
Chapter 5

Integrals and derivatives

I
n the preceding chapters we introduced the central elements of computer pro-

gramming using Python and solved some simple physics problems using what

we learned. You will get plenty of further opportunities to polish your pro-

gramming skills, but our main task from here on is to learn about the ideas and

techniques of computational physics, the physical and mathematical insights that

allow us to perform accurate calculations of physical quantities on the computer.

One of the most basic but also most important applications of computers in

physics is the evaluation of integrals and derivatives. Numerical evaluation of in-

tegrals is a particularly crucial topic because integrals occur widely in physics cal-

culations and, while some integrals can be done analytically in closed form, most

cannot. �ey can, however, almost always be done on a computer. In this chapter

we examine a number of di�erent techniques for evaluating integrals and derivatives,

as well as taking a brief look at the related operation of interpolation.

5.1 Fundamental methods for evaluating integrals

Suppose we are given a mathematical function and we wish to evaluate its integral

over a speci�ed domain. Let us consider initially the simplest case, the integral of a

function of a single variable over a �nite range. Wewill study a number of techniques

for the numerical evaluation of such integrals, but we start with the most basic—and

also most widely used—the trapezoidal rule.

5.1.1 The trapezoidal rule

Suppose we have a function 5 (G) and we want to calculate its integral with respect

to G from G = 0 to G = 1, which we denote � (0, 1):

� (0, 1) =
∫ 1

0

5 (G) dG . (5.1)

�is is equivalent to calculating the area under the curve of 5 (G) from 0 to 1. �ere

is no known way to calculate such an area exactly in all cases on a computer, but
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Figure 5.1: Estimating the area under a curve. (a) A simple scheme for estimating the area under a curve by dividing

the area into rectangular slices. �e gray shaded area approximates the area under the curve, though not very well. (b) �e

trapezoidal rule approximates the area as a set of trapezoids, and is usually more accurate. (c) With a larger number of

slices, the shaded area is a be�er approximation to the true area under the curve.

we can do it approximately by the method shown in Fig. 5.1a: we divide the area up

into rectangular slices, calculate the area of each one, and then add them up. �is,

however, is a pre�y poor approximation. �e area under the rectangles is not very

close to the area under the curve.

A be�er approach, which involves very li�le extrawork, is that shown in Fig. 5.1b,

where the area is divided into trapezoids rather than rectangles. �e area under the

trapezoids is a considerably be�er approximation to the area under the curve, and

this approach, though simple, o�en gives perfectly adequate results.

Suppose we divide the interval from 0 to 1 into # slices or steps, so that each

slice has width ℎ = (1−0)/# . �en the right-hand side of the :th slice falls at 0+:ℎ,
and the le�-hand side falls at 0 +:ℎ −ℎ = 0 + (: − 1)ℎ. �us the area of the trapezoid

for this slice is

�: =
1
2ℎ

[
5 (0 + (: − 1)ℎ) + 5 (0 + :ℎ)

]
. (5.2)

�is is the trapezoidal rule. It gives us a trapezoidal approximation to the area under

one slice of our function.

Our approximation for the area under the whole curve is the sum of the areas of
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5.1 | Fundamental methods for evaluating integrals

the trapezoids for all # slices:

� (0, 1) ≃
#∑
:=1

�: =
1
2ℎ

#∑
:=1

[
5 (0 + (: − 1)ℎ) + 5 (0 + :ℎ)

]
= ℎ

[
1
2 5 (0) + 5 (0 + ℎ) + 5 (0 + 2ℎ) + . . . +

1
2 5 (1)

]
= ℎ

[
1
2 5 (0) +

1
2 5 (1) +

#−1∑
:=1

5 (0 + :ℎ)
]
. (5.3)

�is is the extended trapezoidal rule—it is the extension to many slices of the basic

trapezoidal rule of Eq. (5.2). Being slightly sloppy in our usage, however, we will

o�en refer to it simply as the trapezoidal rule. Note the structure of the formula: the

quantity inside the square brackets is a sum over values of 5 (G) measured at equally

spaced points in the integration domain, and we take a half of the values at the start

and end points but one times the value at all the interior points.

�e trapezoidal rule is only an approximation to the area under the curve—it is

clear from Fig. 5.1 that the trapezoids do not follow the curve perfectly. We can im-

prove the approximation by using a larger number of slices # , as shown in Fig. 5.1c,

although the program will also take longer to reach an answer because there are

more terms in the sum to evaluate. We examine the variation in accuracy with # in

more detail in Section 5.2.

Example 5.1: Integrating a function

Let us use the trapezoidal rule to calculate the integral of the function G4 − 2G + 1
from G = 0 to G = 2. �is is actually an integral we can do by hand, which means

we don’t really need to do it using the computer in this case, but it is a good �rst

example because we can check easily if our program is working and how accurate

an answer it gives.

Here is a program to do the integration using the trapezoidal rule with # = 10

slices:

File: trapezoidal.pydef f(x):

return x**4 - 2*x + 1

N = 10

a = 0.0

b = 2.0

h = (b-a)/N

s = 0.5*f(a) + 0.5*f(b)

for k in range(1,N):

s += f(a+k*h)

print(h*s)
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�is is a straightforward translation of the trapezoidal rule formula into computer

code: we create a function that calculates the integrand, set up all the constants used,

evaluate the sum in Eq. (5.3) term by term, and then multiply it by ℎ and print it out.

If we run the program it prints

4.50656

�e correct answer is∫ 2

0
(G4 − 2G + 1) dG =

[
1
5G

5 − G2 + G
]2
0
= 4.4. (5.4)

So our calculation is moderately accurate but not exceptionally so—the answer is o�

by about 2%.

We can make the calculation more accurate by increasing the number of slices # .

If we increase # to 100 and run the program again we get 4.40107, which is now

accurate to 0.02%, which is pre�y good. And if we use # = 1000 we get 4.40001,

which is accurate to 0.0002%. In Section 5.2 we will study in more detail the accuracy

of the trapezoidal rule.

Exercise 5.1: In the online resources you will �nd a �le called velocities.txt, which con-

tains two columns of numbers, the �rst representing time C in seconds and the second the

G-velocity in meters per second of a particle, measured once every second from C = 0 to

C = 100. �e �rst few lines look like this:

0 0

1 0.069478

2 0.137694

3 0.204332

4 0.269083

5 0.331656

Write a program to do the following:

a) Read in the data and, using the trapezoidal rule, calculate the approximate distance

traveled by the particle in the G direction as a function of time. See Section 2.4.3 on

page 55 if you want a reminder of how to read data from a �le.

b) Extend your program to make a graph that shows the original velocity curve and the

distance traveled as a function of time, both on the same plot.

5.1.2 Simpson’s rule

�e trapezoidal rule is the simplest of numerical integration methods, requiring only

a few lines of code to implement, but it is o�en perfectly adequate for calculations
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Figure 5.2: Simpson’s rule. Simpson’s rule involves ��ing quadratic curves to pairs of slices

and then calculating the area under the quadratics.

where no great accuracy is required. It happens frequently in physics calculations

that we don’t need an answer accurate to many signi�cant �gures and in such cases

the ease and simplicity of the trapezoidal rule can make it the method of choice. One

should not turn up one’s nose at simple methods like this; they play an important

role and are used widely. Moreover, the trapezoidal rule is the basis for several other

more sophisticated methods of evaluating integrals, including the adaptive methods

that we will study in Section 5.3 and the Romberg integration method of Section 5.4.

However, there are also cases where greater accuracy is required. As we have

seen we can increase the accuracy of the trapezoidal rule by increasing the number#

of steps used in the calculation. But in some cases a very large number of steps

may be needed to achieve the desired accuracy, which means the calculation can

become slow. �ere are other, more advanced schemes for calculating integrals that

can achieve high accuracy with a smaller number of steps and quicker running time.

In this section we study one such scheme, Simpson’s rule.

In e�ect, the trapezoidal rule estimates the area under a curve by approximating

the curve with straight-line segments—see Fig. 5.1b. We can o�en get a be�er result

if we approximate the function instead with curves of some kind. Simpson’s rule

does this using quadratic curves, as shown in Fig. 5.2. In order to specify a quadratic

completely one needs three points, not just two as with a straight line. So in this

method we take a pair of adjacent slices and �t a quadratic through the three points

that mark the boundaries of those slices. In Fig. 5.2 there are two quadratics, ��ed to

four slices. Simpson’s rule involves approximating the integrand with quadratics in
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this way, then calculating the area under those quadratics, which gives an approxi-

mation to the area under the true curve.

Suppose, as before, that our integrand is 5 (G) and the spacing of adjacent points
is ℎ. And suppose for the purposes of argument that we have three points at G = −ℎ,
0, and +ℎ. If we �t a quadratic �G2 + �G +� through these points, then by de�nition

we will have

5 (−ℎ) = �ℎ2 − �ℎ +�, 5 (0) = �, 5 (ℎ) = �ℎ2 + �ℎ +�. (5.5)

Solving these equations simultaneously for �, �, and � gives

� =
1

ℎ2

[
1
2 5 (−ℎ) − 5 (0) +

1
2 5 (ℎ)

]
, � =

1

2ℎ

[
5 (ℎ) − 5 (−ℎ)

]
, � = 5 (0), (5.6)

and the area under the curve of 5 (G) from −ℎ to +ℎ is given approximately by the

area under the quadratic:

∫ ℎ

−ℎ
(�G2 + �G +�) dG =

2
3�ℎ

3 + 2�ℎ =
1
3ℎ

[
5 (−ℎ) + 45 (0) + 5 (ℎ)

]
. (5.7)

�is is Simpson’s rule. It gives us an approximation to the area under two adjacent

slices of our function. Note that the �nal formula for the area involves only the value

of the function at evenly spaced points, just as with the trapezoidal rule. So to use

Simpson’s rule we don’t actually have to �t a quadratic—we just plug numbers into

this formula and it gives us an answer. �is makes Simpson’s rule almost as simple

to use as the trapezoidal rule, and yet Simpson’s rule o�en gives much more accurate

results, as we will see.

