Ri—12) + O(hY). (5.46)

Now we have an estimate accurate to fifth order, with a sixth-order error!

We can continue this process, computing higher and higher order error terms and
getting more and more accurate results. In general, if R; ,, is an estimate calculated
at the ith round of the doubling procedure and accurate to order A, with an error
of order h?™, then

I =Ry +cphi™ + O(RF™?), (5.47)
I=Ri_im+cmh™ + O(hI™?) = Ri_ym + 4™ cmh?™ + O(RZ™2). (5.48)

Equating the two and rearranging we have

1
cmhi™ = T (Rim = Ri—1m) + O(h]™*?), (5.49)

and substituting this into Eq. (5.47) gives
I = Ry i1 + O(RF™2), (5.50)

where

Rimi1 = Rim + , (Rim — Ri—1,m), (5.51)

4m —
which is accurate to order h>™*! with an error of order h?™*2,

The calculation also gives us an estimate of the error—Eq. (5.49) is precisely the
error on R; , (see Eq. (5.47))—and hence we can say how accurate our results are. To
make use of these results in practice we do the following:

1. We calculate our first two estimates of the integral using the regular trape-
zoidal rule: Iy = Ry and I, = Ry ;.

ROMBERG INTEGRATION
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2. From these we calculate the more accurate estimate R, using Eq. (5.51). This
is as much as we can do with only the two starting estimates.

3. Now we calculate the next trapezoidal rule estimate I5 = Rs; and from this,
with Eq. (5.51), we calculate Rs,, and then Rs 3.

4. At each successive stage we compute one more trapezoidal rule estimate I; =
R; 1, and from it, with very little extra effort, we can calculate R; 5 ... R; ;.

5. For each estimate we can also calculate the error, Eq. (5.49), which allows us to
halt the calculation when the error on our estimate of the integral meets some
desired target.

Perhaps a picture will help make the process clearer. This diagram shows which
values R; ,, are needed to calculate further Rs:

I =Ry,

N
L=Ry1 — Rop

N N
I3=Rs1 — Rsp — Rs3

N N N

Iy =Ry1 — R4z — Ry3 — Ryy

NN NN

Each row here lists one trapezoidal rule estimate I; followed by the other higher-
order estimates it allows us to make. The arrows show which previous estimates
go into the calculation of each new one via Eq. (5.51). Note how each fundamental
trapezoidal rule estimate I; allows us to go one step further with calculating the R; p,.
The most accurate estimate we get from the whole process is the very last one: if we
do n levels of the process, then the last estimate is R, , and is accurate to order h2".

Errors on our estimates are given by Eq. (5.49). If we are being picky, however,
we should note that the equation gives us the error on every estimate except the last
one in each row (which is the one we really care about). The equation says that the
error on R, , would be (R, , —Rn—1,)/(4" —1) but there is no R,,_ , so we cannot use
the formula in this case. In practice this means we have to content ourselves with
the error estimate for the penultimate entry in each row, which is normally bigger
than the error on the final entry. The best we can say is that the final entry in the
row is our most accurate estimate of the integral and that its error is at least as good
as the error for the entry that precedes it, which is given by Eq. (5.49). This is not
ideal, but in practice it is usually good enough.

This whole procedure is called Romberg integration. It is essentially an “add-on”
to our earlier trapezoidal rule scheme: all the tough work is done in the trapezoidal
rule calculations and the Romberg integration takes almost no extra computer time
(although it does involve extra programming). The payoff is a value for the integral
that is accurate to much higher order in h than the simple trapezoidal rule (or even
than Simpson’s rule). And when used in an adaptive scheme that halts the calculation
once the required accuracy is reached, it can significantly reduce the time needed to
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evaluate integrals because it reduces the number of trapezoidal rule steps we have
to do.

The method does have its limitations. We are in essence calculating the value of
our integral by making a series expansion in powers of the step size h. This means
that the method works best in cases where such power series converge rapidly. If one
needs hundreds of terms in the series to get good convergence then the method is
not going to give us any advantage over the simple trapezoidal rule. This can happen
if the integrand f(x) is poorly behaved, containing wild fluctuations, for instance,
or singularities, or if it is noisy. If your integrand displays these types of patholo-
gies then Romberg integration is not a good choice. The simpler adaptive trapezoidal
method of Section 5.3 will give better results. In cases where the integrand is smooth
and well-behaved, however, Romberg integration can give significantly more accu-
rate results significantly faster than either the trapezoidal or Simpson rules.

Romberg integration is an example of the more general technique of Richardson
extrapolation, in which high-order estimates of quantities are calculated iteratively
from lower-order ones. We will see another application of Richardson extrapolation
in Section 5.10.5, when we apply it to numerical differentiation.

Exercise 5.7: Consider the integral
1
I =/ sin? V100x dx.
0

a) Write a program that uses the adaptive trapezoidal rule method of Section 5.3 and
Eq. (5.34) to calculate the value of this integral to an approximate accuracy of § = 107°
(i.e., correct to six digits after the decimal point). Start with one single integration slice
and work up from there to two, four, eight, and so forth. Have your program print out
the number of slices, its estimate of the integral, and its estimate of the error on the
integral, for each value of the number of slices N, until the target accuracy is reached.
(Hint: You should find the result is around I = 0.45.)

b) Now modify your program to evaluate the same integral using the Romberg integration
technique described in this section. Have your program print out a triangular table of
values, as on page 152, of all the Romberg estimates of the integral. Calculate the error
on your estimates using Eq. (5.49) and again continue the calculation until you reach an
accuracy of § = 107°. You should find that the Romberg method reaches the required
accuracy considerably faster than the trapezoidal rule alone.

Exercise 5.8: Write a program that uses the adaptive Simpson’s rule method of Section 5.3 and
Egs. (5.35) to (5.39) to calculate the same integral as in Exercise 5.7, again to an approximate
accuracy of § = 107°. Starting this time with two integration slices, work up from there to
four, eight, and so forth, printing out the results at each step until the required accuracy is
reached. You should find you reach that accuracy for a significantly smaller number of slices
than with the trapezoidal rule calculation in part (a) of Exercise 5.7, but a somewhat larger
number than with the Romberg integration of part (b).
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5.5 HIGHER-ORDER INTEGRATION METHODS

As we have seen, the trapezoidal rule is based on approximating an integrand f(x)
with straight-line segments, while Simpson’s rule uses quadratics. We can create
higher-order (and hence potentially more accurate) rules by using higher-order poly-
nomials, fitting f(x) with cubics, quartics, and so forth. The general form of the
trapezoidal and Simpson rules is

b N
/ Fede = > wef () (5:52)
a k=1

where the x; are the positions of the sample points at which we calculate the inte-
grand and the wy are some set of weights. In the trapezoidal rule, Eq. (5.3), the first
and last weights are % and the others are all 1, while in Simpson’s rule the weights are
% for the first and last slices and alternate between % and % for the other slices—see
Eq. (5.9).

For higher-order rules the basic form is the same: after fitting to the appropriate
polynomial and integrating we end up with a set of weights that multiply the val-
ues f(xx) of the integrand at evenly spaced sample points. Here are the weights up
to quartic order:

Degree Polynomial Coefficients

1 (trapezoidal rule) Straight line %, 1,1,...,1, %

2 (Simpson’s rule) Quadratic %, %, %, %, , %, %

3 Cubic 3323223 . .,23

4 Quartic B 0515 55 15§ 15 45 80 8

Higher-order integration rules of this kind are called Newton—Cotes formulas and in
principle they can be extended to any order we like.

However, we can do better still. We note that the trapezoidal rule is exact if the
function being integrated is actually a straight line, because then the straight-line
approximation isn’t an approximation at all. Similarly, Simpson’s rule is exact if the
function being integrated is a quadratic, and the kth Newton-Cotes rule is exact if
the function being integrated is a degree-k polynomial.

But if we have N sample points, then presumably that means we could just fit one
(N —1)th-degree polynomial to the whole integration interval, and get an integration
method that is exact for (N — 1)th-degree polynomials—and for any lower-degree
polynomials as well. (Note that it’s N — 1 because you need three points to fit a
quadratic, four for a cubic, and so forth.)

But we can do even better than this. We have been assuming here that the sample
points are evenly spaced. Methods with evenly spaced points are simple to program,
and they have the advantage that it is easy to increase the number of points by adding
new points half way between the old ones, as we saw in Section 5.3. However, it is
also possible to derive integration methods that use unevenly spaced points and,
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while they lack some of the advantages above, they have others of their own. In
particular, they can give very accurate answers with only a small number of points,
making them especially suitable for cases where we need to do integrals very fast,
or where evaluation of the integrand itself takes a long time.

Suppose then that we broaden our outlook to include rules of the form of Eq. (5.52),
but where we are allowed to vary not only the weights wy but also the positions xj
of the sample points. Any choice of positions is allowed, including ones that are not
evenly spaced. As we have said, it is possible to create an integration method that
is exact for polynomials up to degree N — 1 with N equally spaced points. Varying
the positions of the points gives us N extra degrees of freedom, which suggests that
it might be possible to create an integration rule that is exact for polynomials up to
degree 2N —1 if all of those degrees of freedom are chosen correctly. For large values
of N this could give us the power to fit functions very accurately indeed, and hence
to do very accurate integrals. It turns out that it is indeed possible to do this and the
developments lead to the superbly accurate integration method known as Gaussian
quadrature, which we describe in the next section.

5.6 GAUSSIAN QUADRATURE

The derivation of the Gaussian quadrature method has two parts. First, we will see
how to derive integration rules with unevenly spaced sample points xj. Then we will
choose the particular set of points that give the optimal integration rule.

5.6.1 NONUNIFORM SAMPLE POINTS

Suppose we are given a nonuniform set of N points x; and we wish to create an
integration rule of the form (5.52) that calculates integrals over a given interval from
a to b, based only on the values f(x) of the integrand at those points. In other
words, we want to choose weights wy so that Eq. (5.52) works for general f(x). To
do this, we will fit a single polynomial through the values f(xx) and then integrate
that polynomial from a to b to calculate an approximation to the true integral. To fit
N points we need to use a polynomial of degree N — 1. The fitting can be done using
the method of interpolating polynomials.
Consider the following quantity:

s = [ 2l

m=1...N (Xk - xm)

m#k
_mx) (x =xee1) _ (x = xpe1) (x - xn)
Ca—x) T G —xe) | G —xen) T (e —xn) (5.53)

which is called a Lagrange interpolating polynomial. Note that the numerator con-
tains one factor for each sample point except the point xx. Thus ¢ (x) is a polynomial
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in x of degree N — 1. For values of k from 1 to N, Eq. (5.53) defines N different such
polynomials.

You can confirm for yourself that if we evaluate @x(x) at one of the sample
points x = x,, we get

1 ifm=k,
P (xm) = {0 im ek (5.54)
or, to be more concise,
¢k (xm) = 5km s (5-55)

where §, is the Kronecker delta—the quantity that is 1 when k = m and zero oth-
erwise.
Now consider the following expression:

N
D(x) = > f(xk) pr (). (5.56)
k=1

Since it is a linear combination of polynomials of degree N — 1, this entire quantity
is also a polynomial of degree N — 1. And if we evaluate it at any one of the sample
points x = x,,, we get

N N
D(xm) = D, f(xk) P (xm) = D, f (k) Sem = f (xm), (5.57)
k=1 k=1

where we have used Eq. (5.55).

In other words ®(x) is a polynomial of degree N — 1 that fits the integrand f(x)
at all of the sample points. This is exactly the quantity we were looking for to create
our integration rule. Moreover, the polynomial of degree N — 1 that fits a given N
points is unique: it has N free coefficients and our points give us N constraints, so
the coefficients are completely determined. Hence ®(x) is not merely a polynomial
that fits our points, it is the polynomial. There are no others.

To calculate an approximation to our integral, all we have to do now is integrate
®(x) from a to b thus:

b b b N
/ F(x) dx ~ / o) de= [ S Flado) de
a a a k=1
N b
=S f () / ¢ () dx, (5.58)
= a

1

where we have interchanged the order of the sum and integral in the second line.
Comparing this expression with Eq. (5.52) we now see that the weights we need for
our integration rule are given by

b
Wk =/ ¢ (x) dx. (5.59)
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In other words we have found a general method for creating an integration rule of
the form (5.52) for any set of sample points x;: we set the weights wy equal to the
integrals of the interpolating polynomials, Eq. (5.53), over the integration domain.

There is no general closed-form formula for the integrals of the interpolating
polynomials. In some special cases it is possible to perform the integrals exactly, but
often it is not, in which case we may have to perform them on the computer, using
one of our other integration methods, such as Simpson’s rule or Romberg integration.
This may seem to defeat the point of our calculation, which was to find an integration
method that did not rely on uniformly spaced sample points, and here we are using
Simpson’s rule, which has uniformly spaced points. But in fact the exercise is not as
self-defeating as it may appear. The point to notice is that we have to calculate the
weights wy only once, and then we can use them in Eq. (5.52) to integrate as many
different functions as we like. So we may have to put some effort into the calculation
of the weights, using, say, Simpson’s rule with very many slices to get as accurate
an answer as possible. But we only have to do it once, and thereafter other integrals
can be done rapidly and accurately using Eq. (5.52).

In fact, it’s better than this. Once one has calculated the weights for a particular
set of sample points and domain of integration, it is possible to map those weights and
points onto any other domain and get an integration rule of the form (5.52) without
having to recalculate the weights. Typically one gives sample points and weights
arranged in a standard interval, which for historical reasons is usually taken to be
the interval from x = —1 to x = +1. Thus to specify an integration rule one gives a
set of sample points in the range —1 < x; < 1 and a set of weights

Wi = [1 ¢r (x) dx. (5.60)

If we want to integrate over any domain other than the one from —1 to +1, we map
these values to that other domain. Since the area under a curve does not depend on
where that curve is along the x line, the sample points can be slid up and down the
x line en masse and the integration rule will still work fine. If the desired domain is
wider or narrower than the interval from —1 to +1 then we need to spread the points
out or squeeze them together. The correct rule for mapping the points to a general
domain that runs from x = a to x = b is:

x; = 3(b—a)xi+ (b +a). (5.61)

Similarly the weights do not change if we are simply sliding the sample points up or
down the x line, but if the width of the integration domain changes then the value
of the integral will increase or decrease by a corresponding factor, and hence the
weights have to be rescaled thus:

wy = 3(b— a)w. (5.62)
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Once we have calculated the rescaled positions and weights then the integral itself
is given by

b n
/ £ dx = Sl f(x)). (5.63)
a k=1

5.6.2 SAMPLE POINTS FOR GAUSSIAN QUADRATURE

The developments of the previous section solve part of our problem. Given the posi-
tions of the sample points x; they tell us how to choose the weights wy, but we still
need to choose the sample points. As we speculated at the end of Section 5.5, it is
possible to chose these points so as to create a rule that gives the exact integral of any
polynomial function up to degree 2N — 1 with just N sample points. The derivation
is based on the mathematics of Legendre polynomials.

The Legendre polynomial Py (x) is an Nth-degree polynomial in x that has the

property
1
/ Py (x) dx =0 for all integer k in the range 0 < k < N (5.64)
-1

and satisfies the normalization condition
Py(1) =1. (5.65)

Thus, for instance, Py(x) = constant, and the constant is fixed by (5.65) to give
Py(x) = 1. Similarly, P;(x) is a linear function ax + b satisfying

1
/ (ax+b) dx = 0. (5.66)
-1

Carrying out the integral, we find that b = 0 and a is fixed by (5.65) to be 1, giving
Py (x) = x. By similar arguments we can derive expressions for as many polynomials
as we like. The next two are Py(x) = %(3x2 —1) and P5(x) = %(Sx3 — 3x), and you
can find tables online or elsewhere that list them to higher order.