To use Simpson’s rule to perform a general integral we note that Eq. (5.7) does

not depend on the fact that our three points lie at G = −ℎ, 0, and +ℎ. If we were to
slide the curve along the G-axis to either higher or lower values, the area underneath

it would not change. So we can use the same rule for any three uniformly spaced

points. Applying Simpson’s rule involves dividing the domain of integration into

many slices and using the rule to separately estimate the area under successive pairs

of slices, then adding the estimates for all pairs to get the �nal answer. If, as before,

we are integrating from G = 0 to G = 1 in slices of width ℎ then the three points

bounding the �rst pair of slices fall at G = 0, 0 + ℎ and 0 + 2ℎ, those bounding the

second pair at 0 + 2ℎ, 0 + 3ℎ, 0 + 4ℎ, and so forth. �en the approximate value of the

entire integral is given by

� (0, 1) ≃ 1
3ℎ

[
5 (0) + 45 (0 + ℎ) + 5 (0 + 2ℎ)

]
+ 1

3ℎ
[
5 (0 + 2ℎ) + 45 (0 + 3ℎ) + 5 (0 + 4ℎ)

]
+ . . .

+ 1
3ℎ

[
5 (0 + (# − 2)ℎ) + 45 (0 + (# − 1)ℎ) + 5 (1)

]
. (5.8)
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Note that the total number of slices must be even for this to work. Collecting terms

together, we now have

� (0, 1) ≃ 1
3ℎ

[
5 (0) + 45 (0 + ℎ) + 25 (0 + 2ℎ) + 45 (0 + 3ℎ) + . . . + 5 (1)

]
=

1
3ℎ

[
5 (0) + 5 (1) + 4

∑
: odd
1...#−1

5 (0 + :ℎ) + 2
∑
: even
2...#−2

5 (0 + :ℎ)
]
. (5.9)

�is formula is sometimes called the extended Simpson’s rule, by analogy with the

extended trapezoidal rule of Section 5.1.1, although for the sake of brevity we will

just refer to it as Simpson’s rule.

�e sums over odd and even values of : can be conveniently accomplished in

Python using a for loop of the form “for k in range(1,N,2)” for the odd terms or

“for k in range(2,N,2)” for the even terms. Alternatively, we can rewrite Eq. (5.9)

as

� (0, 1) ≃ 1
3ℎ

[
5 (0) + 5 (1) + 4

# /2∑
:=1

5 (0 + (2: − 1)ℎ) + 2
# /2−1∑
:=1

5 (0 + 2:ℎ)
]
, (5.10)

and just use an ordinary for loop (although this form is usually less convenient).

Comparing Eqs. (5.3) and (5.9) we see that Simpson’s rule is modestly more com-

plicated than the trapezoidal rule, but not enormously so. Programs using it are still

straightforward to create.

As an example of the use of Simpson’s rule, suppose we apply it with # = 10

slices to the integral from Example 5.1,
∫ 2

0
(G4 − 2G + 1) dG , whose true value, as we

saw, is 4.4. As shown in Exercise 5.2, Simpson’s rule gives an answer of 4.400427 in

this case, which is already accurate to be�er than 0.01%, orders of magnitude be�er

than the trapezoidal rule with # = 10. Results for # = 100 and # = 1000 are be�er

still—see the exercise.

If you need an accurate answer for an integral, Simpson’s rule is a good choice

in many cases, giving precise results with relatively li�le e�ort. Alternatively, if you

need to evaluate an integral quickly—perhaps because you will be evaluating many

integrals as part of a larger calculation—then Simpson’s rule may again be a good

choice, since it can give accurate answers even with only a small number of steps.

Exercise 5.2:

a) Write a program to calculate an approximate value for the integral
∫ 2
0
(G4 − 2G + 1) dG

from Example 5.1, but using Simpson’s rule with 10 slices instead of the trapezoidal

rule. You may wish to base your program on the trapezoidal rule program on page 135.

b) Run the program and compare your result to the known correct value of 4.4. What is

the fractional error on your calculation?
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c) Modify the program to use a hundred slices instead, then a thousand. Note the im-

provement in the result. How do the results compare with those from Example 5.1 for

the trapezoidal rule with the same numbers of slices?

Exercise 5.3: Consider the integral

� (G) =
∫ G

0
e−C

2
dC .

a) Write a program to calculate � (G) for values of G from 0 to 3 in steps of 0.1. Choose for

yourself what method you will use for performing the integral and a suitable number

of slices.

b) When you are convinced your program is working, extend it further to make a graph of

� (G) as a function of G . If you want to remind yourself of how to make a graph, consult

Section 3.1, starting on page 86.

�ere is no known way to perform this particular integral analytically, so numerical ap-

proaches are the only way forward.

Exercise 5.4: �e di�raction limit of a telescope

Our ability to resolve detail in astronomical observations is limited by the di�raction of light

in our telescopes. Light from stars can be treated e�ectively as coming from a point source

at in�nity. When such light, with wavelength _, passes through the circular aperture of a

telescope (which we will assume to have unit radius) and is focused by the telescope in the

focal plane, it produces not a single dot, but a circular di�raction pa�ern consisting of a central

spot surrounded by a series of concentric rings. �e intensity of the light in this di�raction

pa�ern is given by

� (A ) = �0
(
�1 (:A )
:A

)2
,

where �0 is a constant, A is the distance in the focal plane from the center of the di�raction

pa�ern, : = 2c/_, and �1 (G) is a Bessel function. �e Bessel functions �< (G) are given by

�< (G) =
1

c

∫ c

0
cos(<\ − G sin\ ) d\,

where< is a nonnegative integer and G ≥ 0.

a) Write a Python function J(m,x) that calculates the value of �< (G) using Simpson’s rule

with# = 1000 points. Use your function in a program to make a plot, on a single graph,

of the Bessel functions �0, �1, and �2 as a function of G from G = 0 to G = 20.

b) Write a second program that makes a density plot of the intensity of the circular di�rac-

tion pa�ern of a point light sourcewith _ = 500 nm, in a square region of the focal plane,

using the formula given above. Your picture should cover values of A from zero up to

about 1 `m.

�e di�raction pa�ern
produced by a point
source of light.

If you have done the calculation correctly, your density plot should look something like the

�gure shown here.

Hint 1: You may �nd it useful to know that limG→0 �1 (G)/G =
1
2 . Hint 2: �e central spot

in the di�raction pa�ern is so bright that it may be di�cult to see the rings around it on the
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computer screen. If you run into this problem a simple way to deal with it is to use one of

the other color schemes for density plots described in Section 3.3. �e “hot” scheme works

well. For a more sophisticated solution to the problem, the imshow function has an additional

argument vmax that allows you to set the value that corresponds to the brightest point in the

plot. For instance, if you say “imshow(x,vmax=0.1)”, then elements in x with value 0.1, or any

greater value, will produce the brightest (most positive) color on the screen. By lowering the

vmax value, you can reduce the total range of values between the minimum and maximum

brightness, and hence increase the sensitivity of the plot, making subtle details visible. For

this exercise a value of vmax=0.01 appears to work well. (�ere is also a vmin argument that

can be used to set the value that corresponds to the dimmest (most negative) color.)

5.2 Errors on integrals

Our numerical integrals are only approximations. As with most numerical calcula-

tions there is usually a rounding error when we calculate an integral, as described

in Section 4.2, but this is not the main source of error. �e main source of error is

the so-called approximation error—the fact that our integration rules themselves are

only approximations to the true integral. Both the trapezoidal and Simpson rules cal-

culate the area under an approximation (either linear or quadratic) to the integrand,

not the integrand itself. How big an error does this approximation introduce?