Now suppose that g(x) is any polynomial of degree less than N, so that it can be

written q(x) = Zlk\]::)l cix® for some set of coefficients cy. Then
1 N-1 1
/ q(x)Pn(x) dx = Z Ck xK Py (x) dx = 0, (5.67)
-1 k=0 -1

by Eq. (5.64). Thus, for any N, Pn(x) is orthogonal to every polynomial of lower
degree. A further property of the Legendre polynomials, which we will use shortly,
is that for all N the polynomial Py (x) has N real roots that all lie in the interval
from —1 to 1. That is, there are N values of x in this interval for which Py (x) = 0.

We make use of the Legendre polynomials as follows. Our goal is to find an
integration rule of the form

1 N
/ O dr = 3w ). (5.:68)
- k=1
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(As we saw in the previous section, if we can find sample points and weights for an
integral like this over the standard interval from —1 to 1 then we can do integrals over
any other interval by a simple change of variables, Eqgs. (5.61) and (5.62).) Suppose
that the integrand f(x) is a polynomial in x of degree 2N — 1 or less. If we divide
f(x) by the Legendre polynomial Py (x), then we get

f(x) = q(x)Pn(x) +1r(x), (5.69)

where g(x) and r(x) are both polynomials of degree N — 1 or less. Thus our integral
can be written

/llf(x) dx = /11 q(x)Pn(x) dx + /11 r(x) dx = /11 r(x) dx, (5.70)

where the term in g(x) vanishes because of (5.67). This means that to find the integral
of the polynomial f(x) we have only to find the integral of the polynomial r(x),
which always has degree N — 1 or less.

But we already know how to solve this problem. As we saw in Section 5.6.1, for
any choice of the N sample points xi, a polynomial of degree N — 1 or less can be
fitted exactly using the interpolating polynomials ¢ (x), Eq. (5.53), and then the fit
can be integrated to give

1 1 N
/ f(x)dx = / r(x)dx = Z wir(xg), (5.71)
-1 -1 k=1

where :
Wi = / ¢r (x) dx. (5.72)
-1

(See Eq. (5.60) on page 157.) Note that, unlike Eq. (5.68), the equality in Eq. (5.71) is
now an exact one, because the polynomial fit is exact.

Thus we have a method for integrating any polynomial of degree 2N — 1 or less
exactly over the interval from —1 to 1: we divide by the Legendre polynomial Py (x)
and then integrate the remainder polynomial r(x) using any set of N sample points
we choose plus the corresponding weights.

This, however, is not a very satisfactory method. In particular the polynomial
division is rather complicated to perform. However, we can simplify the procedure
by noting that, so far, the positions of our sample points are unconstrained and we
can pick them in any way we please. So consider again an integration rule of the
form (5.68) and make the substitution (5.69), to get

N N N
D wif (k) = D wieq(xi) P (i) + D wier (x). (5.73)
k=1 k=1 k=1

But we know that Py (x) has N zeros between —1 and 1, so let us choose our N sample
points xi to be exactly the positions of these zeros. That is, let x; be the kth root of
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the Legendre polynomial Py (x). In that case, Py(xx) = 0 for all k and Eq. (5.73)
becomes simply

N N
D wif () = D wir(xg). (5.74)
k=1 k=1

Combining with Eq. (5.71), we then have

1 N
/ ) dx = i f ), (5.75)
- k=1

where the equality is exact. Now we have a integration rule of the standard form
that allows us to integrate any polynomial function f(x) of degree 2N — 1 or less
from —1 to 1 and get an exact answer (except for rounding error).

Let us pause for a moment to take that in: this integration rule will give the exact
value for the integral, even though we only measure the function at N points. Upon
reflection, this is a remarkable result. If we measure a polynomial of any degree
greater than N — 1 at only N points then we do not have enough information to
actually reconstruct the polynomial—a polynomial of degree N or greater has at least
N+1 coefficients, so N measurements are not enough to fix all the degrees of freedom.
Nonetheless, even though we cannot tell what the polynomial is, we can calculate its
integral.

The calculation of the positions of the zeros of Py (x) does take some work. For
any n > 1 the Legendre polynomials are known to satisfy the recurrence relation

(n+1)Pu1(x) = 2n+ 1)xP,(x) — nP,_1(x), (5.76)

and starting from Py(x) = 1 and P; (x) = x we can use this formula to calculate P, (x),
then P5(x), P4(x), and so on until we reach the desired Py (x). This gives us the value
of Px (x) for any x exactly, apart from rounding error. Then the zeros can be found
using, for instance, Newton’s method. (If you are not familiar with Newton’s method,
we study it in detail in the next chapter, in Section 6.3.5.)

5.6.3 WEIGHTS FOR GAUSSIAN QUADRATURE

Once we have the sample points, the final step of our derivation is to calculate the
weights wy for our integration rule from Eq. (5.60) on page 157, which says that
Wi = f_ 11 ¢ (x) dx. Recall that the Lagrange interpolating polynomial ¢ (x) is given
by Eq. (5.53) to be

_ (x = xm)
Pr(x) = mgN Car) (5.77)
m#

Since we have chosen the x,, to be the roots of the polynomial Py (x), we have, by
definition,

Py(x)=A ﬁ(x - Xm), (5.78)
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where A is a constant equal to the coefficient of xV in Py. If we define
) =A [] (x-xm) (5.79)
m=1...N
m#k
then Py (x) = (x — xx) Y (x) and (5.77) becomes
Y(x) _ Pn(x)/(x = xi)
xX) = = , 5.80
W= T P (>80
where P, (x) is the derivative of Py (x) and we have made use of
. Pyn(x ,
P = lim O (531)
XX X — xk
by ’'Hopital’s rule. Thus the weight wy is
1 1 1 PN(X)
Wi = (x) dx = = dx. (5.82)
¢ / & PLGa) Jor x =i

The value of the remaining integral can be calculated from the recurrence relation
in Eq. (5.76). Multiplying this relation throughout by P, (y) for any y we have

(n+ 1) Pry1 (x)Pa(y) = (2n+ 1)xPn(x)Pu(y) = nPr-1(x)Pa(y).  (5.83)
Subtracting this equation and the same equation with x and y exchanged, we get

(n+ 1) [Pra1 (%) Pu(y) = Pu(x)Pps1(y)] = (20 + 1) (x = y) Pu(x) P (y)+
+ ”[Pn(x)Pnfl(y) - Pn—l(x)Pn(y)],

(5.84)
and summing over n from 1 to N — 1 and rearranging, we get
N-1 N-1
(x =) D5 (@n+ DPa(x)Pu(y) = 37 (n+ 1) [Prss (x)Pu(y) = Pu(x)Prss (y)]
n=1 n=1
-1
= 2 nPn(x)Pn-1(y) = Pp-1(x)Pp(y)]
n=1
= N[Pn(x)Pn-1(y) = PN-1(x)PN(y)] = (x = y),
(5.85)

with all the other terms on the right having canceled. Rearranging again, we arrive
at the Christoffel-Darboux formula for the Legendre polynomials:

N-1 Pn(x)Pn-1(y) — Pn-1(x)Pn(y) .

Z (2n+1)P,(x)P,(y) =N (5.86)
n=0 xX—y

Note how the term x — y on the right-hand side of (5.85) has been absorbed into the
n = 0 term in the sum on the left, exploiting the fact that Po(x) = Py(y) = 1.

GAUSSIAN QUADRATURE
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Setting y = x; and noting that Px (xx) = 0 because xy, is a root, Eq. (5.86) becomes

N_
Z]l(Zn +1)Pp(x)Py(xp) = NENCIPN-1 () (5.87)
=0 X — Xk

Now we integrate both sides with respect to x from —1 to 1, noting that, because
Py(x) = 1and P, (x) for n > 1is orthogonal to Py(x), all terms in the sum on the left
vanish except for the n = 0 term, and we get

1 N-1

> (20 + 1) Pa(x) P (i) dix = Py () / P(x) dx =2
-1

-1 n=0
Py (x)
X — Xk

/ PN () dx = 2 (5.89)

y x—xk  NPn_i(xx)

1
= NPN,I(xk)/ dx, (5.88)
-1

or

Substituting this result into Eq. (5.82), we arrive at an expression for the integration

weights:
2

T NP ()P (ki)

Finally, we can if we wish simplify this expression by making use of another

Wi (5.90)

standard recurrence relation for the Legendre polynomials:
(x* = 1)Py(x) = N[xPn(x) = Py-1(x)]. (5.91)
Setting x = x; and noting again that Py (x;) = 0, we get

NPy _1(xx)

Pl (xx) =
N( k) l—xi

, (5.92)

and combining this result with (5.90), we derive two further forms for wy thus:

Wi = 2 (5.93)
A -D Pl '
2
Wi = 201~ x) (5.94)

[NPN-1(xi)]*

The first of these is the form one sees most often in books and online, but we find
the second one more convenient in practice. Since one calculates the Legendre poly-
nomials from the recurrence relation (5.76) starting from P, (x) and working up, one
always calculates Pnx_1(x) en route to calculating Py(x), meaning we can evalu-
ate (5.94) easily using results we already have at hand after finding the roots of Py (x).

Figure 5.4 shows what our sample points and weights look like for the cases
N =10 and N = 100. Note how the points get closer together at the edges while at
the same time the weights get smaller.



5.6 | GAUSSIAN QUADRATURE
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Figure 5.4: Sample points and weights for Gaussian quadrature. The positions and heights of the bars represent the
sample points and their associated weights for Gaussian quadrature with (a) N = 10 and (b) N = 100.

Combining everything we have learned, our final integration rule, based on the
sample points x; and weights wy, is called Gaussian quadrature’ and although its
derivation is quite complicated, using it in practice is beautifully simple: given the
values x; and wy for your chosen N, you can integrate any function over the interval
—1 to 1 by simply performing the sum in Eq. (5.68). For integrals over any other in-
terval, you rescale the values using Eqgs. (5.61) and (5.62) and then perform the sum in
Eq. (5.63). Note that, although we have derived the method by considering integrals
of polynomial functions, its use is not restricted to polynomials. It can be used to
integrate functions of any kind. It does not give exact answers for non-polynomial
functions, but it is highly accurate nonetheless, even when using a relatively small
number of sample points.

The only difficult part of the method is finding the values of x; and wy in the first
place. As described above, we can calculate them using the recurrence relation (5.76)
plus Newton’s method, combined with the formula for the weights, Eq. (5.94). The
calculation is not complicated, but getting it right does require some care. You are
welcome to give it a try, but we also provide Python functions to do it in Appendix C
and in the online resources in the file gaussxw.py. We will make use of these func-
tions extensively in this book. Example 5.2 below shows how to use them.

31t is called “Gaussian” because it was pioneered by the legendary mathematician Carl Friedrich
Gauss. “Quadrature” is an old (19th century) name for numerical integration—Gauss’s work predates
the invention of computers, to a time when people did numerical integrals by hand, meaning they were
very concerned about getting the best answers when N is small. When you are doing calculations by
hand, Simpson’s rule with N = 1000 is not an option.
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EXAMPLE 5.2: GAUSSIAN INTEGRAL OF A SIMPLE FUNCTION

Consider again the integral we did in Example 5.1, f02 (x*=2x+1)dx, whose true value,
as we saw, is 4.4. Here is a program to evaluate the same integral using Gaussian
quadrature. Just to emphasize the impressive power of the method, we will perform
the calculation with only N = 3 sample points:

from gaussxw import gaussxw

def f(x):
return x**4 - 2xx + 1

=3
a=20.9
b=2.0

# Calculate the sample points and weights
x,w = gaussxw(N,a,b)

# Perform the integration
S =20.0
for k in range(N):

s += wlk1*f(x[k1)

print(s)

For this program to work you must have a copy of the file gaussxw.py in the same
folder as the program itself.

The function gaussxw takes three arguments, which are the value of N plus the
limits a and b of the integration interval. The latter two are optional—if they are
omitted the function assumes the standard interval where a = —1 and b = 1. Note
also how the function returns two variables, not just one. We discussed functions
of this type in Section 2.6 but this is the first time we have seen one in use. In this
case the variables are arrays, x and w, containing the sample points and weights for
Gaussian quadrature on N points over the interval from a to b.

The program above is very simple—no more complicated than the program for
the trapezoidal rule in Example 5.1—yet when we run it, it prints the following:

4.4

The program has calculated the answer exactly, with just three sample points. This
is not a mistake, or luck, or a coincidence. It’s exactly what we expect. Gaussian
integration on N points gives exact answers for the integrals of polynomial functions
up to and including polynomials of degree 2N —1, which for N = 3 means degree five.
The function x* — 2x + 1 that we are integrating here is a degree-four polynomial,
so we expect the method to return an exact answer, and it does. Nonetheless, the
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performance of the method does seem almost magical in this case: the program has
evaluated the integrand at just three points and from those three values alone it is,
amazingly, able to calculate the integral of the entire function exactly.

This is the strength of Gaussian quadrature: it can give remarkably accurate an-
swers, even with small numbers of sample points. This makes it especially useful in
situations where you cannot afford to use large numbers of points, either because
you need to be able to calculate an answer very quickly or because evaluating your
integrand takes a long time even for just a few points.

The method does have its disadvantages. In particular, because the sample points
are not uniformly distributed it takes more work if we want to employ the trick of
repeatedly doubling N, as we did in Section 5.3, to successively improve the accuracy
of the integral—if we change the value of N then all the sample points and weights
have to be recalculated, and the entire sum over points, Eq. (5.52), has to be redone.
We cannot reuse the calculations for old sample points as we did with the trapezoidal
rule. In the language of computational physics we say that the sample points are not
nested.

Exercise 5.9: Heat capacity of a solid

Debye’s theory of solids gives the heat capacity of a solid at temperature T to be

3 pOp/T 4 .x
Cy = 9Vpk3(%) A- —( xe d

X,
e* —1)2

where V is the volume of the solid, p is the number density of atoms, kg is Boltzmann’s
constant, and @p is the so-called Debye temperature, a property of solids that depends on their
density and speed of sound.

a) Write a Python function cv(T) that calculates Cy for a given value of the tempera-
ture, for a sample consisting of 1000 cubic centimeters of solid aluminum, which has a
number density of p = 6.022 X 102 m~3 and a Debye temperature of fp = 428 K. Use
Gaussian quadrature to evaluate the integral, with N = 50 sample points.

b) Use your function to make a graph of the heat capacity as a function of temperature
fromT =5Kto T =500K.

Exercise 5.10: Period of an anharmonic oscillator

The simple harmonic oscillator crops up in many places. Its behavior can be studied readily
using analytic methods and it has the important property that its period is a constant, inde-
pendent of the amplitude of oscillation, making it useful, for instance, for keeping time in
watches and clocks.

Frequently in physics, however, we also come across anharmonic oscillators, whose period
varies with amplitude and whose behavior cannot usually be calculated analytically. A general
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classical oscillator can be thought of as a particle in a concave potential well. When disturbed,
the particle will rock back and forth in the well:

A
V(%)

\)

=
The harmonic oscillator corresponds to a quadratic potential V(x) o« x2. Any other form
gives an anharmonic oscillator. (Thus there are many different kinds of anharmonlc oscillator,
depending on the exact form of the potential.)

One way to calculate the motion of an oscillator is to write down the equation for the
conservation of energy in the system. If the particle has mass m and position x, then the total
energy is equal to the sum of the kinetic and potential energies thus:

2
E= %m(i—f) +V(x).

Since the energy must be constant over time, this equation is effectively a (nonlinear) differ-
ential equation linking x and ¢.