Consider again an integral
∫ 1
0
5 (G) dG , and let us look �rst at the trapezoidal rule

of Eq. (5.3). To simplify our notation a li�le, let us de�ne G: = 0 + :ℎ as a shorthand

for the positions at which we evaluate the integrand 5 (G). We will refer to these

positions as sample points. Now consider one particular slice of the integral, the one

that falls between G:−1 and G: , and let us perform a Taylor expansion of 5 (G) about
G:−1 thus:

5 (G) = 5 (G:−1) + (G − G:−1) 5 ′ (G:−1) + 1
2 (G − G:−1)

2 5 ′′ (G:−1) + . . . (5.11)

where 5 ′ and 5 ′′ denote the �rst and second derivatives of 5 respectively. Integrating
this expression from G:−1 to G: gives∫ G:

G:−1

5 (G) dG = 5 (G:−1)
∫ G:

G:−1

dG + 5 ′ (G:−1)
∫ G:

G:−1

(G − G:−1) dG

+ 1
2 5
′′ (G:−1)

∫ G:

G:−1

(G − G:−1)2 dG + . . . (5.12)

Now we make the substitution D = G − G:−1, which gives∫ G:

G:−1

5 (G) dG = 5 (G:−1)
∫ ℎ

0
dD + 5 ′ (G:−1)

∫ ℎ

0
D dD + 1

2 5
′′ (G:−1)

∫ ℎ

0
D2 dD + . . .

= ℎ5 (G:−1) + 1
2ℎ

2 5 ′ (G:−1) + 1
6ℎ

3 5 ′′ (G:−1) + O(ℎ4), (5.13)

where O(ℎ4) denotes the rest of the terms in the series, those in ℎ4 and higher, which

we are neglecting.
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We can do a similar expansion around G = G: and again integrate from G:−1 to
G: to get ∫ G:

G:−1

5 (G) dG = ℎ5 (G: ) − 1
2ℎ

2 5 ′ (G: ) + 1
6ℎ

3 5 ′′ (G: ) − O(ℎ4). (5.14)

�en, taking the average of Eqs. (5.13) and (5.14), we get∫ G:

G:−1

5 (G) dG =
1
2ℎ[5 (G:−1) + 5 (G: )] +

1
4ℎ

2 [5 ′ (G:−1) − 5 ′ (G: )]

+ 1
12ℎ

3 [5 ′′ (G:−1) + 5 ′′ (G: )] + O(ℎ4). (5.15)

Finally, we sum this expression over all slices : to get the full integral that we want:∫ 1

0

5 (G) dG =

#∑
:=1

∫ G:

G:−1

5 (G) dG

=
1
2ℎ

#∑
:=1

[5 (G:−1) + 5 (G: )] + 1
4ℎ

2 [5 ′ (0) − 5 ′ (1)]

+ 1
12ℎ

3
#∑
:=1

[5 ′′ (G:−1) + 5 ′′ (G: )] + O(ℎ4). (5.16)

Let us take a close look at this expression to see what is going on.

�e �rst sum on the right-hand side of the equation is precisely equal to the

trapezoidal rule, Eq. (5.3). When we use the trapezoidal rule, we evaluate only this

sum and discard all the terms following. �e size of the discarded terms—the rest of

the series—measures the amount we would have to add to the trapezoidal rule value

to get the true value of the integral. In other words it is equal to the error we incur

when we use the trapezoidal rule, the so-called approximation error.

In the second term, the term in ℎ2, notice that almost all of the terms have can-

celed out of the sum, leaving only the �rst and last terms, the ones evaluated at 0

and 1. Although we haven’t shown it, a similar cancellation happens for the terms

in ℎ4, ℎ6, and all even powers of ℎ.

Now take a look at the term in ℎ3 and note the following useful fact: the sum

in this term is itself, to within an overall constant, just the trapezoidal rule approxi-

mation to the integral of 5 ′′ (G) over the interval from 0 to 1. Speci�cally, if we take

Eq. (5.16) and make the substitution 5 (G) → 5 ′′ (G) on the le�-hand side, we get∫ 1

0

5 ′′ (G) dG =
1
2ℎ

#∑
:=1

[5 ′′ (G:−1) + 5 ′′ (G: )] + O(ℎ2). (5.17)

Multiplying by 1
6ℎ

2 and rearranging, we then get

1
12ℎ

3
#∑
:=1

[5 ′′ (G:−1) + 5 ′′ (G: )] = 1
6ℎ

2

∫ 1

0

5 ′′ (G) dG + O(ℎ4)

=
1
6ℎ

2 [5 ′ (1) − 5 ′ (0)] + O(ℎ4), (5.18)
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since the integral of 5 ′′ (G) is just 5 ′ (G). Substituting this result into Eq. (5.16) and

canceling some terms, we �nd that

∫ 1

0

5 (G) dG =
1
2ℎ

#∑
:=1

[5 (G:−1) + 5 (G: )] + 1
12ℎ

2 [5 ′ (0) − 5 ′ (1)] + O(ℎ4). (5.19)

�us, to leading order in ℎ, the value of the terms dropped when we use the trape-

zoidal rule, which equals the approximation error X on the integral, is

X =
1
12ℎ

2
[
5 ′ (0) − 5 ′ (1)

]
. (5.20)

�is is the Euler–Maclaurin formula for the error on the trapezoidal rule. More cor-

rectly it is the �rst term in the Euler–Maclaurin formula; the full formula keeps the

terms to all orders in ℎ. We can see from Eq. (5.19) that the next term in the series is

of order ℎ4. We might imagine it would be of order ℎ3, but the ℎ3 term cancels out,

and in fact it is fairly straightforward to show that only even powers of ℎ survive in

the full formula at all orders, so the next term a�er ℎ4 is ℎ6, then ℎ8, and so forth.

So long as ℎ is small, however, we can neglect the ℎ4 and higher terms—the leading

term, Eq. (5.20), is usually enough.

Equation (5.19) tells us that the trapezoidal rule is a �rst-order integration rule,

which means it is accurate up to and including terms proportional to ℎ and the

leading-order approximation error is of order ℎ2. �at is, a �rst-order rule is accurate

to O(ℎ) and has an error O(ℎ2).
In addition to approximation error, there is also a rounding error on our calcu-

lation. As discussed in Section 4.2, this rounding error will have approximate size n

times the value of the integral, where n is the machine precision, which is about 10−16

in current versions of Python.1 Equation (5.20) tells us that the approximation error

gets smaller as ℎ gets smaller, so we can make our integral more accurate by using

smaller ℎ or, equivalently, a larger number # of slices. However, there is no point

making ℎ so small that the approximation error becomes smaller than the rounding

error. Further decreases in ℎ beyond this point will only make our program slower,

by increasing the number of terms in the sum for Eq. (5.3), without improving the

accuracy of our calculation signi�cantly, since accuracy will be dominated by the

rounding error.

�us decreases in ℎ will only help us up to the point at which the approximation

1One might imagine that the rounding error would be larger than this because the trapezoidal rule

involves a sum of terms in Eq. (5.3) and each term will incur its own rounding error, the individual errors

accumulating over the course of the calculation. However, standard results for random variables tell us

that the size of such cumulative errors goes up only as
√
# , while the trapezoidal rule equation (5.3)

includes a factor of ℎ, which falls o� as 1/# . �e net result is that the theoretical cumulative error on the

trapezoidal rule actually decreases as 1/
√
# , rather than increasing, so the �nal error is well approximated

by the error incurred on the �nal operation of the calculation, which will have size n times the �nal value.
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and rounding errors are roughly equal, which is the point where

1
12ℎ

2
[
5 ′ (0) − 5 ′ (1)

]
≃ n

∫ 1

0

5 (G) dG . (5.21)

Rearranging for ℎ we get

ℎ ≃

√√
12

∫ 1
0
5 (G) dG

5 ′ (0) − 5 ′ (1) n
1/2 . (5.22)

Or we can set ℎ = (1 − 0)/# to get

# ≃ (1 − 0)
√√
5 ′ (0) − 5 ′ (1)
12

∫ 1
0
5 (G) dG

n−1/2. (5.23)

�us if, for example, all the factors except the last are of order unity, then rounding

error will become important when# ≃ 108. �is is the point at which the accuracy of

the trapezoidal rule reaches the limits of accuracy of the computer. �ere is no point

increasing the number of integration slices beyond this point; the calculation will not

become any more accurate. However, # = 108 would be an unusually large number

of slices for the trapezoidal rule—it would be rare to use such a large number when

equivalent accuracy can be achieved using much smaller # with a more accurate

rule such as Simpson’s rule. In most practical situations, therefore, we will be in

the regime where approximation error is the dominant source of inaccuracy for the

trapezoidal rule and it is safe to assume that rounding error can be ignored.

We can do an analogous error analysis for Simpson’s rule. �e algebra is similar

but more tedious. Here wewill just quote the results. For an integral over the interval

from 0 to 1, the approximation error is given to leading order by

X =
1
180ℎ

4
[
5 ′′′ (0) − 5 ′′′ (1)

]
. (5.24)

�us Simpson’s rule is a third-order integration rule—two orders be�er than the

trapezoidal rule—with a fourth-order approximation error. For small values of ℎ this

means that the error on Simpson’s rule will typically be much smaller than the error

on the trapezoidal rule and it explains why Simpson’s rule gave such superior results

in our example calculations (see Section 5.1.2).

�e rounding error for Simpson’s rule is again of order n
∫ 1
0
5 (G) dG and the

equivalent of Eq. (5.23) is

# = (1 − 0)
(
5 ′′′ (0) − 5 ′′′ (1)
180

∫ 1
0
5 (G) dG

)1/4
n−1/4. (5.25)

If, again, the leading factors are roughly of order unity, this implies that rounding

error will become important when# ≃ 10 000. Beyond this point Simpson’s rule is so
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accurate that it exceeds the accuracy of the computer itself and there is no point using

larger values of # . By contrast with the case for the trapezoidal rule, # = 10 000 is

not an unusually large number of slices to use in a calculation. Calculations with

ten thousand slices can o�en be done in a fraction of a second. �us it is worth

bearing this result in mind: there is no point using more than a few thousand slices

with Simpson’s rule because the calculation will reach the limits of precision of the

computer and larger values of # will do no further good.

Finally in this section, let us note that while Simpson’s rule does in general give

superior accuracy, it is not always guaranteed to do be�er than the trapezoidal rule,

since the errors on the trapezoidal and Simpson rules also depend on derivatives of

the integrand function via Eqs. (5.20) and (5.24). It would be possible, for instance,

for 5 ′′′ (0) by bad luck to be large in some particular instance, making the error in

Eq. (5.24) similarly large, and possibly worse than the error for the trapezoidal rule.

It is fair to say that Simpson’s rule usually gives be�er results than the trapezoidal

rule, but the prudent scientist will bear in mind that it can do worse on occasion.

5.2.1 Practical estimation of errors

�e Euler–Maclaurin formula of Eq. (5.20), or the equivalent for Simpson’s rule in

Eq. (5.24), allows us to calculate the error on our integrals provided we have a known

closed-form expression for the integrand 5 (G), so that we can calculate the deriva-

tives that appear in the formulas. Unfortunately, in many cases—perhaps most—we

have no such expression. For instance, the integrand may not be a mathematical

function at all but a set of measurements made in the laboratory, or it might itself be

the output of another computer program. In such cases Eq. (5.20) or (5.24) will not

work. �ere is, however, still a way to calculate the error.

Suppose, as before, that we are evaluating an integral over the interval from G = 0

to G = 1 and let us assume that we are using the trapezoidal rule—it makes the

argument simpler, although the method described here extends to Simpson’s rule

too. Let us perform the integral with some number of steps #1, so that the step size

is ℎ1 = (1 − 0)/#1, and let us denote by �1 the value of the integral that we calculate.

Here is the trick: we now double the number of steps and perform the integral

again. �at is we de�ne a new number of steps #2 = 2#1 and a new step size ℎ2 =

(1 − 0)/#2 =
1
2ℎ1 and we reevaluate the integral using the trapezoidal rule, giving

a new answer �2, which will normally be more accurate than the previous one. As

we have seen, the trapezoidal rule introduces an error of order O(ℎ2), which means

that when we half the value of ℎ we quarter the size of the error. Knowing this fact

allows us to estimate how big the error is.

Suppose that the true value of the integral is � . �e di�erence between the true

value and our �rst estimate �1 is equal by de�nition to the error on that estimate,

which as we have said is proportional to ℎ2, so let us write it as 2ℎ2, where 2 is a

constant. �en � and �1 are related by � = �1 + 2ℎ21, neglecting higher-order terms.
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We can also write a similar formula for our second estimate �2 of the integral,

with #2 steps: � = �2 + 2ℎ22. Equating the two expressions for � we then get

�1 + 2ℎ21 = �2 + 2ℎ22, (5.26)

or

�2 − �1 = 2ℎ21 − 2ℎ22 = 32ℎ22, (5.27)

where we have made use of the fact that ℎ1 = 2ℎ2. Rearranging this expression now

gives the error X2 on the second estimate of the integral:

X2 = 2ℎ
2
2 =

1
3 (�2 − �1). (5.28)

As we have wri�en it, this expression can be either positive or negative, depending

on which way the error happens to go. If we want only the absolute size of the error

then we can take the absolute value 1
3 |�2 − �1 |, which in Python would be done using

the built-in function abs.

�is method gives us a simple way to estimate the error on the trapezoidal rule

without using the Euler–Maclaurin formula. Indeed, even in cases where we could

in principle use the Euler–Maclaurin formula because we know the mathematical

form of the integrand, it is o�en simpler to use the method of Eq. (5.28) instead—it is

easy to program and gives reliable answers.

�e same principle can be applied to integrals evaluated using Simpson’s rule

too. �e equivalent of Eq. (5.28) in that case turns out to be

X2 =
1
15 (�2 − �1). (5.29)

�e derivation is le� to the reader (see Exercise 5.5).

Exercise 5.5: Error on Simpson’s rule

Following the same line of argument that led to Eq. (5.28), show that the error on an integral

evaluated using Simpson’s rule is given, to leading order in ℎ, by Eq. (5.29).

Exercise 5.6: Write a program, or modify an earlier one, to once more calculate the value of

the integral
∫ 2
0
(G4 − 2G + 1) dG from Example 5.1, using the trapezoidal rule with 20 slices,

but this time have the program also print an estimate of the error on the result, calculated

using the method of Eq. (5.28). To do this you will need to evaluate the integral twice, once

with #1 = 10 slices and then again with #2 = 20 slices. �en Eq. (5.28) gives the error. How

does the error calculated in this manner compare with a direct computation of the error as the

di�erence between your value for the integral and the known true value of 4.4? Why do the

two not agree perfectly?
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5.3 Choosing the number of steps

So far we have not speci�ed how the number # of steps used in our integrals is to

be chosen. In our example calculations we just chose round numbers and looked

to see if the results seemed reasonable. �is is �ne for quick calculations, but for

serious physics we want a more principled approach. In some calculations we may

know in advance how many steps we want to use. Sometimes we have a “budget,” a

certain amount of computer time that we can spend on a calculation, and our goal

is simply to make the most accurate calculation we can in the given amount of time.

If we know, for instance, that we have time to do a thousand steps, then that’s what

we do.

But a more common situation is that we want to calculate the value of an integral

to a given accuracy, such as four decimal places, and we would like to know how

many steps will be needed. So long as the desired accuracy does not exceed the

fundamental limit set by the machine precision of our computer—the rounding error

that limits all calculations—then it should always be possible to meet our goal by

using a large enough number of steps. At the same time, we want to avoid using

more steps than are necessary, since more steps take more time and our calculation

will be slower. Ideally we would like an # that gives us the accuracy we want and

no more.

A simple way to achieve this is to start with a small value of # and repeatedly

increase it until we achieve the accuracy wewant. As we saw in Section 5.2.1, there is

a simple formula, Eq. (5.28), for calculating the error on an integral when we double

the number of steps. By using this formula with repeated doublings we can evaluate

an integral to exactly the accuracy we want.

�e procedure is straightforward. We start o� by evaluating the integral with

some small number of steps #1. For instance, we might choose #1 = 10. �en we

double the number to #2 = 2#1, evaluate the integral again, and apply Eq. (5.28) to

calculate the error. If the error is small enough to satisfy our accuracy requirements,

then we’re done—we have our answer. If not, we double again to #3 = 2#2 and we

keep on doubling until we achieve the required accuracy. �e error on the 8th step

of the process is given by the obvious generalization of Eq. (5.28):

X8 =
1
3 (�8 − �8−1), (5.30)

where �8 is the 8th estimate of the integral. �is method is an example of an adaptive

integration method, one that varies its own parameters to get a desired answer.

A particularly nice feature of this method is that when we double the number of

steps we do not actually have to recalculate the entire integral again. We can reuse

our previous calculation rather than just throwing it away. To see this, take a look

at Fig. 5.3. �e top part of the �gure depicts the locations of the sample points, the

values of G at which the integrand is evaluated in the trapezoidal rule. �e sample

points are regularly spaced, and bear in mind that the �rst and last points are treated

di�erently from the others—the trapezoidal rule formula, Eq. (5.3), speci�es that the
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values of 5 (G) at these points are multiplied by a factor of 1
2 where the values at the

interior points are multiplied by 1.

1 1 1
1

2

1

2

1 1 1 11 1 1
1

2

1

2

Figure 5.3: Doubling the number of

steps in the trapezoidal rule. Top: we

evaluate the integrand at evenly spaced

points as shown, with the value at each

point being multiplied by the appropri-

ate factor. Bo�om: when we double the

number of steps, we e�ectively add a

new set of points, half way between the

previous points, as indicated by the ar-

rows.

�e lower part of the �gure shows what happens whenwe double

the number of slices. �is adds an additional set of sample points

half way between the old ones, as indicated by the arrows. Note that

the original points are still included in the calculation and still carry

the same multiplying factors as before— 1
2 at the ends and 1 in the

middle—while the new points are all multiplied by a simple factor

of 1. �us we have all of the same terms in our trapezoidal rule sum

that we had before, terms that we have already evaluated, but we

also have a set of new ones, which we have to add into the sum to

calculate its full value. In the jargon of computational physics we say

that the sample points for the �rst estimate of the integral are nested

inside the points for the second estimate.

To put this in mathematical terms, consider the trapezoidal rule

at the 8th step of the calculation. Let the number of slices at this step

be #8 and the width of a slice be ℎ8 = (1 − 0)/#8 , and note that on

the previous step there were half as many slices of twice the width,

so that #8−1 =
1
2#8 and ℎ8−1 = 2ℎ8 . �en

�8 = ℎ8

[
1
2 5 (0) +

1
2 5 (1) +

#8−1∑
:=1

5 (0 + :ℎ8 )
]

= ℎ8

[
1
2 5 (0) +

1
2 5 (1) +

∑
: even
2...#8−2

5 (0 + :ℎ8 ) +
∑
: odd

1...#8−1

5 (0 + :ℎ8 )
]
. (5.31)

But ∑
: even
2...#8−2

5 (0 + :ℎ8 ) =
#8/2−1∑
:=1

5 (0 + 2:ℎ8 ) =
#8−1−1∑
:=1

5 (0 + :ℎ8−1), (5.32)

and hence

�8 =
1
2ℎ8−1

[
1
2 5 (0) +

1
2 5 (1) +

#8−1−1∑
:=1

5 (0 + :ℎ8−1)
]
+ ℎ8

∑
: odd

1...#8−1

5 (0 + :ℎ8 ). (5.33)

But the term ℎ8−1 [. . .] in this equation is precisely the trapezoidal rule estimate �8−1
of the integral on the previous iteration of the process, so

�8 =
1
2 �8−1 + ℎ8

∑
: odd

1...#8−1

5 (0 + :ℎ8 ). (5.34)

In e�ect, our old estimate gives us half of the terms in our trapezoidal rule sum and

we only have to calculate the other half. In this way we avoid ever recalculating
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any term that has already been calculated, meaning that each term is calculated only

once, regardless of how many levels of the calculation it is used in. �is means it

takes only about as much work to calculate �8 going through all the successive levels

�1, �2, �3, . . . as it does to calculate �8 outright using the ordinary trapezoidal rule. �us

we pay very li�le extra price in terms of the running time of our program to use

this adaptive method and we gain the signi�cant advantage of a guarantee in the

accuracy of the integral.