Let us assume that the potential V(x) is symmetric about x = 0 and let us set our anhar-
monic oscillator going with amplitude a. That is, at t = 0 we release it from rest at position
x = a and it swings back towards the origin. Thus at ¢ = 0 we have dx/d¢ = 0 and the equation
above reads E = V(a), which gives us the total energy of the particle in terms of the amplitude.

a) When the particle reaches the origin for the first time, it has gone through one quarter
of a period of the oscillator. By rearranging the equation above for dx/dt and then
integrating with respect to t from 0 to %T, show that the period T is given by

T\/_/W

b) Suppose the potential is V(x) = x* and the mass of the particle is m = 1. Write a
Python function that calculates the period of the oscillator for given amplitude a using
Gaussian quadrature with N = 20 points, then use your function to make a graph of
the period for amplitudes ranging from a = 0 to a = 2.

¢) You should find that the oscillator gets faster as the amplitude increases, even though
the particle has further to travel for larger amplitude. And you should find that the
period diverges as the amplitude goes to zero. How do you explain these results?

Exercise 5.11: Suppose a plane wave of wavelength A, such as light or a sound wave, is
blocked by an object with a straight edge, represented by the solid bar at the bottom of this
figure:
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The wave will be diffracted at the edge and the resulting intensity at the position (x, z) marked
by the dot is given by near-field diffraction theory to be

I= %([zC(u) +1]% + [28(w) + 1]7),

where Ij is the intensity of the wave before diffraction and

u u
u= x,[i , C(u) = / cos(%ntz) dt, S(u) = / Sil’l(%f[l’z) dt.
Az 0 0

Write a program to calculate I/l and make a plot of it as a function of x in the range —5m
to 5m for the case of a sound wave with wavelength A = 1m, measured z = 3m past the
straight edge. Calculate the integrals using Gaussian quadrature with N = 50 points. You
should find significant variation in the intensity of the diffracted sound—enough that you
could easily hear the effect if sound were diffracted, say, at the edge of a tall building.

5.6.4 ERRORS ON GAUSSIAN QUADRATURE

In our study of the trapezoidal rule we derived an expression, the Euler-Maclaurin
formula of Eq. (5.20), for the approximation error on the value of an integral. There
exists a corresponding expression for Gaussian quadrature but it is, unfortunately,
ungainly and not easy to use in practice. What it does tell us, however, is that
Gaussian quadrature is impressively accurate. Roughly speaking, the approxima-
tion error—the difference between the value of an integral calculated using Gaus-
sian quadrature and the true value of the same integral, neglecting rounding error—
improves by a factor of ¢/N? when we increase the number of samples by just one,
where c is a constant whose value depends on the detailed shape of the integrand
and the size of the domain of integration. Thus, for instance, if we go from N = 10 to
N =11 our estimate of the integral will improve by a factor of order a hundred. This
means that we converge extremely quickly on the true value of the integral, and in
practice it is rarely necessary to use more than a few tens of points, or at most per-
haps a hundred, to get an estimate of an integral accurate to the limits of precision
of the computer.

There are some caveats. An important one is that it must be possible to capture
the shape of the integrand well by looking only at its values at the sample points.
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When one is calculating an integral using a relatively small number of sample points,
the points will inevitably be far apart, which leaves room for the function to vary sig-
nificantly between them. Since Gaussian quadrature looks only at the values at the
sample points and nowhere else, substantial variation between points is not taken
into account in calculating the value of the integral. Thus for rapidly varying func-
tions one needs to use enough sample points to capture the variation, and in such
cases larger values of N may be warranted.

Another issue is that there is no direct equivalent of Eq. (5.28) for estimating the
error in practice. As we have said, however, the error improves by a factor of ¢/N?
when the number of samples is increased by one, which is typically a substantial
improvement if N is reasonably large. And if we double the value of N then we
compound many such improvements, giving an overall reduction in the error by a
factor of something like N=2V, which is typically a huge improvement.

If we make a Gaussian estimate Iy of the true value I of an integral using N
sample points, then I = Iy + dn, where dy is the approximation error. If we double
the number of samples to 2N, we have I = I,y + d2n. Equating the two expressions
for I and rearranging, we have

5]\] - 52]\] = IZN - IN. (595)

But, as we have argued, the error is expected to improve by a large factor when
we double the number of sample points, meaning that d,5 <« Jdy. So, to a good
approximation,

ON = Ly — IN. (5.96)

Another way of saying this is that I,y is so much better an estimate of the true value
of the integral than Iy that for the purposes of estimating the error we can treat it
as if it were the true value, so that Iy — Iy is a good estimate of the error.

We can use Eq. (5.96) in an adaptive integration method where we double the
number of sample points at each step, calculating the error and repeating until the
desired target accuracy is reached. Such a method is not entirely satisfactory, for a
couple of reasons. First, when we double the number of sample points from N to 2N,
Eq. (5.96) gives us only the error on the previous estimate of the integral Iy, not on
the new estimate I,n. This means that we end up doubling N one more time than is
strictly necessary to achieve the desired accuracy, and the final value for the integral
will probably be significantly more accurate than we really need it to be, which means
we have wasted time on unnecessary calculations. Second, we have to perform the
entire calculation of the integral anew for each new value of N. As mentioned earlier,
and unlike the adaptive trapezoidal method of Section 5.3, we cannot reuse the results
of earlier calculations to speed up the computation. So an adaptive calculation of this
type would be slower than just a single instance of Gaussian quadrature. On the other
hand, it is straightforward to show that the total number of terms in all the sums we
perform, over all steps of the process, is never greater than twice the final value of N
used, which means that the adaptive procedure costs us no more than about twice
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the effort required for the simple Gaussian quadrature. Moreover, as we have said,
we rarely need to go beyond N = 100 to get a highly accurate answer, so the number
of times we double N is typically rather small. If we start with, say, N = 10, we
will probably only have to double three or four times. The net result is that, despite
the extra work, Gaussian quadrature is often more efficient than methods like the
trapezoidal rule or Simpson’s rule in terms of overall time needed to get an answer
to a desired degree of accuracy.

An alternative, though more complex, solution to the problem of estimating the
error in Gaussian quadrature is to use Gauss—Kronrod quadrature, a variant of Gaus-
sian quadrature based on the properties of Stieltjes polynomials, which provides not
only an accurate estimate of the integral (though not quite as accurate as ordinary
Gaussian quadrature) but also an estimate of the error. We will not use Gauss-
Kronrod quadrature in this book, but the interested reader can find a discussion,
with some derivations, in Appendix A, Section A.1.

5.7 CHOOSING AN INTEGRATION METHOD

We have studied a number of integration methods in this chapter: the trapezoidal
rule and Simpson’s rule as well as adaptive versions of both, Romberg integration,
and Gaussian integration. You might ask at this point which of all these methods is
the best? Which one should you use, in practice, if you need to evaluate an integral?

There is no one answer to this question. Which method you should use depends
on the particular problem confronting you. A good general principle, however, is that
higher-order methods such as Romberg and Gaussian integration—methods that al-
low you to make accurate estimates of integrals using relatively few sample points—
work best when applied to smooth, well-behaved functions. If your function is not
smooth or is poorly behaved in some way, then simpler methods, and particularly the
trapezoidal rule, are the way to go. The reason is that any integration method knows
only about the value of the integrand at its sample points. If the integrand varies
significantly in between the sample points, then that variation will not be reflected
in the computed value of the integral, which can lead to inaccurate results. If you
are evaluating an integral using only ten or twenty sample points, it is crucial that
those points give a good picture of the integrand—if you join up the dots the result
should capture most of the shape of the function. If it does not then methods using
few sample points will not do a good job. Conversely, for smooth functions whose
shape can be captured with relatively few sample points, methods such as Romberg
and Gaussian integration are excellent choices, providing impressive accuracy with
very little computational effort.

Bearing these principles in mind, here is a guide to the kinds of problems each of
our integration methods is good for.

The trapezoidal rule: The trapezoidal rule of Section 5.1.1 is trivial to program
and hence is a good choice when you need a quick answer for an integral. It is not
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very accurate, but sometimes you don’t need great accuracy. It uses equally spaced
sample points, which is appropriate for applications such as integrating data from
laboratory experiments that are sampled at uniform time intervals. The trapezoidal
rule is also a good choice for poorly behaved functions—those that vary widely or
rapidly, contain singularities, or are noisy. It is usually a better choice for such func-
tions than the other methods we have considered. In its adaptive form (Section 5.3)
it can also give us a guaranteed accuracy for an integral, although it may take more
computer time to achieve that accuracy than other methods.

Simpson’s rule: Simpson’s rule (Section 5.1.2) has many of the benefits of the
trapezoidal rule, such as simplicity of programming and equally spaced sample points.
It gives greater accuracy than the trapezoidal rule with the same number of sample
points, or the same accuracy with fewer points, but relies on higher-order approx-
imation of the integrand, which can lead to problems if the integrand is noisy or
otherwise not smooth—use it with caution if you are unsure of the nature of your
integrand. Its adaptive form (Section 5.3) provides a result of guaranteed accuracy,
and does so faster than the equivalent trapezoidal rule calculation, but again may be
less suitable for poorly behaved integrands.

Romberg integration: When using equally spaced sample points, Romberg
integration (Section 5.4) is the quintessential higher-order integration method. It
gives exceptionally accurate estimates of integrals with a minimum number of sam-
ple points, plus error estimates that allow you to halt the calculation once you have
achieved a desired accuracy. Since it relies on extrapolating answers from measure-
ments of the integrand at only a few points, however, Romberg integration will not
work well for wildly varying integrands, noisy integrands, or integrands with math-
ematically pathological behaviors like singularities. It is best applied to smooth func-
tions whose form can be determined accurately from only a small number of sample
points.

Gaussian quadrature: Gaussian quadrature (Section 5.6) has many of the same
advantages as Romberg integration (potentially very high accuracy from small num-
bers of sample points) but also the same disadvantages (poor performance for badly
behaved integrands). It is also simple to program, as simple as any of the other meth-
ods we have considered. The hard work of the method lies in the calculation of the
integration points and weights, which is normally done for you by standard software,
and the Gaussian integral itself requires only the evaluation of a single sum in the
form of Eq. (5.68). It has the additional advantage over Romberg integration of still
higher-order accuracy and indeed, in a certain formal sense, it is the highest-order,
and hence potentially most accurate, integration rule available. The price you pay for
this is that the integration points are unequally spaced. If you need equally spaced
points, then Gaussian quadrature is not the method for you.

Armed with these guidelines, you should be able to choose a suitable integration
method for most problems you come up against.
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5.8 INTEGRALS OVER INFINITE RANGES

Often in physics we encounter integrals over infinite ranges, like [)m f(x) dx. The
techniques we have seen so far do not work for these integrals because we would
need an infinite number of sample points to span an infinite range. The solution to
this problem is to change variables. For an integral over the range from 0 to oo the
standard change of variables is

x z

z= or equivalentl x = .
1+x 1 Y 1-2z

(5.97)

Then dx = dz/(1 — z)? and

[rea= [t ) e -

which can be done using any of the techniques discussed earlier in the chapter, in-
cluding the trapezoidal and Simpson rules, or Gaussian quadrature.
This is not the only change of variables we can use, however. In fact, a change of

the form
x

5.99
c+x (5.99)

would work for any value of ¢, or z = x¥ /(1+xY) for any y, or any of a range of other
possibilities. Some choices typically work better than others for particular integrals
and sometimes you have to play around with things a little to find what works for
a given problem, but Eq. (5.97) is often a good first guess. (See Exercise 5.19 for a
counterexample.)

To do an integral over a range from some nonzero value a to co we can use a
similar approach, but make two changes of variables, first to y = x — a, which shifts
the start of the integration range to 0, and then z = y/(1 + y) as in Eq. (5.97). Or we
can combine both changes into a single one:

x—a z

z=— or X =
l1+x—a 1-z

+a, (5.100)

and again dx = dz/(1 - z)?, so that

/aoof(x) dx:/olﬁf(ﬁm) dz. (5.101)

Integrals from —oo to a can be done in a similar way using the substitution

1 z—1
z=— or x = +a, (5.102)
l1-x+a z
which gives
¢ Y1 z-1
/_m Fx) dx = /0 Z—Zf( — a) dz. (5.103)
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For integrals that run from —oco to co we can split the integral into two parts,
one from —oo to 0 and one from 0 to oo, and then use the tricks above for the two
integrals separately. Or we can put the split at some other point a and perform
separate integrals from —oo to a and from a to co. Alternatively, one could use a
single change of variables, such as

z 142
X = m s dx = m dZ, (5.104)
which would give
o U422 z
/_m fode= [ (=) = (5.105)
Another possibility, perhaps simpler, is
d
x = tanz, dx = coszz . (5.106)
which gives
© /2 f(tanz)
[m f(x) dx = [ﬂ/z m dz. (5107)

EXAMPLE 5.3: INTEGRATING OVER AN INFINITE RANGE

Let us calculate the value of the following integral using Gaussian quadrature:

I= /me_tzdt. (5.108)
0
We make the change of variables given in Eq. (5.97) and the integral becomes
1 o—22/(1-2)?
I= /0 T dz. (5.109)

We can modify our program from Example 5.2 to perform this integral using Gaus-
sian quadrature with N = 50 sample points:

from gaussxw import gaussxw
from math import exp

def f(z):
return exp(-zx*2/(1-z)**2)/(1-z)**2

N = 50
a=20.0
b=1.0
x,w = gaussxw(N,a,b)
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s =0.0
for k in range(N):

s += wlkIxf(x[k])
print(s)

If we run this program it prints
0.8862269254528359

In fact, the value of this integral is known exactly to be %\/_ = 0.8862269254527580...
Again we see the impressive accuracy of the Gaussian quadrature method: with just
50 sample points, we have calculated an estimate of the integral that is correct to 13
decimal places.

Exercise 5.12: The Stefan-Boltzmann constant
The Planck theory of thermal radiation tells us that in the (angular) frequency interval w to

 + dw, a black body of unit area radiates electromagnetically an amount of thermal energy
equal to I(w) dw per second, where

h w3

I((/J) = An2c? (ehw/kBT — 1) .

Here 7 is Planck’s constant over 27, c is the speed of light, and kp is Boltzmann’s constant.

a) Show that the total rate at which energy is radiated by a black body per unit area, over

all frequencies, is
k4 T4 0 3
B / X dx
0

T an2c2p3 e —1

b) Write a program to evaluate the integral in this expression. Explain what method you
used, and how accurate you think your answer is.

c) Even before Planck gave his theory of thermal radiation around the turn of the 20th
century, it was known that the total energy W given off by a black body per unit area
per second followed Stefan’s law: W = ¢T*, where ¢ is the Stefan-Boltzmann constant.
Use your value for the integral above to compute a value for the Stefan-Boltzmann
constant (in SI units) to three significant figures. Check your result against the known
value, which you can find online or in books. You should get good agreement.

Exercise 5.13: Quantum uncertainty in the harmonic oscillator

In units where all the constants are 1, the wavefunction of the nth energy level of the one-
dimensional quantum harmonic oscillator—i.e., a spinless point particle in a quadratic poten-
tial well—is given by

Un(x) = ——— e X /2 H, (),
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for n = 0...00, where Hy(x) is the nth Hermite polynomial. Hermite polynomials satisfy a
relation somewhat similar to that for Fibonacci numbers, although more complex:

Hp1(x) = 2xHp(x) — 2nHp-1(x).