�e entire process is as follows:

1. Choose an initial number of steps #1 and decide on the target accuracy for the

value of the integral. Calculate the �rst approximation �1 to the integral using

the chosen value of #1 with the standard trapezoidal rule formula, Eq. (5.3).

2. Double the number of steps and use Eq. (5.34) to calculate an improved estimate

of the integral. Also calculate the error on that estimate from Eq. (5.30).

3. If the absolute magnitude of the error is less than the target accuracy for the

integral, stop. Otherwise repeat from step 2.

�e sum over odd values of : in Eq. (5.34) can be conveniently performed in Python

with a for loop of the form “for k in range(1,N,2)”.

We can also derive a similar method for integrals evaluated using Simpson’s rule.

Again we double the number of steps on each iteration of the process and the equiv-

alent of Eq. (5.30) is

X8 =
1
15 (�8 − �8−1). (5.35)

�e equivalent of Eq. (5.34) is a li�le more complicated. We de�ne

(8 =
1
3

[
5 (0) + 5 (1) + 2

∑
: even
2...#8−2

5 (0 + :ℎ8 )
]
, (5.36)

and

)8 =
2
3

∑
: odd

1...#8−1

5 (0 + :ℎ8 ). (5.37)

�en we can show that

(8 = (8−1 +)8−1 , (5.38)

and

�8 = ℎ8 ((8 + 2)8 ). (5.39)

�us for Simpson’s rule the complete process is:

1. Choose an initial number of steps and a target accuracy, and calculate the sums

(1 and)1 from Eqs. (5.36) and (5.37) and the initial value �1 of the integral from

Eq. (5.39).

2. Double the number of steps then use Eqs. (5.37), (5.38), and (5.39) to calculate

the new values of (8 and)8 and the new estimate of the integral. Also calculate

the error on that estimate from Eq. (5.35).
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3. If the absolute magnitude of the error is less than the target accuracy for the

integral, stop. Otherwise repeat from step 2.

Again notice that on each iteration of the process you have to calculate only one

sum, Eq. (5.37), which includes only those terms in the Simpson’s rule formula that

have not previously been calculated. As a result, the complete calculation of �8 takes

very li�le more computer time than the basic Simpson rule.

5.4 Romberg integration

We can do even be�er than the adaptive method of the last section with only a li�le

more e�ort. Let us go back to the trapezoidal rule again. We have seen that the

leading-order error on the trapezoidal rule, at the 8th step of the adaptive method,

can be wri�en as 2ℎ28 for some constant 2 and is given by Eq. (5.30) to be

2ℎ28 =
1
3 (�8 − �8−1). (5.40)

But by de�nition the true value of the integral is � = �8 + 2ℎ28 + O(ℎ48 ), where we

are including the O(ℎ48 ) term to remind ourselves of the next term in the series—see

Eq. (5.19). (Recall that there are only even-order terms in this series.) So in other

words

� = �8 + 1
3 (�8 − �8−1) + O(ℎ

4
8 ). (5.41)

But this expression is now accurate to third order, and has a fourth-order error, which

is as accurate as Simpson’s rule,2 and yet we calculated it using only our results from

the trapezoidal rule, with hardly any extra work; we are just reusing numbers we

already calculated while carrying out the repeated doubling procedure of Section 5.3.

2In fact, though it is not obvious, Eq. (5.41) is precisely equivalent to Simpson’s rule. Using Eq. (5.3)

for �8 and �8−1, we have

� = �8 + 1
3 (�8 − �8−1 ) + O(ℎ

4
8 ) = 4

3 �8 −
1
3 �8−1 + O(ℎ

4
8 )

=
4
3ℎ8

[
1
2 5 (0) +

1
2 5 (1 ) +

#8−1∑
:=1

5 (0 + :ℎ8 )
]
− 1

3ℎ8−1

[
1
2 5 (0) +

1
2 5 (1 ) +

#8−1−1∑
:=1

5 (0 + :ℎ8−1 )
]
+ O(ℎ48 )

=
4
3ℎ8

[
1
2 5 (0) +

1
2 5 (1 ) +

#8−1∑
:=1

5 (0 + :ℎ8 )
]
− 2

3ℎ8

[
1
2 5 (0) +

1
2 5 (1 ) +

1
2#8−1∑
:=1

5 (0 + 2:ℎ8 )
]
+ O(ℎ48 ),

where we have made use of ℎ8−1 = 2ℎ8 and #8−1 =
1
2#8 in the third line. Gathering terms and noting

that the �nal sum is over only the even slices at locations 2:ℎ8 , we �nd that

� = 1
3ℎ8

[
5 (0) + 5 (1 ) + 4

∑
: odd

1...#8−1

5 (0 + :ℎ8 ) + 2
∑

: even
2...#8−2

5 (0 + :ℎ8 )
]
+ O(ℎ48 ),

which is precisely Simpson’s rule, Eq. (5.9). Similarly, the higher-order approximants of Eq. (5.51) are

equivalent to the so-called Newton-Cotes rules, higher-order integration rules that we discuss in Sec-

tion 5.5.
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We can take this process further. Let us re�ne our notation a li�le and de�ne

'8,1 = �8 , '8,2 = �8 + 1
3 (�8 − �8−1) = '8,1 +

1
3 ('8,1 − '8−1,1). (5.42)

�en, from Eq. (5.41),

� = '8,2 + 22ℎ48 + O(ℎ68 ), (5.43)

where 22 is another constant and we have made use of the fact that the series for �

contains only even powers of ℎ8 . Analogously,

� = '8−1,2 + 22ℎ48−1 + O(ℎ68−1) = '8−1,2 + 1622ℎ48 + O(ℎ68 ). (5.44)

Since these last two equations both give expressions for � we can equate them and

rearrange to get

22ℎ
4
8 =

1
15 ('8,2 − '8−1,2) + O(ℎ

6
8 ). (5.45)

Substituting this expression back into (5.43) gives

� = '8,2 + 1
15 ('8,2 − '8−1,2) + O(ℎ

6
8 ). (5.46)

Now we have an estimate accurate to ��h order, with a sixth-order error!

We can continue this process, computing higher and higher order error terms and

ge�ing more and more accurate results. In general, if '8,< is an estimate calculated

at the 8th round of the doubling procedure and accurate to order ℎ2<−1, with an error
of order ℎ2< , then

� = '8,< + 2<ℎ2<8 + O
(
ℎ2<+28

)
, (5.47)

� = '8−1,< + 2<ℎ2<8−1 + O
(
ℎ2<+28−1

)
= '8−1,< + 4<2<ℎ2<8 + O

(
ℎ2<+28

)
. (5.48)

Equating the two and rearranging we have

2<ℎ
2<
8 =

1

4< − 1 ('8,< − '8−1,<) + O
(
ℎ2<+28

)
, (5.49)

and substituting this into Eq. (5.47) gives

� = '8,<+1 + O
(
ℎ2<+28

)
, (5.50)

where

'8,<+1 = '8,< +
1

4< − 1 ('8,< − '8−1,<), (5.51)

which is accurate to order ℎ2<+1 with an error of order ℎ2<+2.
�e calculation also gives us an estimate of the error—Eq. (5.49) is precisely the

error on '8,< (see Eq. (5.47))—and hence we can say how accurate our results are. To

make use of these results in practice we do the following:

1. We calculate our �rst two estimates of the integral using the regular trape-

zoidal rule: �1 ≡ '1,1 and �2 ≡ '2,1.
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2. From these we calculate the more accurate estimate '2,2 using Eq. (5.51). �is

is as much as we can do with only the two starting estimates.

3. Now we calculate the next trapezoidal rule estimate �3 ≡ '3,1 and from this,

with Eq. (5.51), we calculate '3,2, and then '3,3.

4. At each successive stage we compute one more trapezoidal rule estimate �8 ≡
'8,1, and from it, with very li�le extra e�ort, we can calculate '8,2 . . . '8,8 .

5. For each estimate we can also calculate the error, Eq. (5.49), which allows us to

halt the calculation when the error on our estimate of the integral meets some

desired target.