The first two Hermite polynomials are Hy(x) = 1 and H; (x) = 2x.

a) Write a user-defined function H(n, x) that calculates H, (x) for given x and any integer
n > 0. Use your function to make a plot that shows the harmonic oscillator wavefunc-
tions for n = 0, 1, 2, and 3, all on the same graph, in the range x = —4 to x = 4. Hint:
There is a function factorial in the math package that calculates the factorial of an
integer.

b) Make a separate plot of the wavefunction for n = 30 from x = —10 to x = 10. Hint:
If your program takes too long to run in this case, then you’re doing the calculation
wrong—the program should take only a second or so to run.

c) The quantum uncertainty in the position of a particle in the nth level of a harmonic
oscillator can be quantified by its root-mean-square position W, where

(x2) = / " RGO dx.

(o8]

Write a program that evaluates this integral using Gaussian quadrature with 100 points,
then calculates the uncertainty (i.e., the root-mean-square position of the particle) for
a given value of n. Use your program to calculate the uncertainty for n = 5. You should
get an answer in the vicinity of \/@ =23.

5.9 MULTIPLE INTEGRALS

Integrals over more than one variable are common in physics problems and can be
tackled using generalizations of the methods we have already seen. Consider for
instance the integral

1 p1
I='/0'/0f(x,y)dxdy. (5.110)

We can rewrite this by defining a function F(y) thus

F(y) = / flxy) dx. (5.111)

I:/0 F(y) dy. (5.112)

Thus one way to do the multiple integral numerically is first to evaluate F(y) for
a suitable set of y values, which means performing the integral in Eq. (5.111), then
use those values of F(y) to do the integral in Eq. (5.112). For instance, if we do the
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Figure 5.5: Sample points for Gaussian quadrature in two dimensions. If one applies
Eq. (5.114) to integrate the function f(x,y) in two dimensions, using Gaussian quadrature
with N = 10 points along each axis, the resulting set of sample points in the two-dimensional
space looks like this.

integrals by Gaussian quadrature with the same number N of points for both x and
y integrals, we have

N N
Fy) = > wif(xiy) and  I= >, w;F(y)). (5.113)
i=1 Jj=1

Alternatively, we can substitute the first sum into the second to get the Gauss—
Legendre product formula:

N N
I~ Z Z Winf(xi,yj). (5.114)

i=1 j=1

This expression has a form similar to the standard integration formula for single
integrals, Eq. (5.52), with a sum over values of the function f(x, y) at a set of sample
points, multiplied by appropriate weights. Equation (5.114) represents a kind of two-
dimensional version of Gaussian quadrature, with weights w;w; distributed over a
two-dimensional grid of points as shown in Fig. 5.5.

Once you look at it this way, however, you realize that in principle there is no
reason why the sample points have to be on a grid. They could be anywhere—we
can use any set of 2D locations and suitable weights that give a good estimate of the
integral. Just as Gaussian quadrature gives the best choice of points for an integral
in one dimension, so we can ask what the best choice is for two dimensions, or for

MULTIPLE INTEGRALS

175



CHAPTER 5

176

INTEGRALS AND DERIVATIVES

Figure 5.6: 128-point Sobol sequence. The Sobol sequence is one example of a low-
discrepancy point set that gives good results for integrals in high dimensions. This figure
shows a Sobol sequence of 128 points in two dimensions.

higher dimensions like three or four. It turns out, however, that the answer to this
question is not known in general. There are some results for special cases, but no
general answer. Various point sets have been proposed for use with 2D integrals
that appear to give reasonable results, but there is no claim that they are the best
possible choices. Typically they are selected because they have some other desirable
properties, such as nesting, and not because they give the most accurate answer. One
common choice of point set is the Sobol sequence, shown for N = 128 points in Fig. 5.6.
Sobol sequences and similar sets of points are known as low-discrepancy point sets or
sometimes quasi-random point sets (although the latter name is a poor one because
there is nothing random about them). Another common way to choose the sample
points is to choose them completely randomly, which leads to the method known as
Monte Carlo integration. Choosing points at random may seem like an odd idea, but
we will see that it can be a useful approach for certain types of integrals, particu-
larly integrals over very many variables. We will look at Monte Carlo integration in
Section 10.2, after we study random number generators.

In the integral of Eq. (5.110) the limits of both integrals are constant, which makes
the domain of integration rectangular in xy space. It is not uncommon, however, for
the limits of one integral to depend on the other, as here:

I:/OIdy/Oydxf(x,y).

(5.115)
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Figure 5.7: Integration over a non-rectangular domain. When the limits of multiple
integrals depend on one another they can produce arbitrarily shaped domains of integration.
This figure shows the triangular domain that results from the integral in Eq. (5.115). The gray
region is the domain of integration. Note how the points become squashed together towards
the bottom of the plot.

We can use the same approach as before to evaluate this integral. We define

y
F(y) = / flxy) ds. (5.116)

so that

1
I:/(; F(y) dy, (5.117)

and then do both integrals with any method we choose, such as Gaussian quadrature.
The result, again, is a two-dimensional integration rule, but now with the sample
points arranged in a triangular space as shown in Fig. 5.7.

This method will work, and will probably give reasonable answers, but it is not
ideal. In particular note how the sample points are cramped together in the lower left
corner of the integration domain but much farther apart at the top. This means, all
other things being equal, that we will have lower accuracy for the part of the integral
at the top. It would be better if the accuracy were roughly uniform.

And things can get more complicated still. Suppose the domain of integration
takes some more elaborate shape like Fig. 5.8. We will not come across any examples
this complicated in this book, but if we did there would be various techniques we
could use. One is the Monte Carlo integration method mentioned above, which we
study in detail in Section 10.2. Another is to set the integrand to zero everywhere

MULTIPLE INTEGRALS
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Figure 5.8: A complicated integration domain. Integration domains can be arbitrarily
complicated in their shapes. They can even contain holes, or take on complex topologies in
higher dimensions such as tori or knotted topologies.

outside the domain of integration and then integrate it using a standard method over
some larger, regularly shaped domain, such as a rectangle, that completely encloses
the irregular one. There are more sophisticated techniques as well, but we will not
need them for the moment.

Exercise 5.14: Gravitational pull of a uniform sheet

A uniform square sheet of metal is floating motionless in space:

1 kg point mass

©

A

e
Z
| e

The sheet is 10 m on a side and of negligible thickness, and it has a mass of 10 metric tonnes.
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a) Consider the gravitational force due to the plate felt by a point mass of 1 kg a distance z
from the center of the square in the direction perpendicular to the sheet, as shown
above. Show that the component of the force along the z-axis is

F,=G //L/z drdy
= 0oz
‘ L2 (2 +y2 + 2232

where G = 6.674 x 10" m3 kg™! 572 is Newton’s gravitational constant and o is the
mass per unit area of the sheet.

b) Write a program to calculate and plot the force as a function of z fromz = 0 to z = 10 m.
For the double integral use (double) Gaussian quadrature, as in Eq. (5.114), with 100
sample points along each axis.

¢) You should see a smooth curve, except at very small values of z, where the force should
drop off suddenly to zero. This drop is not a real effect, but an artifact of the way we
have done the calculation. Explain briefly where this artifact comes from and suggest
a strategy to remove it, or at least to decrease its size.

This calculation can thought of as a model for the gravitational pull of a galaxy. Most of the
mass in a spiral galaxy (such as our own Milky Way) lies in a thin plane or disk, and the
gravitational pull exerted by that plane on bodies outside the galaxy can be calculated by
methods like the ones we have employed here.

5.10 DERIVATIVES

The opposite of a numerical integral is a numerical derivative. Numerical derivatives
are used less than numerical integrals, in part because derivatives of known functions
can always be calculated analytically, so there is less need for numerical methods,
but they are nonetheless important in certain applications, including the solution of
partial differential equations and the training of artificial intelligence models. Like
integrals, there are a range of methods for calculating derivatives, from the simple
but not very accurate to sophisticated higher-order approximations. We look at each
of these in this section, along with the technique of “automatic differentiation,” which
plays a big role in machine learning.

5.10.1 FORWARD AND BACKWARD DIFFERENCES

The standard definition of a derivative, the one you see in calculus books, is

o _ o S = f()

5.118
dx h—0 h ( )

The basic method for calculating numerical derivatives is a computational implemen-
tation of this formula. We cannot take the limit h — 0 in practice, but we can make h
very small and then calculate

o _ frh = f)

~ 5.119
dx h ( )

5.10
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Figure 5.9: Forward and backward differences. The forward and backward differences
provide two different approximations to the derivative of a function f(x) at the point x in
terms of the slopes of small segments measured in the forward (i.e., positive) direction from x
and the backward (negative) direction, respectively.

This approximation to the derivative is called the forward difference because it is
measured in the forward (i.e., positive) direction from the point of interest x. You can
think of it in geometric terms as shown in Fig. 5.9—it is the slope of the curve f(x)
measured over a small interval of width h in the forward direction from x.

There is also the backward difference, which has the mirror image definition

df _ fE) - fle=h)

i p (5.120)

The forward and backward differences typically give about the same answer and in
many cases you can use either. Most often one uses the forward difference, but there
are a few special cases where one is preferred over the other, particularly when there
is a discontinuity in the derivative of the function at the point x or when the domain
of the function is bounded and you want the value of the derivative on the boundary,
in which case only one or other of the two difference formulas will work. The rest of
the time, however, there is little to choose between them.

Before using either the forward or backward difference we must choose a value
for h and there is some art to getting the value right. To work out what value to
use we need to look at the errors and inaccuracies involved in calculating numerical
derivatives.

5.10.2 ERRORS

Calculations of derivatives using forward and backward differences are not perfectly
accurate. There are two sources of error. The first is rounding error of the type
discussed in Section 4.2. The second is the approximation error that arises because
we cannot take the limit A — 0, so our differences are not really true derivatives. By



contrast with numerical integrals, where, as we have seen, rounding error is usually
negligible, it turns out that both sources of error are important when we calculate a
derivative.

To understand why this is, let us focus on the forward difference and consider
the Taylor expansion of f(x) about x:

Fle+h) = F(x) +hf (x) + SR2F7 () + .. (5.121)

where f’ and f” denote the first and second derivatives of f. Rearranging this ex-
pression, we get

fi(x) =

When we calculate the forward difference we calculate only the first part on the
right-hand side, and neglect the term in f”’(x) and all higher terms. The size of
these neglected terms measures the approximation error on the forward difference.

Jw —Lhf(x) + .. (5.122)

Thus, to leading order in h, the absolute magnitude of the approximation error is
%h |f” (x)], which is linear in h so that, as we would expect, we should get more
accurate answers if we use smaller values of h.

But now here is the problem: as we saw in Section 4.2, subtracting numbers from
one another on a computer can give rise to big rounding errors (in fractional terms) if
the numbers are close to one another—so-called catastrophic cancellation. And that
is exactly what happens here. The numbers f(x+h) and f(x) that we are subtracting
will be very close to one another if we make h small, and we will get a large rounding
error as a result. This puts us in a difficult situation: we want to make A small to make
the forward difference approximation as accurate as possible, but if we make it too
small we will get a large rounding error. To get the best possible answer, we are
going to have to find a compromise.

In Section 4.2 we saw that the computer can typically calculate a number such
as f(x) to an accuracy of € f(x), where € is the machine precision, which is typically
about 107! in Python. Since f(x+h) is normally close in value to f(x), the accuracy
of our value for f(x + h) will also be about the same, and the absolute magnitude of
the total rounding error on f(x+h) — f(x) will, in the worst case, be about 2¢|f(x)|.
It might be better than this if the two errors go in opposite directions and happen
to cancel out, but we cannot assume that this will be the case. Then the worst-case
rounding error on the complete forward difference, Eq. (5.119), will be 2¢|f (x)|/h.

Meanwhile, the approximation error is, as we have said, %h | (x)] to leading
order in A, from Eq. (5.122), which means that the total error § on our derivative, in
the worst case, is

§=

26'];1(7()' + %hlf”(x)l (5.123)

We want to find the value of h that minimizes this error, so we differentiate with
respect to h and set the result equal to zero, which gives

_2¢|f ()|

il @l =0, (5.124)

5.10
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or equivalently

£
e

Substituting this value back into Eq. (5.123) we find that the error on our derivative is

§=h|f"(x)| = \|4€|f(x) f (x)). (5.126)

Thus, for instance, if f(x) and f”(x) are of order 1, we should choose & to be roughly
of order /e, which will be about 1078, and the final error on our result will also be
about /e or 1078, A similar analysis can be applied to the backward difference, and

. (5.125)

gives the same result.

In other words, we can get about half of the usual numerical precision on our
derivatives but not better. If the machine precision is, as here, about 16 digits, then
we can get 8 digits of precision on our derivatives. This is substantially poorer than
most of the calculations we have seen so far in this book, and could be a significant
source of error for calculations that require high accuracy.

5.10.3 CENTRAL DIFFERENCES

We have seen that forward and backward differences are not very accurate. What
can we do to improve the situation? A simple improvement is to use the central
difference:

daf _ fx+3h) - f(x—3h)

dx h '
The central difference is similar to the forward and backward differences, approxi-
mating the derivative using the difference between two values of f(x) at points a
distance h apart. What has changed is that the two points are now placed symmet-
rically around x, one at a distance %h in the forward (i.e., positive) direction and the

(5.127)

other at a distance %h in the backward (negative) direction.
To calculate the approximation error on the central difference we write two Tay-

lor series:
fc+3h) = f(x) + hf () + 2R F7 (x) + 7 (%) + . .. (5.128)
flx=3h) = f(x) = 3hf'(x) + 2R3 F7 (x) = B3 F7 () + . .. (5.129)

Subtracting the second expression from the first and rearranging for f”(x), we get

flx+3h) = fx = 3h)

£ = -

- LR () + . (5.130)

To leading order the magnitude of the error is now ihz | """ (x)|, which is one order
in h better than before. There is also, as before, a rounding error. Its size is unchanged



from our previous calculation, having magnitude 2¢|f (x)|/h, so the magnitude of the

total error on our estimate of the derivative is

_ 26lf )|
h

Differentiating to find the minimum and rearranging, we find that the optimal value
of his

) + LR (x)|- (5.131)

f(x)
F7 )
and substituting this back into Eq. (5.131) we find the optimal error itself to be

§= | ()] = (R LF @ ()]). (5.133)

Thus, for instance, if f(x) and f””(x) are of order 1, the ideal value of h is going to
1/3 2/3

1/3
h= (24e ) , (5.132)

be around €!/3, which is typically about 107>, but the error will be around €
about 1071

Thus the central difference is indeed more accurate than the forward and back-
ward differences, by a factor of 100 or so in this case, although we get this accuracy

by using a larger value of h. This may seem surprising, but it is the correct result.

, Or

EXAMPLE 5.4: DERIVATIVE OF A SAMPLED FUNCTION

As an example of the central difference, suppose we are given the values of a func-
tion f(x) measured at regularly spaced sample points a distance h apart—see Fig. 5.10.
One often gets such samples from data collected in the laboratory, for example. And
suppose we want to calculate the derivative of f at one of the points (case (a) in the
figure). We could use a forward or backward difference based on the sample at x and
one of the adjacent ones, or we could use a central difference. However, if we use a
central difference, which is based on points equally spaced on either side of x, then
we must use the points at x + h and x — h. We cannot, as in Eq. (5.127), use points at
X+ %h and x — %h because there are no such points—we only have the samples we
are given. The formula for the central difference in this case will thus be

df _flcth) - flx-h)
dx 2h '
This means that the interval between the points we use is 2h for the central difference,

but only h for the forward and backward differences. So which will give a better
answer? The central difference because it is a better approximation or the forward

(5.134)

difference because of its smaller interval?