Perhaps a picture will help make the process clearer. �is diagram shows which

values '8,< are needed to calculate further 's:

�1 ≡ '1,1
↘

�2 ≡ '2,1 → '2,2
↘ ↘

�3 ≡ '3,1 → '3,2 → '3,3
↘ ↘ ↘

�4 ≡ '4,1 → '4,2 → '4,3 → '4,4
↘ ↘ ↘ ↘

Each row here lists one trapezoidal rule estimate �8 followed by the other higher-

order estimates it allows us to make. �e arrows show which previous estimates

go into the calculation of each new one via Eq. (5.51). Note how each fundamental

trapezoidal rule estimate �8 allows us to go one step further with calculating the '8,< .

�e most accurate estimate we get from the whole process is the very last one: if we

do = levels of the process, then the last estimate is '=,= and is accurate to order ℎ2== .

Errors on our estimates are given by Eq. (5.49). If we are being picky, however,

we should note that the equation gives us the error on every estimate except the last

one in each row (which is the one we really care about). �e equation says that the

error on '=,= would be ('=,=−'=−1,=)/(4=−1) but there is no '=−1,= so we cannot use
the formula in this case. In practice this means we have to content ourselves with

the error estimate for the penultimate entry in each row, which is normally bigger

than the error on the �nal entry. �e best we can say is that the �nal entry in the

row is our most accurate estimate of the integral and that its error is at least as good

as the error for the entry that precedes it, which is given by Eq. (5.49). �is is not

ideal, but in practice it is usually good enough.

�is whole procedure is called Romberg integration. It is essentially an “add-on”

to our earlier trapezoidal rule scheme: all the tough work is done in the trapezoidal

rule calculations and the Romberg integration takes almost no extra computer time

(although it does involve extra programming). �e payo� is a value for the integral

that is accurate to much higher order in ℎ than the simple trapezoidal rule (or even

than Simpson’s rule). Andwhen used in an adaptive scheme that halts the calculation

once the required accuracy is reached, it can signi�cantly reduce the time needed to
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evaluate integrals because it reduces the number of trapezoidal rule steps we have

to do.

�e method does have its limitations. We are in essence calculating the value of

our integral by making a series expansion in powers of the step size ℎ. �is means

that the method works best in cases where such power series converge rapidly. If one

needs hundreds of terms in the series to get good convergence then the method is

not going to give us any advantage over the simple trapezoidal rule. �is can happen

if the integrand 5 (G) is poorly behaved, containing wild �uctuations, for instance,

or singularities, or if it is noisy. If your integrand displays these types of patholo-

gies then Romberg integration is not a good choice. �e simpler adaptive trapezoidal

method of Section 5.3 will give be�er results. In cases where the integrand is smooth

and well-behaved, however, Romberg integration can give signi�cantly more accu-

rate results signi�cantly faster than either the trapezoidal or Simpson rules.

Romberg integration is an example of the more general technique of Richardson

extrapolation, in which high-order estimates of quantities are calculated iteratively

from lower-order ones. We will see another application of Richardson extrapolation

in Section 5.10.5, when we apply it to numerical di�erentiation.

Exercise 5.7: Consider the integral

� =

∫ 1

0
sin2
√
100G dG .

a) Write a program that uses the adaptive trapezoidal rule method of Section 5.3 and

Eq. (5.34) to calculate the value of this integral to an approximate accuracy of X = 10−6

(i.e., correct to six digits a�er the decimal point). Start with one single integration slice

and work up from there to two, four, eight, and so forth. Have your program print out

the number of slices, its estimate of the integral, and its estimate of the error on the

integral, for each value of the number of slices # , until the target accuracy is reached.

(Hint: You should �nd the result is around � = 0.45.)

b) Nowmodify your program to evaluate the same integral using the Romberg integration

technique described in this section. Have your program print out a triangular table of

values, as on page 152, of all the Romberg estimates of the integral. Calculate the error

on your estimates using Eq. (5.49) and again continue the calculation until you reach an

accuracy of X = 10−6. You should �nd that the Romberg method reaches the required

accuracy considerably faster than the trapezoidal rule alone.

Exercise 5.8: Write a program that uses the adaptive Simpson’s rule method of Section 5.3 and

Eqs. (5.35) to (5.39) to calculate the same integral as in Exercise 5.7, again to an approximate

accuracy of X = 10−6. Starting this time with two integration slices, work up from there to

four, eight, and so forth, printing out the results at each step until the required accuracy is

reached. You should �nd you reach that accuracy for a signi�cantly smaller number of slices

than with the trapezoidal rule calculation in part (a) of Exercise 5.7, but a somewhat larger

number than with the Romberg integration of part (b).
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5.5 Higher-order integration methods

As we have seen, the trapezoidal rule is based on approximating an integrand 5 (G)
with straight-line segments, while Simpson’s rule uses quadratics. We can create

higher-order (and hence potentially more accurate) rules by using higher-order poly-

nomials, ��ing 5 (G) with cubics, quartics, and so forth. �e general form of the

trapezoidal and Simpson rules is

∫ 1

0

5 (G) dG ≃
#∑
:=1

F: 5 (G: ), (5.52)

where the G: are the positions of the sample points at which we calculate the inte-

grand and the F: are some set of weights. In the trapezoidal rule, Eq. (5.3), the �rst

and last weights are 1
2 and the others are all 1, while in Simpson’s rule the weights are

1
3 for the �rst and last slices and alternate between 4

3 and 2
3 for the other slices—see

Eq. (5.9).

For higher-order rules the basic form is the same: a�er ��ing to the appropriate

polynomial and integrating we end up with a set of weights that multiply the val-

ues 5 (G: ) of the integrand at evenly spaced sample points. Here are the weights up

to quartic order:

Degree Polynomial Coe�cients

1 (trapezoidal rule) Straight line 1
2 , 1, 1, . . . , 1,

1
2

2 (Simpson’s rule) �adratic 1
3 ,

4
3 ,

2
3 ,

4
3 , . . . ,

4
3 ,

1
3

3 Cubic 3
8 ,

9
8 ,

9
8 ,

3
4 ,

9
8 ,

9
8 ,

3
4 , . . . ,

9
8 ,

3
8

4 �artic 14
45 ,

64
45 ,

8
15 ,

64
45 ,

28
45 ,

64
45 ,

8
15 ,

64
45 , . . . ,

64
45 ,

14
45

Higher-order integration rules of this kind are called Newton–Cotes formulas and in

principle they can be extended to any order we like.

However, we can do be�er still. We note that the trapezoidal rule is exact if the

function being integrated is actually a straight line, because then the straight-line

approximation isn’t an approximation at all. Similarly, Simpson’s rule is exact if the

function being integrated is a quadratic, and the :th Newton–Cotes rule is exact if

the function being integrated is a degree-: polynomial.

But if we have# sample points, then presumably that means we could just �t one

(#−1)th-degree polynomial to the whole integration interval, and get an integration

method that is exact for (# − 1)th-degree polynomials—and for any lower-degree

polynomials as well. (Note that it’s # − 1 because you need three points to �t a

quadratic, four for a cubic, and so forth.)

But we can do even be�er than this. We have been assuming here that the sample

points are evenly spaced. Methods with evenly spaced points are simple to program,

and they have the advantage that it is easy to increase the number of points by adding

new points half way between the old ones, as we saw in Section 5.3. However, it is

also possible to derive integration methods that use unevenly spaced points and,
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while they lack some of the advantages above, they have others of their own. In

particular, they can give very accurate answers with only a small number of points,

making them especially suitable for cases where we need to do integrals very fast,

or where evaluation of the integrand itself takes a long time.

Suppose then thatwe broaden our outlook to include rules of the form of Eq. (5.52),

but where we are allowed to vary not only the weights F: but also the positions G:
of the sample points. Any choice of positions is allowed, including ones that are not

evenly spaced. As we have said, it is possible to create an integration method that

is exact for polynomials up to degree # − 1 with # equally spaced points. Varying

the positions of the points gives us # extra degrees of freedom, which suggests that

it might be possible to create an integration rule that is exact for polynomials up to

degree 2# −1 if all of those degrees of freedom are chosen correctly. For large values

of # this could give us the power to �t functions very accurately indeed, and hence

to do very accurate integrals. It turns out that it is indeed possible to do this and the

developments lead to the superbly accurate integration method known as Gaussian

quadrature, which we describe in the next section.

5.6 Gaussian qadrature

�e derivation of the Gaussian quadrature method has two parts. First, we will see

how to derive integration rules with unevenly spaced sample points G: . �en we will

choose the particular set of points that give the optimal integration rule.

5.6.1 Nonuniform sample points

Suppose we are given a nonuniform set of # points G: and we wish to create an

integration rule of the form (5.52) that calculates integrals over a given interval from

0 to 1, based only on the values 5 (G: ) of the integrand at those points. In other

words, we want to choose weights F: so that Eq. (5.52) works for general 5 (G). To
do this, we will �t a single polynomial through the values 5 (G: ) and then integrate

that polynomial from 0 to 1 to calculate an approximation to the true integral. To �t

# points we need to use a polynomial of degree # − 1. �e ��ing can be done using

the method of interpolating polynomials.

Consider the following quantity:

q: (G) =
∏

<=1...#
<≠:

(G − G<)
(G: − G<)

=
(G − G1)
(G: − G1)

× . . . × (G − G:−1)(G: − G:−1)
× (G − G:+1)(G: − G:+1)

× . . . × (G − G# )(G: − G# )
, (5.53)

which is called a Lagrange interpolating polynomial. Note that the numerator con-

tains one factor for each sample point except the point G: . �usq: (G) is a polynomial
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in G of degree # − 1. For values of : from 1 to # , Eq. (5.53) de�nes # di�erent such

polynomials.