From Eq. (5.126) we see that the error on the forward difference is h|f” (x)|
and from Eq. (5.133) the error on the central difference—with h replaced by 2h—is
%hz |f"” (x)|. Which is smaller depends on the value of A. For the central difference
to give the more accurate answer, we require %hz If"""(x)| < h|f"(x)| or

f"(x)

h<2 70

) (5.135)
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Figure 5.10: Derivative of a sampled function. (a) If we only know the function at a set of
sample points spaced a distance h apart then we must chose between calculating the forward
or backward difference between adjacent samples, or the central difference between samples
2h apart (straight lines). We cannot calculate a central difference using the standard formula,
Eq. (5.127), because we do not know the value of the function at x + %h. (b) We can, however,
calculate the central difference at a point half way between two samples using the standard
formula.

If his larger than this then the forward difference is actually the better approximation
in this case.

But now suppose that instead of calculating the value of the derivative at one of
the sample points, we calculate it at a point x that lies half way between two of the
samples—case (b) in Fig. 5.10. Viewed from that point we do have samples at x + %h
and x — %h, so now we can use the original form of the central difference, Eq. (5.127),
with an interval only h wide, as with the forward difference. This calculation will
give a more accurate answer, but only at the expense of calculating the result at a
point in between the samples.

Exercise 5.15: Even when we can find the value of f(x) for any value of x, the forward dif-
ference can still be more accurate than the central difference for sufficiently large h. For what
values of h will the approximation error on the forward difference of Eq. (5.119) be smaller
than on the central difference of Eq. (5.127)?

Exercise 5.16: Create a user-defined function f(x) that returns the value 1 + % tanh 2x, then
use a central difference to calculate the derivative of the function in the range -2 < x < 2.



Calculate an analytic formula for the derivative and make a graph with your numerical result
and the analytic answer on the same plot. It may help to plot the exact answer as lines and the
numerical one as dots. (Hint: In Python the tanh function is found in the math package and it
is called simply tanh.)

5.10.4 HIGHER-ORDER APPROXIMATIONS FOR DERIVATIVES

One way to think about the numerical derivatives of the previous sections is that we
are fitting a straight line through two points, such as the points f(x) and f(x + h),
and then asking about the slope of that line at the point x. The trapezoidal rule of
Section 5.1.1 does a similar thing for integrals, approximating a curve by a straight
line between sample points and estimating the area under the curve using that line.
We saw that we can make a higher-order—and usually better—approximation to an
integral by fitting a quadratic or higher-order polynomial instead of a straight line,
and this led to the Simpson and Newton-Cotes rules for integrals. We can take a
similar approach with derivatives by fitting a polynomial to a set of sample points
and then calculating the derivative of the polynomial at x.

Consider, for example, fitting a quadratic curve y = ax? + bx + ¢ to the func-
tion f(x). We require three sample points to make the fit, and suppose for example
that we are interested in the derivative at x = 0, so we place our three points at —A,
0, and +h, for some h that we choose. Requiring that our quadratic is equal to f(x)
at these three points gives us three equations thus:

ah® —=bh+c=f(=h), c=f(0),  ah®+bh+c=f(h), (5.136)

In principle, we can now solve these equations for the three parameters a, b, and c.
(This is the same calculation that we did in Section 5.1.2 for Simpson’s rule.) However,
in this case, we don’t need the whole solution, because we don’t need all of the
parameters. Given the quadratic fit y = ax? + bx + ¢, the derivative of the curve at
the point x = 0 is

dy 3
I [2ax +b] _ =b. (5.137)

x=0

So we need only the one parameter b, which we can get from Eq. (5.136) by subtract-
ing the first equation from the third to give 2bh = f(h) — f(—h) and rearranging.
Thus our approximation for the derivative at x = 0 is

df _ f) = f(=h)

1
ix h (5.138)

We have done this calculation for the derivative at x = 0, but the same result applies
at any other point—we can slide the whole function up or down the x-axis, to put
any point x at the origin and then calculate the derivative from the formula above.
Or, equivalently, we can just write

df  fx+h) -f(x-h)
dx 2h

(5.139)
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Degree | f(=3h) f(=2h) f(=3h) f(=h) f(=3h) f(O) fGh) f(h) fGH) f(2h) fGh) | Error
1 -1 1 O(h?)
2 -1 : O(h?)
3 % ~% % ~3i O(h*)
4 i -3 : 1 O(h*)
5|~ i & o ~ 553 dio | O(hY)

Table 5.1: Coefficients for numerical derivatives. The coefficients for central approximations to the first derivative of
f(x) at x = 0. To derive the full expression for an approximation, multiply the samples listed in the top row of the table by
the coefficients in one of the other rows, then divide by h. For instance, the cubic approximation would be [2—14 f (—%h) -

% (—%h) + % (%h) - ﬁ (%h)] /h. For derivatives at points other than x = 0 the same coefficients apply—one just uses the

appropriate sample points around the value x of interest. The final column of the table gives the order of the approximation
error on the derivative.

for general x.

This is the correct result for the quadratic approximation, but it is a disappointing
one, since Eq. (5.139) is nothing other than the central difference approximation for
sample points 2h apart, which we already saw in Eq. (5.134). In other words, the
higher-order approximation has not helped us in this case.

However, going to still higher orders does help. If we use a cubic or quartic
approximation, we do get improved estimates of the derivative. At higher orders
there is a distinction between the odd- and even-order approximations. For the odd-
order ones the sample points fall at “half-way” points, as with the central difference
of Eq. (5.127). For instance, to get the four sample points required for a cubic ap-
proximation, symmetrically distributed about zero, we would choose them to fall at
x = —%h, —%h, %h, and %h. For even-order approximations, on the other hand, the
samples fall at “integer” points. The five points for the quartic approximation, for
instance, fall at —2h, —h, 0, h, and 2h. The methodology for deriving the higher-order
approximations follows the same pattern as for the quadratic case: we write down
the required value of the polynomial at each of the sample points, which gives us a
set of simultaneous equations in the polynomial coefficients. As before, we actually
need only one of those coefficients, the coefficient of the linear term in the poly-
nomial. Solving for this coefficient gives us our expression for the derivative. At
each order the expression is a linear combination of the samples, divided by h. We
will not go through the derivations in detail, but Table 5.1 gives the coefficients of
the combinations for the first five approximations.

Each of the approximations given in the table is exact, apart from rounding er-
ror, if the function being differentiated is actually a polynomial of the appropriate
(or lower) degree, so that the polynomial fit is a perfect one. Most of the time, how-
ever, this will not be the case and there will be an approximation error involved in
calculating the derivative. One can calculate this error to leading order for each of
the approximations by a method analogous to our calculations for the forward, back-
ward, and central differences: we perform Taylor expansions about x = 0 to derive
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expressions for f(x) at each of the sample points, then plug these expressions into
the formula for the derivative. The order in h of the resulting error is listed in the final
column of Table 5.1. As before, this approximation error must be balanced against
the rounding error and a suitable value of h chosen to minimize the overall error in
the derivative.

An interesting point to notice about Table 5.1 is that the coefficient for f(0) in all
the approximations is zero. The value of the function exactly at the point of interest
never plays a role in the evaluation of the derivative. Another (not unrelated) point
is that the order in h of the error given in the final column does not go up uniformly
with the degree of the polynomial—it is the same for the even-degree polynomials
as for the next-lower odd-degree ones. We saw a special case of this result for the
quadratic: the quadratic fit just gives us an ordinary central difference and therefore
necessarily has an error O(h?), the same as the central difference derived from the
linear fit. In general, the odd-degree approximations give us slightly more accurate
results than the even-degree ones—the error is of the same order in A but the constant
of proportionality is smaller. On the other hand, the odd-degree approximations
require samples at the half-way points, as we have noted, which can be inconvenient.
As discussed in Example 5.4, we sometimes have samples at only the “integer” points,
in which case we must use the even-degree approximations.

5.10.5 RICHARDSON EXTRAPOLATION

An alternative way to compute higher-order approximations to derivatives is to use
Richardson extrapolation. We encountered Richardson extrapolation previously in
our study of Romberg integration in Section 5.4, where it provided us with a way
to increase the accuracy of integral evaluations, while doing only a little extra com-
putational work. Richardson extrapolation can also be applied to derivatives. We
illustrate the approach here using central differences, although it can also be applied
to forward and backward differences.

Equation (5.130) on page 182 tells us that the basic central difference has an ap-
proximation error O(h?) to leading order. In fact, noting the alternating signs in the
Taylor expansion of Eq. (5.129), it is straightforward to see that the central differ-
ence only has error terms of even order in A and no odd-order terms. So the central
difference for a function f(x) can be written

flx+3h) = f(x=3h)
h

f(x)= +ch? +O(hY), (5.140)
where c is a constant. Suppose we make an estimate—call it D;—of the derivative of
f(x) using a central difference with step size hy:

D :f(x+%h1)—f(x—%h1).

5.141
1 - (5.14)
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Then from (5.140) we have
f/(x) = Dy + ch? + O(h}). (5.142)

Now let us halve our step size to by = %hl and repeat the calculation to get another
estimate D, such that
f/(x) = Dy + chi + O(h3). (5.143)

Equations (5.142) and (5.143) are both expressions for the same derivative, so we can
equate them to get

Dy + ch? + O(h}) = Dy + chi + O(h}), (5.144)

or
ch = 2(D; — Dy) + O(h3), (5.145)

where we have made use of hy = 2h;. Substituting this expression back into Eq. (5.143),
we now have
f'(x) =Dz + 3(D; — Dy) + O(hj), (5.146)

which is accurate to order h* and has a error of order k%, two orders better than the
original central difference.

We can take this argument further. Suppose we compute a whole series of central
differences, Dy, D, Ds . . ., each with half the step size of the previous one, and let us
define a notation similar to the one we used for Romberg integration in Section 5.4,
such that

Ri1 =Dy, Riz =D;+3(D; = D;_1) = Rip + 3(Rix — Ri_1). (5.147)

Then, from Eq. (5.146),
f'(x) = Riz + c2hi + O(h), (5.148)

where ¢, is another constant and we have made use of the fact that the series for the
central difference contains only even powers of h. Similarly,

f/(x) = Ri—12 + coh?_| + O(KS_,) = Ri_y12 + 16¢c3hF + O(RY). (5.149)
Equating (5.148) and (5.149) and rearranging, we get
c2hf = L(Riz — Riy2) + O(hY). (5.150)
And substituting this expression back into (5.148) gives
f'(x) =Rz + = (Riz — Ri—12) + O(hY). (5.151)

Now we have eliminated the h} term and generated an estimate of the derivative
accurate to fifth order, with a sixth-order error.



We can continue this process, calculating higher and higher order terms and get-
ting more and more accurate results. The derivation follows the same the lines as for
Romberg integration and gives similar looking formulas, with a recurrence relation
for the Richardson estimates of

Ri,m+1 = Ri,m + (Ri,m - Ri—l,m)a (5152)

4m — 1
and an error on R; ,, of

1
emhi™ = o (Rim = Ricim)- (5.153)

To make use of these results we do the following:
1. First we calculate our initial central differences D; = Ry ; and D; = Ry, using
the standard formula, Eq. (5.127).
2. From these we calculate the more accurate estimate R, » using Eq. (5.152). This
is as much as we can do with only the two starting estimates.
3. Now we calculate the next central difference D3 = Rs; and from this, with
Eq. (5.152), we calculate Rs 5, and then Rs 3.
4. At each successive stage we compute one more central difference D; = R;;,
and from it, with very little extra effort, we can calculate R; 5 ... R; ;.
5. For each estimate we can also calculate the error, Eq. (5.153).
We can now continue this process until the error reaches a desired level of accuracy
then stop, or we can simply continue until the value of h decreases to the point where
rounding error makes further calculations pointless, which for the central difference
is around h = 107 (see Section 5.10.3).
The structure of the calculation can be represented with a diagram similar to the
one we used for Romberg integration:

Dy =Ry,
N
D; =Rz1 — Ry
N N
D3 =R31 — R3z — Rs3
N N N

Dy=Ry1 — Ryp — Ry3 — Ryy
N N N N
Each row here corresponds to one central difference estimate D; followed by the
other higher-order estimates derived from it. The most accurate estimate we get
from the whole process is the very last one: if we do n levels of the process, then the
last estimate is R, ,, which is accurate to order h%".

5.10.6 SECOND DERIVATIVES

So far our discussion has focused on calculation of the first derivative of a func-
tion f(x), but we can also calculate numerical approximations to the second and
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higher derivatives. The second derivative is, by definition, the derivative of the first
derivative, so we can calculate it by applying our first-derivative formulas twice.
For example, starting with the central difference formula, Eq. (5.127), we can write
expressions for the first derivative at x + %h and x — %h thus:

flx+h) - f(x) f&) - fx=h
h h ’

f/(x+ %h) ~ , f’(x — %h) ~ (5154)

Then we apply the central difference again to get an expression for the second deriva-
tive:

[+ 3h) = f'(x = 3h)

£ = -
_LfGe W) = F/A= () = FGx = W1 /h
h
:f(x+h)—2j;l(2x)+f(x—h)' (5.155)

This is the simplest approximation for the second derivative. We will use it exten-
sively in Chapter 9 for solving second-order differential equations. Higher-order
approximations exist too, but we will not use them in this book.

We can also calculate the error on Eq. (5.155). We perform two Taylor expansions
of f(x) thus:

FOc+h) = f(x)+hf (x) + 2R f7(x) + th°f7 (x) + 5 [ (%) + ... (5.156)
flx—h)=f(x)—hf'(x)+ %hzf"(x) - %h3f”'(x) + 21—4f”"(x) —-... (5.157)
Adding them together and rearranging, we find that

fll(x) — f(x+h) _zf’:l(zx) +f(x_h) _ %hZf/Nl(x)_l_“. (5158)

The first term on the right is our formula for the second derivative, Eq. (5.155), and
the remainder of the terms measure the error. Thus, to leading order, the absolute
error inherent in our approximation to the second derivative is éhz If""(x)|. As
before, we also need to take rounding error into account, which contributes an error
of roughly €|f(x)| on each value of f(x), where € is the machine precision, so that,
in the worst case, the total rounding error in the numerator of (5.155) is 4¢|f (x)| and
the rounding error on the whole expression is 4€|f(x)|/h?. Then the complete error

on the derivative is
_ delf(%)]

5= w + SHE| " (x). (5.159)

Differentiating with respect to h and setting the result to zero then gives an optimum

value of h of
f(x)

1/4
Fr) ) : (5.160)

h= (486




5.10 | DERIVATIVES

Substituting this expression back into Eq. (5.159) gives the size of the error to be

§= 10| ()| = (el f () f (2)]) 2 (5.161)

So if, for instance, f(x) and f”""/(x) are of order 1, the error will be roughly of order
Ve, which is typically about 1078, This is about the same accuracy as we found
for the forward and backward difference approximations to the first derivative in
Section 5.10.2. Thus our expression for the second derivative is not very accurate—
about as good as, but not better than, the forward difference. As mentioned above,
there are higher-order approximations for the second derivative that can give more
accurate answers. But for our purposes Eq. (5.155) will be good enough.

We can use the same method to derive expressions for higher derivatives too. For
instance, the third derivative is given by

fx+32h) =3f(x+3h) +3f(x — 3h) - f(h—3h)
h3 ’

and there are similar formulas for fourth and higher derivatives too. In this book,

() = (5.162)

however, we will only need derivatives up to the second.

5.10.7 PARTIAL DERIVATIVES

We will come across a number of situations in this book where we need to calculate
partial derivatives—derivatives of a function of several variables with respect to only
one of those variables. The calculation of such partial derivatives is a simple gener-
alization of the calculation of ordinary derivatives. If you have a function f(x,y) of
two variables, for instance, then the central difference approximations to derivatives
with respect to x and y are

of _flx+ihy) —flx—3hy)

, (5.163)
ox h
of _fy+gh) —flxy—3h) (5.164)
oy h

By analogy with our approach for the second derivative in Section 5.10.6 we can
also calculate second derivatives with respect to either variable, or a mixed second
derivative with respect to both, which is given by

azf f(x+%h,y+%h)—f(x—%h,y+%h)—f(x+%h,y—%h)+f(x— %h,y— %h)
oxdy h? '

We leave the derivation to the avid reader.

(5.165)

5.10.8 DERIVATIVES OF NOISY DATA

Suppose we have some measurements of a quantity that, when plotted on a graph,
look like Fig. 5.11a. Perhaps they come from an experiment in the lab, for instance.
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Figure 5.11: Derivative of noisy data. (a) An example of a noisy data set. The data plotted
in this graph have a clear underlying form, but contain some random noise or experimental
error as well. (b) The derivative of the same data calculated using a forward difference. The
action of taking the derivative amplifies the noise and makes the underlying form difficult to
discern.

The overall shape of the curve is clear from the figure, but there is some noise in the
data, so the curve is not completely smooth.

Now suppose we calculate the first derivative of this curve. We write a program
to calculate, say, the forward difference at each point and plot the values we get. The
result is shown in Fig. 5.11b. As you can see, taking the derivative has made our noise
problem much worse. Now it is almost impossible to see the shape of the curve. This
is a known problem with numerical derivatives. If there is any noise in the curve
you are differentiating, then it can be greatly exaggerated by taking the derivative,
perhaps to the point where the results are useless.

The reason for the problem is easy to see if you zoom in on a small portion of the
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Figure 5.12: An expanded view of the noisy data. The jagged line in this plot is an en-
largement of the first portion of the data from Fig. 5.11a, while the dotted line is a guess about
the form of the underlying curve, without the noise.

original data, as shown in Fig. 5.12. In this figure the solid line represents the actual
data, and the dotted line is a sketch of what the underlying curve, without the noise,
probably looks like. (We do not usually know the underlying curve, so this is just a
guess.) When viewed close-up like this, we can see that, because of the noise, the
slope of the noisy line is very steep in some places, and completely different from the
slope of the underlying curve. Although the noisy curve follows the general form of
the underlying one, its derivative does not. So now, when we calculate the derivative,
we generate spurious large values where there should be none.

Unfortunately, this kind of issue is common with physics data, and this is one of
the reasons why numerical derivatives are less used than numerical integrals. There
are some things we can do to mitigate the problem, although they all also decrease
the accuracy of our results:

1. The simplest thing we can do is increase the value of h. We can treat the noise
in the same way that we treat rounding error and calculate an optimum value
for h that balances the error from the noise against the error in our approxi-
mation of the derivative. The end result is a formula similar to Eq. (5.125) for
the forward difference or Eq. (5.132) for the central difference, but with the
machine precision € replaced by the fractional error introduced into the data
by the noise (which is the inverse of the signal-to-noise ratio).

2. Another approach is to fit a curve to a portion of the data near the point where
we want the derivative, then differentiate the curve. For instance, we might
fit a quadratic or a cubic, then differentiate that. We do not, however, fit a
quadratic to just three sample points or a cubic to just four, as we did in Sec-
tion 5.10.4. Instead we find the curve that best approximates a larger number of
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Figure 5.13: Smoothed data and an improved estimate of the derivative. The gray curve
in this plot is a version of the data from Fig. 5.11a that has been smoothed to remove noise
using a Fourier transform method. The black curve shows the numerical derivative of the
smoothed function, which is a significant improvement over Fig. 5.11b.

points, even though it will not typically pass exactly through all those points.
In effect, we are trying to find an approximation to the underlying smooth
curve depicted in Fig. 5.12. The derivative of this curve then gives an estimate
of the true derivative of the data without noise. Methods for fitting curves to
data like this are discussed in Section 11.5.

3. A third approach is to smooth the data in some other manner before differen-
tiating, which can be done, for instance, using Fourier transforms, which we
study in Chapter 7. (See Exercise 7.4 for an example of Fourier smoothing.)
Figure 5.13 shows a version of the data from Fig. 5.11 that has been smoothed
in this way, and the corresponding derivative, which is much cleaner now.

5.11 AUTOMATIC DIFFERENTIATION

A completely different approach to the numerical calculation of derivatives is auto-
matic differentiation. Automatic differentiation is a technique that allows us to cal-
culate an exact value (apart from rounding error) for the derivative of any function
for which we can write computer code. Automatic differentiation can be used to cal-
culate the derivative of a simple polynomial function for instance, or something as
complicated as a sum or integral computed with many loops and operations. How-
ever, it cannot be used for calculating the derivative of something like experimental
data—it applies only to functions calculated on the computer. But for these it is far
more accurate than typical numerical derivatives, such as forward or backward dif-
ferences, and does not even involve a great deal of computational effort. Automatic
differentiation is a mainstay of a number of important technologies, particularly in
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machine learning and artificial intelligence—it is a crucial component of the algo-
rithms used to train these systems.

Automatic differentiation with respect to a variable ¢t works by replacing any
other variable x that depends on t with a pair of values [x, x"], where x is the value
of the variable at some ¢ and x’ is its derivative with respect to ¢ at the same point.
For instance, if we are calculating the value of x = t? at t = 1 we would actually store
the pair of values [1, 2], because x = t2=1and x’ = 2t = 2.

Automatic differentiation further replaces each elementary mathematical opera-
tion in a program with a generalized version that takes as input these value/derivative
pairs and produces similar pairs as output. For instance, the operation of multiply-
ing a variable by a constant x — cx would be replaced by the operation [x,x'] —
[cx, cx’]. Or consider the operation of taking a power x — x¢. Applying the chain
rule, the derivative of x¢ with respect to ¢ is

%(xc) = cxH%, (5.166)
so our operation x — x¢ becomes [x,x’] — [x¢, cx¢"1x]
Here is a list of common operations:
x > x+c becomes [x,x'] = [x+c x']
X > cx becomes [x,x’] — [cx,cx’]
x — x° becomes [x,x’] — [x€, cx¢1x’]
x —c* becomes [x,x'] — [c¢*, (¢*Inc) x’]
x — logx becomes [x,x'] — [logx,x’/x]
x — sinx becomes [x,x’] — [sinx,x’ cosx]
x — cosx becomes [x,x'] — [cosx,—x smx]
x — tanx becomes [x,x’] — [tanx, x’ sec? x]

These are all unary operations, ones that operate on a single variable x. We can
also define generalizations of binary mathematical operations, such as addition. For
two variables x and y the standard addition operation that maps x, y — x+y becomes
[%,x'], [y, y'] = [x+y,x" +y']. Amore complex example is multiplication: if we
multiply x and y together, then, by the chain rule, the derivative of their product is

( y) = (5.167)

Var
So the normal multiplication operation x, y — xybecomes [x,x'], [y, y'] — [xy, xy'+
yx']. Here is a list of common binary operations:

’ ’

X,y > x+y becomes [x,x'],[y.y]— [x+yx +¢]
X,y —>x—y becomes [x,x'],[y,y]— [x- y,x -]
X,y — xy becomes [x,x'], [y, y'] — [xy, xy" +yx']
X,y — X becomes [x,x'],[y,y’] — [x u]
x,y — xY becomes [x,x'], [y,y’] — [xY, (x¥logx)x’ +yx¥~1y']
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And so forth. The general rule for unary operations U(x) is
x — U(x) Dbecomes [x,x'] = [U(x),U’(x)x’],

where U’ denotes the derivative of U with respect to its argument. The general rule
for binary operations B(x, y) is

xy — B(x,y) becomes [x,x'],[y,y'] — [B(x,y), Bx(x,y) x" + By(x,y) ¥,

where By and B, denote the partial derivatives of B with respect to x and y.

Armed with this machinery, we can now combine elementary operations to cal-
culate any more complicated function that can be expressed as a sequence of such
operations—which means essentially any function we can evaluate on a computer.
For instance, suppose we want to calculate the function f(x) = 3x% + e*. We could
do this by performing the following sequence of operations:

uy = x°, (5.168a)
Uy = 3U1, (5168b)
us = €%, (5.168¢)
then
f(x) = uy +us. (5.169)

With automatic differentiation, each mathematical operation—raising to the power
of 2, multiplying by 3, taking the exponential, and adding the two final terms—would
be performed using the generalized operations listed above and the end result would
be a pair [f, f’], representing the value of f and its derivative.

Now here is the final trick: to calculate the derivative f’(t) at any value of t,
we simply evaluate our function f(x) with argument [¢, 1] for whatever value of ¢
we are interested in. By definition this is the correct value/derivative pair for the
independent variable ¢, because dt/dt = 1 always. So if we use this pair as the
argument of our function, we will get out a pair representing the value of the function
f(t) and its derivative f’(t), at the chosen value of t.

EXAMPLE 5.5: AUTOMATIC DIFFERENTIATION

An example should help to make this clear. Let us store our value/derivative pairs as
two-element lists in Python of the form [value,derivative]. We begin by defining
some functions to perform basic mathematical operations on these lists:

from math import exp

def multiply(x,c):
vx,dx = x
return [c*vx,cxdx]
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def power(x,c):
vx,dx = x
return [vx*xc,cxvx*x*(c-1)*dx]

def exponential(x):
vx,dx = x
return [exp(vx),exp(vx)*dx]

def add(x,y):
vX,dx = x
vy,dy =y
return [vx+vy,dx+dy]

Each function takes one or two pairs, plus potentially some other arguments, and
returns a single pair as result. Now we can combine these elementary operations to
calculate a more complicated function, such as our function f(x) = 3x% + *:

def f(x):
ul = power(x,2)
u2 = multiply(u1,3)
u3 = exponential (x)
return add(u2,u3)

Now we call this function with argument [, 1] to compute the derivative at t. For
instance, to calculate the derivative of f(t) at t = % we could write:

print(f([0.5,11))
If we run the whole program, it prints:
[2.398721270700128, 4.648721270700128]
The first number is f(3) and the second is f”(3). We can check the results:
f(t)y=3t+e' =3 +e'?=23987..., (5.170)
fl(t)y=6t+e =3+e/? =4.6487.. ., (5.171)

so our program has indeed correctly found both the value of the function and its
derivative.

Note that there is no approximation involved in calculating derivatives this way,
other than the rounding error inherent in all computer calculations. The answers we
get are accurate to the limits of machine precision. The method only applies, as we
have said, to functions that can be calculated on the computer—we cannot apply this
kind of differentiation to lab data for example. But it is applicable in many situations
in computational physics and in science and engineering more broadly.
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becomes

Automatic differentiation can also be extended to the calculation of higher deriva-
tives by keeping track of more derivatives for each variable. For instance, if we are
interested in the second derivative, then each variable x gets replaced by a three-
valued triple [x, x’, x"'], and the general rule for unary operations U(x) is

x = U(x) becomes [x,x,x"] — [Ux),U’(x)x",U"(x) (x)? +U’(x)x"],
while the rule for binary operations B(x, y) is

[x,x",x"], [, ¢/, y"] — [B(x,y), Bx(x,y) x" + By(x,y) /',
Byx(x,y) (x)% + 2By (x,y) 'y’ + Byy (x,y) (v)* + Bx(x,y) x”" + By (x, ) y"],

where By and By are first derivatives of B(x,y) with respect to its two arguments
and Byy, Byy, and By, are second derivatives.

Implementing automatic differentiation does require writing many individual
user-defined functions to perform elementary mathematical operations, like the ones
in Example 5.5 above. Because of the wide use of automatic differentiation in both
science and commercial applications, however, people have created Python pack-
ages that define large collections of such functions for you, to save you the effort. If
you plan to use automatic differentiation extensively, you may want to look at these
packages. Examples include TensorFlow, PyTorch, and JAX.

Exercise 5.17: In Exercise 5.13 we encountered the Hermite polynomials, which are defined
iteratively by

Hy41(x) = 2xHp(x) — 2nHp—1(x), with Hy(x) = 1 and Hj(x) = 2x.
a) Write a Python function H(n, x) to compute the value and derivative of the nth Hermite

polynomial at the point x using automatic differentiation.

b) Use your function to verify the values of the derivatives Hj (%) = —6 and H,(3) =
129 620.

c) Make a plot of the derivative of Hygo(x) between x = —2 and x = 2.

Hint: If you program is taking a long time to run, then you are probably doing the calculation
the wrong way. It should only take a second or two to finish.

5.12 INTERPOLATION

We tackle one more topic in this chapter, namely interpolation, which is not directly
related to integrals and derivatives, but uses similar mathematical methods, making
this a good moment to look at it.

Suppose you are given the value of a function f(x) at two points x = a,b and
you want to estimate the value at another point x in between. There are a number of
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f(b)L

Curve of f(x)

™~

Straight line

Figure 5.14: Linear interpolation. The value of f(x) in between the two known points at
x = a and x = b is estimated by assuming a straight line from f(a) to f(b).

ways of making such estimates, of which the simplest is linear interpolation, which
is illustrated in Fig. 5.14. We assume our function follows a straight line from f(a)
to f(b), which in most cases is an approximation—likely the function follows some
sort of curve—but if we make this assumption then we can calculate f(x) with some
elementary geometry.

The slope of the straight-line approximation is

e SO 1@

T (5.172)

and the distance marked y on the figure is given in terms of this slope by y = m(x—a).
The distance marked z is equal to f(a), so

f) =y+2= L0 )4 i)

_(b=x)f(a)+(x—a)f (D)
B b-a '

(5.173)

This is the fundamental formula of linear interpolation. In fact, this same formula
can also be used to extrapolate the function to points outside the interval from a to b,
although one should not extrapolate too far. The further you go, the less likely it is
that the extrapolation will be accurate.
Another way to look at the linear interpolation formula is to define two positive
weights
u; =b-—x, U = x — q, (5.174)

INTERPOLATION
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in terms of which, Eq. (5.173) can be written as

fx) = S (@ rufb) (5.175)
Uy + Uy

In other words, linear interpolation is equivalent to taking a weighted average of the
two values f(a) and f(b), with weights that depend on the distances between the
point x and the ends of the interval a, b. As we will see in the following discussion,
all interpolation formulas eventually boil down to some kind of weighted average
over the known values of the function.

How accurate is the linear interpolation formula? The calculation of the error is

similar to that for derivatives, making use of two Taylor expansions:

fla) = f(x)+(@a=x)f (x) + 2(a—x)2f"(x) +... (5.176)
Fb) =f(x)+(b—x)f"(x)+3(b—2x)2f"(x) +... (5.177)

Multiplying the first of these by b — x and the second by a — x, then subtracting one
from the other, the terms in f’(x) cancel and we get

(b—x)f(a)+(x—a)f(b) = (b—a)f(x)+3(a—x)(b—x)(a=b)f"(x)+..., (5.178)
which can be rearranged to read

(b-x0)f(a) +(x-a)f®)
b

—da

fx) =

(a=x)b—x)f"(x)+... (5.179)

The first term on the right-hand side is our linear interpolation formula; the rest of
the terms are the error. Note that the leading-order error term vanishes as x tends
to either a or b, so that either b — x or a — x becomes small. And, assuming f"(x)
varies slowly, the error will be largest in the middle of the interval. If we denote the
width of the interval by b — a = h, then when we are in the middle we have x —a =
b-x = %h and the absolute magnitude of the leading-order error is }Ihz [ (x)].
Thus, like the central difference formula for a first derivative, the worst-case error
on a linear interpolation is O(h?), and we can make the interpolation more accurate
by making h smaller.

By contrast with the case of derivatives, however, we do not need to be particu-
larly careful about rounding error when using linear interpolation. The interpolation
formula, Eq. (5.173), involves the sum of values of f(x) at two closely spaced points,
not the difference, so we don’t normally run into the accuracy problems that plague
calculations based on subtractions (like calculations of derivatives).