You can con�rm for yourself that if we evaluate q: (G) at one of the sample

points G = G< we get

q: (G<) =
{
1 if< = : ,

0 if< ≠ : ,
(5.54)

or, to be more concise,

q: (G<) = X:< , (5.55)

where X:< is the Kronecker delta—the quantity that is 1 when : = < and zero oth-

erwise.

Now consider the following expression:

Φ(G) =
#∑
:=1

5 (G: ) q: (G). (5.56)

Since it is a linear combination of polynomials of degree # − 1, this entire quantity
is also a polynomial of degree # − 1. And if we evaluate it at any one of the sample

points G = G< we get

Φ(G<) =
#∑
:=1

5 (G: ) q: (G<) =
#∑
:=1

5 (G: ) X:< = 5 (G<), (5.57)

where we have used Eq. (5.55).

In other words Φ(G) is a polynomial of degree # − 1 that �ts the integrand 5 (G)
at all of the sample points. �is is exactly the quantity we were looking for to create

our integration rule. Moreover, the polynomial of degree # − 1 that �ts a given #

points is unique: it has # free coe�cients and our points give us # constraints, so

the coe�cients are completely determined. Hence Φ(G) is not merely a polynomial

that �ts our points, it is the polynomial. �ere are no others.

To calculate an approximation to our integral, all we have to do now is integrate

Φ(G) from 0 to 1 thus:

∫ 1

0

5 (G) dG ≃
∫ 1

0

Φ(G) dG =

∫ 1

0

#∑
:=1

5 (G: )q: (G) dG

=

#∑
:=1

5 (G: )
∫ 1

0

q: (G) dG, (5.58)

where we have interchanged the order of the sum and integral in the second line.

Comparing this expression with Eq. (5.52) we now see that the weights we need for

our integration rule are given by

F: =

∫ 1

0

q: (G) dG . (5.59)
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In other words we have found a general method for creating an integration rule of

the form (5.52) for any set of sample points G: : we set the weights F: equal to the

integrals of the interpolating polynomials, Eq. (5.53), over the integration domain.

�ere is no general closed-form formula for the integrals of the interpolating

polynomials. In some special cases it is possible to perform the integrals exactly, but

o�en it is not, in which case we may have to perform them on the computer, using

one of our other integrationmethods, such as Simpson’s rule or Romberg integration.

�is may seem to defeat the point of our calculation, which was to �nd an integration

method that did not rely on uniformly spaced sample points, and here we are using

Simpson’s rule, which has uniformly spaced points. But in fact the exercise is not as

self-defeating as it may appear. �e point to notice is that we have to calculate the

weights F: only once, and then we can use them in Eq. (5.52) to integrate as many

di�erent functions as we like. So we may have to put some e�ort into the calculation

of the weights, using, say, Simpson’s rule with very many slices to get as accurate

an answer as possible. But we only have to do it once, and therea�er other integrals

can be done rapidly and accurately using Eq. (5.52).

In fact, it’s be�er than this. Once one has calculated the weights for a particular

set of sample points and domain of integration, it is possible tomap thoseweights and

points onto any other domain and get an integration rule of the form (5.52) without

having to recalculate the weights. Typically one gives sample points and weights

arranged in a standard interval, which for historical reasons is usually taken to be

the interval from G = −1 to G = +1. �us to specify an integration rule one gives a

set of sample points in the range −1 ≤ G: ≤ 1 and a set of weights

F: =

∫ 1

−1
q: (G) dG . (5.60)

If we want to integrate over any domain other than the one from −1 to +1, we map

these values to that other domain. Since the area under a curve does not depend on

where that curve is along the G line, the sample points can be slid up and down the

G line en masse and the integration rule will still work �ne. If the desired domain is

wider or narrower than the interval from −1 to +1 then we need to spread the points

out or squeeze them together. �e correct rule for mapping the points to a general

domain that runs from G = 0 to G = 1 is:

G ′: =
1
2 (1 − 0)G: +

1
2 (1 + 0). (5.61)

Similarly the weights do not change if we are simply sliding the sample points up or

down the G line, but if the width of the integration domain changes then the value

of the integral will increase or decrease by a corresponding factor, and hence the

weights have to be rescaled thus:

F ′: =
1
2 (1 − 0)F: . (5.62)
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Once we have calculated the rescaled positions and weights then the integral itself

is given by ∫ 1

0

5 (G) dG ≃
=∑
:=1

F ′: 5 (G
′
: ) . (5.63)

5.6.2 Sample points for Gaussian qadrature

�e developments of the previous section solve part of our problem. Given the posi-

tions of the sample points G: they tell us how to choose the weightsF: , but we still

need to choose the sample points. As we speculated at the end of Section 5.5, it is

possible to chose these points so as to create a rule that gives the exact integral of any

polynomial function up to degree 2# − 1 with just # sample points. �e derivation

is based on the mathematics of Legendre polynomials.

�e Legendre polynomial %# (G) is an # th-degree polynomial in G that has the

property∫ 1

−1
G:%# (G) dG = 0 for all integer : in the range 0 ≤ : < # (5.64)

and satis�es the normalization condition

%# (1) = 1. (5.65)

�us, for instance, %0 (G) = constant, and the constant is �xed by (5.65) to give

%0 (G) = 1. Similarly, %1 (G) is a linear function 0G + 1 satisfying∫ 1

−1
(0G + 1) dG = 0. (5.66)

Carrying out the integral, we �nd that 1 = 0 and 0 is �xed by (5.65) to be 1, giving

%1 (G) = G . By similar arguments we can derive expressions for as many polynomials

as we like. �e next two are %2 (G) = 1
2 (3G2 − 1) and %3 (G) = 1

2 (5G3 − 3G), and you

can �nd tables online or elsewhere that list them to higher order.

Now suppose that @(G) is any polynomial of degree less than # , so that it can be

wri�en @(G) = ∑#−1
:=0

2:G
: for some set of coe�cients 2: . �en∫ 1

−1
@(G)%# (G) dG =

#−1∑
:=0

2:

∫ 1

−1
G:%# (G) dG = 0, (5.67)

by Eq. (5.64). �us, for any # , %# (G) is orthogonal to every polynomial of lower

degree. A further property of the Legendre polynomials, which we will use shortly,

is that for all # the polynomial %# (G) has # real roots that all lie in the interval

from −1 to 1. �at is, there are # values of G in this interval for which %# (G) = 0.

We make use of the Legendre polynomials as follows. Our goal is to �nd an

integration rule of the form∫ 1

−1
5 (G) dG ≃

#∑
:=1

F: 5 (G: ). (5.68)
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(As we saw in the previous section, if we can �nd sample points and weights for an

integral like this over the standard interval from−1 to 1 thenwe can do integrals over
any other interval by a simple change of variables, Eqs. (5.61) and (5.62).) Suppose

that the integrand 5 (G) is a polynomial in G of degree 2# − 1 or less. If we divide

5 (G) by the Legendre polynomial %# (G), then we get

5 (G) = @(G)%# (G) + A (G), (5.69)

where @(G) and A (G) are both polynomials of degree # − 1 or less. �us our integral

can be wri�en∫ 1

−1
5 (G) dG =

∫ 1

−1
@(G)%# (G) dG +

∫ 1

−1
A (G) dG =

∫ 1

−1
A (G) dG, (5.70)

where the term in@(G) vanishes because of (5.67). �ismeans that to �nd the integral

of the polynomial 5 (G) we have only to �nd the integral of the polynomial A (G),
which always has degree # − 1 or less.

But we already know how to solve this problem. As we saw in Section 5.6.1, for

any choice of the # sample points G: , a polynomial of degree # − 1 or less can be

��ed exactly using the interpolating polynomials q: (G), Eq. (5.53), and then the �t

can be integrated to give

∫ 1

−1
5 (G) dG =

∫ 1

−1
A (G) dG =

#∑
:=1

F:A (G: ), (5.71)

where

F: =

∫ 1

−1
q: (G) dG . (5.72)

(See Eq. (5.60) on page 157.) Note that, unlike Eq. (5.68), the equality in Eq. (5.71) is

now an exact one, because the polynomial �t is exact.

�us we have a method for integrating any polynomial of degree 2# − 1 or less
exactly over the interval from −1 to 1: we divide by the Legendre polynomial %# (G)
and then integrate the remainder polynomial A (G) using any set of # sample points

we choose plus the corresponding weights.

�is, however, is not a very satisfactory method. In particular the polynomial

division is rather complicated to perform. However, we can simplify the procedure

by noting that, so far, the positions of our sample points are unconstrained and we

can pick them in any way we please. So consider again an integration rule of the

form (5.68) and make the substitution (5.69), to get

#∑
:=1

F: 5 (G: ) =
#∑
:=1

F:@(G: )%# (G: ) +
#∑
:=1

F:A (G: ). (5.73)

But we know that %# (G) has# zeros between−1 and 1, so let us choose our# sample

points G: to be exactly the positions of these zeros. �at is, let G: be the :th root of
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the Legendre polynomial %# (G). In that case, %# (G: ) = 0 for all : and Eq. (5.73)

becomes simply
#∑
:=1

F: 5 (G: ) =
#∑
:=1

F:A (G: ). (5.74)

Combining with Eq. (5.71), we then have

∫ 1

−1
5 (G) dG =

#∑
:=1

F: 5 (G: ), (5.75)

where the equality is exact. Now we have a integration rule of the standard form

that allows us to integrate any polynomial function 5 (G) of degree 2# − 1 or less

from −1 to 1 and get an exact answer (except for rounding error).