Can we do better than linear interpolation? Not if we know the value of the
function f(x) at only two points—there is no better approximation in that case. If
we know the function at more than two points there are several ways to improve on
linear interpolation. The most obvious is to interpolate with higher-order polyno-
mials, using the method known as Lagrange interpolation. If we have three points,
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for instance, we can fit a quadratic through them, which will usually give a bet-
ter match to the underlying curve. Four points allows us to fit a cubic, and so on.
A straightforward way to fit such polynomials is using the Lagrange interpolating
polynomials ¢ (x) of Eq. (5.53) on page 155, which for N points at x; ... xy are a set
of N polynomials, each of degree N — 1. In Eq. (5.56) and the accompanying discus-
sion we showed that the unique polynomial of degree N —1 that fits the function f(x)
at all of the N points is given by

N
O(x) = > () (%), (5.180)
k=1

and we can use the value of this function as our interpolation.

Note that for the special case where f(xx) = 1 for all k, the unique polynomial
that goes through all the points is trivially just ®(x) = 1, and hence (5.180) tells
us that ZkN: L Pk(x) = 1 for all x: the sum of the Lagrange polynomials at any x
is always 1. Given this fact, we can see that Eq. (5.180) again takes the form of a
weighted average over the known values f(x;) with weights ¢ (x) that sum to one.

When the number of points becomes large, however, the Lagrange interpolation
approach breaks down. If we have a large number N of points then you might think
the best thing to do would be to fit an (N — 1)th order polynomial through them, but
it turns out this does not work because very high order polynomials tend to have a
lot of wiggles in them* and can deviate from the fitted points badly in the intervals
between points. It is better in this case to fit many lower-order polynomials such
as quadratics or cubics to smaller sets of adjacent points. Unfortunately, the naive
implementation of such a scheme gives rather uneven interpolations because the
slope of the interpolation changes at the join-points between polynomials. A more
satisfactory approach is to fit polynomials to the measured points and the derivatives
at their ends, so that one gets a function that goes through the points and has a
smooth slope everywhere. Such interpolations are called splines. The most widely
used type are cubic splines. We will not need these methods in this book however, so
we will go into them further here.

5.12.1 INTERPOLATION IN TWO OR MORE DIMENSIONS

Sometimes we need to interpolate in more than one dimension. For instance, we
might have an image, such as an astronomical image, represented as a grid of pixels
of varying intensity, and we want to estimate what the intensity is between the pixels.
We can do this using bilinear interpolation.

We have a function f(x, y) defined in a two-dimensional space and we know its
value on the points of a square or rectangular grid. Figure 5.15 shows a sketch of one

4This is primarily a problem when the sample points are evenly spaced. For unevenly spaced points
it may be possible to get good results using high-degree polynomials.
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of the rectangles in the grid and let us write the values of the function at the four
corners as

fii=fny), fa=fxy1), fiz=f(x,02),  for = flx2,y2). (5.181)

Our goal is to estimate the value of the function at a general point
(x,y) inside the rectangle. The idea of bilinear interpolation is that

(x,y2) . :
Yo fmmmeee 7 -» ? 3 5 we first interpolate linearly along the two horizontal lines at top and
: P S22 . .
12; | bottom of the rectangle to estimate the values at the points (x, ;)
(x,1) and (x, y2), and then interpolate vertically between those two points
| to estimate f(x, y).
i i Thus, using our linear interpolation formula, Eq. (5.173), we
have
TR s (5 = )i+ (x = )
: E Xy —x)fi1+ (x—x
11E (x,y1) | Flom) = 2 fi1 1 fz1’ (5.182a)
; | X2 — X1
: ; X3 —X)fiz+ (x—x
x| X2 flx,y2) = (r =) fiz + (% = 1) (5.182b)
X2 — X1
Figure 5.15: Bilinear interpolation. In and then
bilinear interpolation we interpolate first
along the top and bottom lines of a rect- flx,y) = (Y2 =y f ey + (y — y)f(x )
angle and then vertically between the re- Y2 — Y1
Iting t ints.
sulting two points ~ u11f11+u21f21+u12f12+1122fz2 (5 183)
Upr + Upy + U2 + Uz ’ ’
where
un = (2 —x)(y2 - y), (5.184a)
U1 = (x —x1)(y2 — y), (5.184b)
Uz = (02 — x)(y — 1), (5.184c)
uzz = (x = x1)(y — y1). (5.184d)
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Thus, as with our previous interpolation formulas, our estimate of f(x,y) is a
weighted average of the known values of the function.

One might imagine that there are two different ways to perform bilinear interpo-
lation, either by interpolating horizontally first then vertically, or vice versa. In fact,
however, both of these lead to same formula, given above, and hence there is only
one way to do the calculation.

A different type of two-dimensional interpolation arises when the known values
of the function are not on a rectilinear grid, but are arranged in some other, possibly
irregular fashion. In this case one can interpolate between trios of points forming
triangles. Any location r within the area covered by the known points falls inside
(or on the edge of) at least one such triangle, and when it does it divides the triangle
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into three smaller triangles with areas uy, uz, u3 as shown in Fig. 5.16. We define the
interpolated value of the function f(r) within the triangle by

ufi+usfo+usfs

(5.185)
uy +uz; +us

fr) =
where fi, f2, f3 are the values at the corners. Again this takes the form of a weighted
average. It also takes the values fi, f, and f3, as it should, at the three corners of
the large triangle, and it interpolates linearly between them when we are within the
triangle.

The areas of the three small triangles are most easily cal-

culated by vector methods. The area of any triangle is given r
in terms of the lengths a, b of any two of its edges and the an-
gle 0 between them by %ab sinf = %lax b|, where a and b are
the vectors along the edges and the X symbol represents the
vector cross-product. The factor of % is not important—we
can multiply uy, u, and u3 by 2 and Eq. (5.185) is unaffected—
so let us drop the % Then the value of u; can be calculated
from the cross-product of the edge vectors r — r3 and rp — r3
thus: O r,

up = [(r—r3) X (r; —r3)| = [r X (rz —13) + 15 X 13/, (5.186) r,°

where we have made use of r3 Xry = —ry Xrz and r3 Xr3 = 0. . . . .
Figure 5.16: Weights for interpolation

For a fixed grid of points, the quantities r, —r3 and r, X3 can within a triangle. Any point r within a triangle

be calculated ahead of time and stored to allow quick inter- divides the triangle into three smaller ones,
polation, and we can write similar expressions for u; and us: whose areas uy, uz, u3 can be used as weights for
interpolation.
Uy = |r X (r3 — 1) + 13 X1}, (5.187)
Uz = |I' X (r1 - 1'2) +1r X I'2|. (5188)

The cross-product can be calculated in Python using the cross function from
numpy. The cross-product of a pair of two-dimensional vectors in the xy plane is
always in the z-direction, so when given two-dimensional vectors as inputs the cross
function returns only a single floating-point value, equal to the z-component of the
cross-product. For example, we can calculate the area of a triangle with corners at
(0,0), (5,0), and (2, 4) thus:

from numpy import array,cross

a = array([5,0],float)
b = array([2,4],float)
print(abs(cross(a,b))/2)

Note the use of the abs function here, since we want the magnitude of the cross-
product. When we run this program it correctly prints “10.0”.
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Though it may not be immediately obvious, this triangular interpolation is a lin-
ear interpolation, since Egs. (5.186) to (5.188) are linear in r. An alternative, geo-
metric way to look at the interpolation is to think of f(r) as defining the height of
a two-dimensional surface as a function of position (x,y) and the known points at
the corners of the triangles as points on this surface. Then our interpolation scheme
is equivalent to interpolating within each triangle using the flat plane that passes
exactly through the points at the three corners of the triangle. The latter is clearly a
linear interpolation, and since there is only one plane that passes through the cor-
ners, it is the unique linear interpolation that takes the correct values at the corners.
The interpolation defined in Eq. (5.185) is also linear and also takes the correct val-
ues at the corners, hence the two interpolations must be the same. Triangular linear
interpolation, viewed in this geometric way, forms one of the mathematical pillars
of computer animation and video games, where surfaces are commonly represented
by triangular meshes and the surface itself approximated using interpolation.

Both bilinear interpolation and triangular interpolation can be generalized to
higher dimensions. The generalization of bilinear interpolation in three dimensions,
for example, is a natural one: you interpolate linearly first along the x axis, then
the y axis, and finally the z axis. The resulting formulas are an obvious extension of
Egs. (5.183) and (5.184). The generalization of the triangular interpolation to three
dimensions involves interpolating within tetrahedra and is analogous to the two-
dimensional version. Any point within a tetrahedron divides it into four smaller
tetrahedra, whose areas can be used as the weights in a weighted average over the
values of the function at the four corners.

We will not need these methods in this book, however. For our purposes, two
dimensions will be enough.

CHAPTER SUMMARY

e The trapezoidal rule is the simplest of methods for evaluating integrals on a
computer. It approximates a function with straight-line segments and then cal-
culates the area underneath those straight lines.

e For sample points spaced a distance h apart the trapezoidal rule gives an answer
accurate to order A, with an error of order A?.

o Simpson’s rule approximates the function using quadratics instead of straight
lines and usually gives a more accurate answer than the trapezoidal rule. It is
accurate to order h* with an error of order h*.

e Adaptive versions of the trapezoidal rule and Simpson’s rule allow you to com-
pute an answer to a required accuracy by increasing the number of sample points
until you hit the desired target.
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Romberg integration is an extension of the trapezoidal rule that uses Richard-
son extrapolation to increase the accuracy of integrals, in many cases substan-
tially improving on the accuracy of either the trapezoidal rule or Simpson’s rule.

Gaussian quadrature abandons equally spaced sample points and creates an in-
tegration rule that is superbly accurate, and also simple to use, but at the expense
of unevenly spaced points.

Integrals over infinite ranges cannot be performed directly on a computer, but
they can be done by first making a change of variables so that the infinite range
becomes a finite one.

Multiple integrals can be performed by nesting integrals one inside another.
This can become computationally demanding for high-dimensional integrals. In-
tegrals in more than three or four dimensions can be challenging.

Derivatives can be calculated numerically using forward, backward, or cen-
tral differences. Central differences are generally more accurate than forward
or backward ones.

More accurate values for derivatives can be calculated using a range of higher-
order approximations or by applying Richardson extrapolation again.

Second derivatives and other higher derivatives are calculated as derivatives of
derivatives.

An alternative approach to calculating derivatives is automatic differentiation,
which allows one to calculate exact values (apart from rounding error), but is lim-
ited to derivatives of functions that can be evaluated on the computer. It cannot
be used, for example, to differentiate experimental measurements.

Interpolation is the process of estimating the value of a function between
known sample points. The simplest approach is linear interpolation, which
assumes a straight line between points.

Higher-order interpolations can be calculated using Lagrange interpolating
polynomials, although caution should be used when using polynomials of high
degree, which can lead to numerical instability.

Interpolation in two or more dimensions can be performed using bilinear
interpolation within rectangles or linear interpolation within triangles (or the
equivalent in three or more dimensions).

INTERPOLATION
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FURTHER EXERCISES

5.18 The value of 7r: It can be shown that

/"0 dx &
0 2+l 2

Write a program to calculate the value of 7 to 10 decimal places using this result. Use an

adaptive integration method that guarantees the required accuracy.

5.19 The gamma function: A commonly occurring function in physics calculations is the
gamma function I'(a), which is defined by the integral

I'(a) :/ x4 le™ dx.
0

There is no closed-form expression for the gamma function, but one can calculate its value for
given a by performing the integral above numerically. You have to be careful how you do it,
however, if you wish to get an accurate answer.

a) Write a program to make a graph of the value of the integrand x4~ !e™* as a function
of x from x = 0 to x = 5, with three separate curves for a = 2, 3, and 4, all on the same
axes. You should find that the integrand starts at zero, rises to a maximum, and then
decays again for each curve.

b) Show analytically that the maximum falls at x = a — 1.

c) Most of the area under the integrand falls near the maximum, so to get an accurate
value of the gamma function we need to do a good job of this part of the integral. We
can change the integral from 0 to co to one over a finite range from 0 to 1 using the
change of variables in Eq. (5.97), but this tends to squash the peak towards the edge of
the [0, 1] range and does a poor job of evaluating the integral accurately. We can do a
better job by making a different change of variables that puts the peak in the middle of
the integration range, around % We will use the change of variables

X

c+x’
For what value of x does this change of variables give z = %? Hence what is the ap-
propriate choice of the parameter c that puts the peak of the integrand for the gamma
function at z = %?

d) Before we can calculate the gamma function, there is another detail we need to attend to.

a=1e=X can be difficult to evaluate because the factor x4~! can become

X

The integrand x
very large and the factor e™ very small, causing numerical overflow or underflow, or
both, for some values of x. Write x¢~! = e(@=1)Inx ¢4 derive an alternative expression
for the integrand that does not suffer from these problems (or at least not so much).

Explain why your new expression is better than the old one.

e) Now, using the change of variables above and the value of ¢ you have chosen, write
a user-defined function gamma(a) to calculate the gamma function for arbitrary argu-
ment a. Use whatever integration method you feel is appropriate. Test your function
by using it to calculate and print the value of F(%), which is known to be equal to

17 = 0.886.
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f) For integer values of a it can be shown that I'(a) is equal to the factorial of a — 1. Use
your Python function to calculate I'(3), I'(6), and I'(10). You should get answers closely
equal to 2! = 2, 5! = 120, and 9! = 362 880.

5.20 Gauss’s law: Consider a function f(x, y, z) in three-dimensional space. The integral I
of that function over a sphere of radius R centered on the origin can be calculated by writing
X, Y, z in spherical polar coordinates x = Rsinfsin¢, y = Rsinfcos ¢, z = Rcos 0 and then
using

2 T
I=/ / f(x,y,2) R? sin 6 d6 dg.
0 0

a) Suppose we have three electric charges of 1 coulomb each at positions ry, ry, and r3 in
otherwise empty space. Write an expression for the electric field E that results from
these three charges at an arbitrary point r . Hence show that the radial component E,
of that field, meaning the component in the direction directly away from the origin, is
given by

1 r
" ameo Irf

r—rp r—rp r—rj3

r—r  r-rf  r-rf]
where € is the permittivity of the vacuum.

b) Let f(x,y,z) = E,. Write a program to evaluate the integral I defined above for this
choice of f in the case where

r1 =(0,0,0), rz2 = (1,0,0), r3 = (0,1,0),

and the radius of the sphere is R = 2. Use whatever integration method you feel is
appropriate.

c) Gauss’s law tells us that the integral of the radial component of the field should be equal
to the total charge inside the sphere divided by the permittivity €. Verify that your
integral gives the correct value.

d) Try a few other positions for the three charges, some inside the sphere and some outside,
and recompute the integral. Verify that Gauss’s law is obeyed in each case.

5.21 Rearranging Eq. (5.19) on page 143 into a slightly more conventional form, we have:
b N-1
/ fx)dx = h[%f(a) +5f(b)+ X fla+kh)| + 5B [f' (@) = f/(b)] + O(h*).
a k=1

This result gives a value for the integral on the left which has an error of order h*—a factor of
h? better than the error on the trapezoidal rule and as good as Simpson’s rule. We can use this
formula as a new rule for evaluating integrals, distinct from any of the others we have seen in
this chapter. We might call it the “Euler—-Maclaurin rule””

a) Write a program to calculate the value of the integral f02 (x* = 2x + 1) dx using this
formula. (This is the same integral that we studied in Example 5.1, whose true value
is 4.4.) The order-h term in the formula is just the ordinary trapezoidal rule; the h?
term involves the derivatives f’ (a) and f”(b), which you should evaluate using central
differences, centered on a and b respectively. Note that the size of the interval you use
for calculating the central differences does not have to equal the value of h used in the
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trapezoidal rule part of the calculation. An interval of about 107> gives good values for
the central differences.

Use your program to evaluate the integral with N = 10 slices and compare the ac-
curacy of the result with that obtained from the trapezoidal rule alone with the same
number of slices.

b) Good though it is, this integration method is not much used in practice. Suggest a reason
why not.

5.22 Diffraction gratings: Light with wavelength A is incident on a diffraction grating of
total width w, gets diffracted, is focused with a lens of focal length f, and falls on a screen:

Incident light

Grating

Lens
Screen

< >
<«

Theory tells us that the intensity of the diffraction pattern on the screen, a distance x from the
central axis of the system, is given by

w/2 ) 2
I(x) = ‘/ Vq(u) 24 gy |
-w/2

where q(u) is the intensity transmission function of the diffraction grating at a distance u from
the central axis, defined as the fraction of the incident light that the grating lets through at
that point.

a) Consider a grating with transmission function q(u) = sin? au. What is the separation

of the “slits” in this grating, expressed in terms of a?

b) Write a Python function q(u) that returns the transmission function q(u) = sin? au as

above at position u for a grating whose slits have separation 20 ym.

¢) Use your function in a program to calculate and graph the intensity of the diffraction
pattern produced by such a grating having ten slits in total, if the incident light has
wavelength A = 500 nm. Assume the lens has a focal length of 1 meter and the screen is
10 cm wide. You can use whatever method you think appropriate for doing the integral.
Once you have made your choice you will also need to decide the number of sample
points you will use. What criteria play into this decision?

Notice that the integrand in the equation for I(x) is complex, so you will have to use
complex variables in your program. As mentioned in Section 2.2.5, there is a version
of the math package for use with complex variables called cmath. In particular you may
find the exp function from cmath useful because it can calculate exponentials of complex
arguments.



d) Create a visualization of how the diffraction pattern would look on the screen using a
density plot (see Section 3.3). Your plot should look something like this:

e) Modify your program further to make pictures of the diffraction patterns produced by
gratings with the following profiles:
i) A transmission profile that obeys q(u) = sin? au sin? fu, with a as before and the
same total grating width w, and f = %a.
ii) Two “square” slits, meaning slits with 100% transmission through the slit and 0%
transmission everywhere else. Calculate the diffraction pattern for non-identical
slits, one 10 ym wide and the other 20 ym wide, with a 60 um gap between the two.

5.23 A more advanced adaptive method for the trapezoidal rule: In Section 5.3 we
studied an adaptive version of the trapezoidal rule in which the number of steps is increased—
and the width h of the slices correspondingly decreased—until the calculation gives a value for
the integral accurate to some desired level. Although this method varies b, it still calculates
the integral at any individual stage of the process using slices of equal width throughout the
domain of integration. In this exercise we look at a more sophisticated adaptive method that
uses different step sizes in different parts of the domain, which can be useful particularly for
poorly behaved functions that vary rapidly in certain regions but not others. Remarkably, this
method is not much more complicated to program than the ones we have already seen, if one
knows the right tricks. Here is how the method works.

Suppose we wish to evaluate the integral I = /a b f(x) dx and we want an error of no
more than € on our answer. To put that another way, if we divide up the integral into slices of
width h then we require an accuracy per slice of

where § = €/(b — a) is the target accuracy per unit interval.

We start by evaluating the integral using the trapezoidal rule with just a single slice of
width h; = b — a. Let us call the estimate of the integral from this calculation I;. Usually 4
will not be very accurate, but that does not matter. Next we make a second estimate I of the
integral, again using the trapezoidal rule but now with two slices of width hy = %hl each.
Equation (5.28) tells us that the error on this second estimate is %(Iz — 1) to leading order. If
the absolute value of this error is smaller than the required accuracy € then our calculation is
complete and we need go no further. I, is a good enough estimate of the integral.

Most likely, however, this will not be the case; the accuracy will not be good enough. If
so, then we divide the integration interval into two equal parts of size %(b — a) each, and we
repeat the process above in each part separately, calculating estimates I; and I using one and
two slices respectively, estimating the error, and checking to see if it is less than the required
accuracy, which is now %(b —a)d = %e.

We keep on repeating this process, dividing each slice in half and in half again, as many
times as necessary to achieve the desired accuracy in every slice. Different slices may be
divided different numbers of times, and hence we may end up with different sized slices in
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different parts of the integration domain. The method automatically uses whatever size and
number of slices is appropriate in each region.

Write a program using this method to calculate the integral

10 ;42
sin“ x
I=/ 5 dx,
0 X

to an accuracy of € = 1074, You should carry out the following steps.

a) Start by writing a function to calculate the integrand f(x) = (sin® x)/x%. Note that the
limiting value of the integrand at x = 0 is 1. You will probably have to include this point
as a special case in your function using an if statement.

b) The best way to perform the integration itself is to use recursion, the ability of a Python
function to call itself—see Section 2.6.1. Write a function step(x1,x2,f1,f2) that takes
as arguments the beginning and end points x1, x2 of a slice and the values f(x1), f(x2)
of the integrand at those two points, and returns the value of the integral from x; to x3.
This function should evaluate the two estimates I; and I of the integral from x1 to x2,
calculated with one and two slices respectively, and the error %(12 — I1). If this error
meets the target value, which is (x2 — x1)J, then the calculation is complete and the
function simply returns the value I,. If the error fails to meet the target, then the function
calls itself, twice, to evaluate the integral separately on the first and second halves of
the interval and returns the sum of the two results. (And then those functions can call
themselves, and so forth, subdividing the integral as many times as necessary to reach
the required accuracy.)

c) As icing on the cake, when the error target is met and the function returns a value for
the integral in the current slice, it can, in fact, return a slightly better value than the
estimate I. Since you will already have calculated the value of the integrand f(x) at
x1, x2, and the midpoint x,, = %(xl + x2) in order to evaluate I, you can use those
results to compute the improved Simpson’s rule estimate, Eq. (5.7), for this slice. You
just return the value %h[ f(x1)+4f (xm)+ f(x2)] instead of the trapezoidal rule estimate
ih [f(x1)+2f (xm) + f(x2)] (where h = x2 —x1). This involves very little extra work, but
gives a value that is more accurate by two orders in h. (Technically, this is an example
of “local extrapolation,” although it is perhaps not obvious what we are extrapolating
in this case. We will discuss local extrapolation again when we study adaptive methods
for the solution of differential equations in Section 8.4.)

d) Why does the function step(x1,x2,f1,f2) take not only the positions x; and x; as
arguments, but also the values f(x1) and f(x2)? Since we know the function f(x), we
could just calculate these values from x; and x3. Nonetheless, it is a smart move to
include the values of f(x1) and f(x2) as arguments to the function. Why?

e) Modify your program to make a plot of the integrand with dots added showing where
the edges of each integration slice lie. You should see larger slices in portions of the
integrand that follow reasonably straight lines (because the trapezoidal rule gives an
accurate value for straight-line integrands) and smaller slices in portions with more
curvature.

5.24 Electric field of a charge distribution: Suppose we have a distribution of charges
and we want to calculate the resulting electric field. One way to do this is to first calculate the
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electric potential ¢ and then take its gradient. For a point charge g at the origin, the electric
potential at a distance r from the origin is ¢ = q/4meor and the electric field is E = —V¢.

a) You have two charges, of +1C, 10 cm apart. Write a program to calculate the result-
ing electric potential on a 1 m X 1 m square plane surrounding the charges and passing
through them. Calculate the potential at 1 cm spaced points in a grid and make a visu-
alization on the screen of the potential using a density plot.

b) Now calculate the partial derivatives of the potential with respect to x and y and hence
find the electric field in the xy plane. Make a visualization of the field also. This is a little
trickier than visualizing the potential, because the electric field has both magnitude and
direction. One way to do it might be to make two density plots, one for the magnitude,
and one for the direction, the latter using the “hsv” color scheme in pyplot, which is
a rainbow scheme that passes through all the colors but starts and ends with the same
shade of red, which makes it suitable for representing things like directions or angles
that go around the full circle and end up where they started. A more sophisticated
visualization might use the quiver function from pyplot, which draws a grid of arrows
with direction and length that you specify.

5.25 Differentiating by integrating: If you are familiar with the calculus of complex vari-
ables, you may find the following technique useful and interesting.

Suppose we have a function f(z) whose value we know not only on the real line but also
for complex values of its argument. Then we can calculate derivatives of that function at any
point zg by performing a contour integral, using the Cauchy derivative formula:

(ﬂ) Com! f@

dz™ ). Tomi ) (z - zg)mH

5

where the integral is performed counterclockwise around any contour in the complex plane
that surrounds the point zp but contains no poles in f(z). Since numerical integration is
significantly easier and more accurate than numerical differentiation, this formula provides
us with a method for calculating derivatives—and especially multiple derivatives—accurately
by turning them into integrals.

Suppose, for example, that we want to calculate derivatives of f(z) at z = 0. Let us apply
the Cauchy formula above using the trapezoidal rule to calculate the integral along a circular
contour centered on the origin with radius 1. The trapezoidal rule will be slightly different
from the version we are used to because the value of the interval h is now a complex number,
and moreover is not constant from one slice of the integral to the next—it stays constant in
modulus, but its argument changes from one slice to another.

We will divide our contour integral into N slices with sample points z; distributed uni-
formly around the circular contour at positions z; = e27k/N for k = 0... N. Then the distance
between consecutive sample points is

hk = Zjy1 — 2k = e1271'(1<+1)/N _ eian/N’

and, introducing the shorthand g(z) = f(z)/z™*! for the integrand, the trapezoidal rule ap-
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proximation to the integral is

N-1
}{9(2) dz = > 1[g(zrsr) + glzp) ] [e27 KHDIN _ el2mk/N]
k=0

N-1 —_— N-1 ok
= %[Z 9lzgsr) 2T EVIN =57 g(z) 27N
k=0 k=0

N-1 2k /N N-1 27 (k N
= 27 9laian) N 1 37 gzg) DN,
k=0 k=0

Noting that zn = zp, the first two sums inside the brackets cancel each other in their entirety,
and the remaining two sums are equal except for trivial phase factors, so the entire expression
simplifies to

/N _ —izn/N] /N 2 N i2rkm/N
%Q(Z) dz ~ %[elzn/ _ e—127r/ ] Z g(zk) elle' IN o F Z f(zk) e—127r m/ ,
k=0 k=0

where we have used the definition of g(z) again. Combining this result with the Cauchy
formula, we then have

Write a program to calculate the first twenty derivatives of f(z) = e?? at z = 0 using this
formula with N = 10 000. You will need to use the version of the exp function from the cmath
package, which can handle complex arguments. You may also find the function factorial
from the math package useful; it calculates factorials of integer arguments.

The correct value for the mth derivative in this case is easily shown to be 2™, so it should
be straightforward to tell if your program is working—the results should be powers of two,
2, 4, 8, 16, 32, etc. You should find that it is possible to get reasonably accurate results for all
twenty derivatives rapidly using this technique. If you use standard difference formulas for
the derivatives, on the other hand, you will find that you can calculate only the first three or
four derivatives accurately before the numerical errors become so large that the results are
useless. In this case, therefore, the Cauchy formula gives better results.

The sum XY f(zg) ei2mkm/N that appears in the formula above is known as the discrete
Fourier transform of the complex samples f(z;). There exists an elegant technique for evalu-
ating the Fourier transform for many values of m simultaneously, known as the fast Fourier
transform, which could be useful in cases where the direct evaluation of the formula is slow.
We will study the fast Fourier transform in Chapter 7.

5.26 Image processing and the STM: When light strikes a surface, the amount falling per
unit area depends not only on the intensity of the light, but also on the angle of incidence.
If the direction the light is coming from makes an angle 6 to the normal, then the light only
“sees” cos 0 of area per unit of actual area on the surface:



\
\

Surface

So the intensity of illumination is acos 6, if a is the raw intensity of the light. This simple
physical law is a central element of 3D computer graphics. It allows us to calculate how
light falls on three-dimensional objects and hence how they will look when illuminated from
various angles.

Suppose, for instance, that we are looking down on the Earth from above and we see
mountains. We know the height of the mountains w(x, y) as a function of position in the plane,
so the equation for the Earth’s surface is simply z = w(x, y), or equivalently z — w(x,y) = 0,
and the normal vector v to the surface is given by the gradient of z — w(x, y) thus:

a/ox —ow/ox
v=Viz—wixy)] = |0/y | [z - wix, )] = | -ow/ay.
9]z 1

Now suppose we have incident light represented by a vector a that points toward the source
of the light and has magnitude equal to the intensity. The dot product of the vectors a and v is

a-v=|a||v|cosb,

where 0 is the angle between the vectors. Employing the cosine rule discussed above, the
intensity of illumination of the surface of the mountains is then

a-v —ax(dw/ox) — ay(aw/ay) +az

vl Vowjox)Z+ (ow/ay)2+1

Let us take the simple case where the light is shining horizontally with unit intensity, and the

I=a|cosf =

direction it is coming from makes an angle ¢ to the east-west axis, so that a = (cos ¢, sin ¢, 0).
Then our intensity of illumination simplifies to

_ _cosgb (0w/9x) + sin ¢ (ow/dy)
V(ow/ox)Z + (ow/ay)2 +1

If we can calculate the derivatives of the height w(x, y) and we know ¢ we can calculate the
intensity at any point.

a) In the online resources you will find a file called altitude.txt, which contains the
altitude w(x, y) in meters above sea level (or depth below sea level) of the surface of the
Earth, measured on a grid of points (x, y). Write a program that reads this file and stores
the data in an array. Then calculate the derivatives dw/dx and dw/dy at each grid point.
Explain what method you used to calculate them and why. (Hint: You will probably have
to use more than one method to get every grid point, because awkward things happen
at the edges of the grid.) To calculate the derivatives you will need to know the value

of h, the distance in meters between grid points, which is about 30 000 m in this case.

STt is actually not precisely constant because we are representing the spherical Earth on a flat map,
but h = 30 000 m will give reasonable results.
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b) Now, using your values for the derivatives, calculate the intensity for each grid point,

with ¢ = 45°, and make a density plot of the resulting values in which the brightness of
each dot depends on the corresponding intensity value. If you get it working right, the
plot should look like a relief map of the world—you should be able to see the continents
and mountain ranges in 3D. (Common problems include a map that is upside-down or
sideways, or a relief map that is “inside-out,” meaning the high regions look low and
vice versa. Work with the details of your program until you get a map that looks right
to you.)

Hint: Note that the intensity I in the formula above can be either positive or negative—
it ranges from +1 to —1. What does a negative intensity mean? It means that the area
in question is in shadow—it lies on the wrong side of the mountain to receive any light
at all. You could represent this by coloring these areas of the map completely black,
although in practice you will get a nicer-looking image (if arguably less true-to-life) by
simply using a continuous range of grays from +1 to —1.

c) There is another file in the online resources called stm. txt, which contains a grid of val-

ues from scanning tunneling microscope measurements of the (111) surface of silicon.
A scanning tunneling microscope (STM) is a device that measures the shape of surfaces
at the atomic level by tracking a sharp tip over the surface and measuring quantum tun-
neling current as a function of position. The end result is a grid of values that represent
the height of the surface as a function of position and the data in the file stm. txt contain
just such a grid of values. Modify the program you just wrote to visualize the STM data
and hence create a 3D picture of what the silicon surface looks like. The value of h for
the derivatives in this case is around h = 2.5 (in arbitrary units).