Let us pause for a moment to take that in: this integration rule will give the exact

value for the integral, even though we only measure the function at # points. Upon

re�ection, this is a remarkable result. If we measure a polynomial of any degree

greater than # − 1 at only # points then we do not have enough information to

actually reconstruct the polynomial—a polynomial of degree# or greater has at least

#+1 coe�cients, so# measurements are not enough to �x all the degrees of freedom.

Nonetheless, even though we cannot tell what the polynomial is, we can calculate its

integral.

�e calculation of the positions of the zeros of %# (G) does take some work. For

any = ≥ 1 the Legendre polynomials are known to satisfy the recurrence relation

(= + 1)%=+1 (G) = (2= + 1)G%= (G) − =%=−1 (G), (5.76)

and starting from %0 (G) = 1 and %1 (G) = G we can use this formula to calculate %2 (G),
then %3 (G), %4 (G), and so on until we reach the desired %# (G). �is gives us the value

of %# (G) for any G exactly, apart from rounding error. �en the zeros can be found

using, for instance, Newton’s method. (If you are not familiar with Newton’smethod,

we study it in detail in the next chapter, in Section 6.3.5.)

5.6.3 Weights for Gaussian qadrature

Once we have the sample points, the �nal step of our derivation is to calculate the

weights F: for our integration rule from Eq. (5.60) on page 157, which says that

F: =
∫ 1

−1 q: (G) dG . Recall that the Lagrange interpolating polynomial q: (G) is given
by Eq. (5.53) to be

q: (G) =
∏

<=1...#
<≠:

(G − G<)
(G: − G<)

. (5.77)

Since we have chosen the G< to be the roots of the polynomial %# (G), we have, by
de�nition,

%# (G) = �
#∏
<=1

(G − G<), (5.78)
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where � is a constant equal to the coe�cient of G# in %# . If we de�ne

k: (G) = �
∏

<=1...#
<≠:

(G − G<), (5.79)

then %# (G) = (G − G: )k: (G) and (5.77) becomes

q: (G) =
k: (G)
k: (G: )

=
%# (G)/(G − G: )

% ′
#
(G: )

, (5.80)

where % ′# (G) is the derivative of %# (G) and we have made use of

k: (G: ) = lim
G→G:

%# (G)
G − G:

= % ′# (G: ) (5.81)

by l’Hopital’s rule. �us the weightF: is

F: =

∫ 1

−1
q: (G) dG =

1

% ′
#
(G: )

∫ 1

−1

%# (G)
G − G:

dG . (5.82)

�e value of the remaining integral can be calculated from the recurrence relation

in Eq. (5.76). Multiplying this relation throughout by %= (~) for any ~ we have

(= + 1)%=+1 (G)%= (~) = (2= + 1)G%= (G)%= (~) − =%=−1 (G)%= (~). (5.83)

Subtracting this equation and the same equation with G and ~ exchanged, we get

(= + 1) [%=+1 (G)%= (~) − %= (G)%=+1 (~)] = (2= + 1) (G − ~)%= (G)%= (~)+
+ =[%= (G)%=−1 (~) − %=−1 (G)%= (~)],

(5.84)

and summing over = from 1 to # − 1 and rearranging, we get

(G − ~)
#−1∑
==1

(2= + 1)%= (G)%= (~) =
#−1∑
==1

(= + 1) [%=+1 (G)%= (~) − %= (G)%=+1 (~)]

−
#−1∑
==1

=[%= (G)%=−1 (~) − %=−1 (G)%= (~)]

= # [%# (G)%#−1 (~) − %#−1 (G)%# (~)] − (G − ~),
(5.85)

with all the other terms on the right having canceled. Rearranging again, we arrive

at the Christo�el-Darboux formula for the Legendre polynomials:

#−1∑
==0

(2= + 1)%= (G)%= (~) = #
%# (G)%#−1 (~) − %#−1 (G)%# (~)

G − ~ . (5.86)

Note how the term G −~ on the right-hand side of (5.85) has been absorbed into the

= = 0 term in the sum on the le�, exploiting the fact that %0 (G) = %0 (~) = 1.
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Se�ing~ = G: and noting that %# (G: ) = 0 because G: is a root, Eq. (5.86) becomes

#−1∑
==0

(2= + 1)%= (G)%= (G: ) = #
%# (G)%#−1 (G: )

G − G:
. (5.87)

Now we integrate both sides with respect to G from −1 to 1, noting that, because

%0 (G) = 1 and %= (G) for = ≥ 1 is orthogonal to %0 (G), all terms in the sum on the le�

vanish except for the = = 0 term, and we get

∫ 1

−1

#−1∑
==0

(2= + 1)%= (G)%= (G: ) dG = %0 (G: )
∫ 1

−1
%0 (G) dG = 2

= #%#−1 (G: )
∫ 1

−1

%# (G)
G − G:

dG, (5.88)

or ∫ 1

−1

%# (G)
G − G:

dG =
2

#%#−1 (G: )
. (5.89)

Substituting this result into Eq. (5.82), we arrive at an expression for the integration

weights:

F: =
2

#% ′
#
(G: )%#−1 (G: )

. (5.90)

Finally, we can if we wish simplify this expression by making use of another

standard recurrence relation for the Legendre polynomials:

(G2 − 1)% ′# (G) = # [G%# (G) − %#−1 (G)] . (5.91)

Se�ing G = G: and noting again that %# (G: ) = 0, we get

% ′# (G: ) =
#%#−1 (G: )

1 − G2
:

, (5.92)

and combining this result with (5.90), we derive two further forms forF: thus:

F: =
2

(1 − G2
:
) [% ′

#
(G: )]2

, (5.93)

F: =
2(1 − G2

:
)

[#%#−1 (G: )]2
. (5.94)

�e �rst of these is the form one sees most o�en in books and online, but we �nd

the second one more convenient in practice. Since one calculates the Legendre poly-

nomials from the recurrence relation (5.76) starting from %0 (G) and working up, one
always calculates %#−1 (G) en route to calculating %# (G), meaning we can evalu-

ate (5.94) easily using results we already have at hand a�er �nding the roots of %# (G).
Figure 5.4 shows what our sample points and weights look like for the cases

# = 10 and # = 100. Note how the points get closer together at the edges while at

the same time the weights get smaller.
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Figure 5.4: Sample points and weights for Gaussian quadrature. �e positions and heights of the bars represent the

sample points and their associated weights for Gaussian quadrature with (a) # = 10 and (b) # = 100.

Combining everything we have learned, our �nal integration rule, based on the

sample points G: and weights F: , is called Gaussian quadrature3 and although its

derivation is quite complicated, using it in practice is beautifully simple: given the

values G: andF: for your chosen # , you can integrate any function over the interval

−1 to 1 by simply performing the sum in Eq. (5.68). For integrals over any other in-

terval, you rescale the values using Eqs. (5.61) and (5.62) and then perform the sum in

Eq. (5.63). Note that, although we have derived the method by considering integrals

of polynomial functions, its use is not restricted to polynomials. It can be used to

integrate functions of any kind. It does not give exact answers for non-polynomial

functions, but it is highly accurate nonetheless, even when using a relatively small

number of sample points.

�e only di�cult part of the method is �nding the values of G: andF: in the �rst

place. As described above, we can calculate them using the recurrence relation (5.76)

plus Newton’s method, combined with the formula for the weights, Eq. (5.94). �e

calculation is not complicated, but ge�ing it right does require some care. You are

welcome to give it a try, but we also provide Python functions to do it in Appendix C

and in the online resources in the �le gaussxw.py. We will make use of these func-

tions extensively in this book. Example 5.2 below shows how to use them.

3It is called “Gaussian” because it was pioneered by the legendary mathematician Carl Friedrich

Gauss. “�adrature” is an old (19th century) name for numerical integration—Gauss’s work predates

the invention of computers, to a time when people did numerical integrals by hand, meaning they were

very concerned about ge�ing the best answers when # is small. When you are doing calculations by

hand, Simpson’s rule with # = 1000 is not an option.
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Example 5.2: Gaussian integral of a simple function

Consider again the integral we did in Example 5.1,
∫ 2

0
(G4−2G+1)dG , whose true value,

as we saw, is 4.4. Here is a program to evaluate the same integral using Gaussian

quadrature. Just to emphasize the impressive power of the method, we will perform

the calculation with only # = 3 sample points:

File: gaussint.py from gaussxw import gaussxw

def f(x):

return x**4 - 2*x + 1

N = 3

a = 0.0

b = 2.0

# Calculate the sample points and weights

x,w = gaussxw(N,a,b)

# Perform the integration

s = 0.0

for k in range(N):

s += w[k]*f(x[k])

print(s)

For this program to work you must have a copy of the �le gaussxw.py in the same

folder as the program itself.

�e function gaussxw takes three arguments, which are the value of # plus the

limits 0 and 1 of the integration interval. �e la�er two are optional—if they are

omi�ed the function assumes the standard interval where 0 = −1 and 1 = 1. Note

also how the function returns two variables, not just one. We discussed functions

of this type in Section 2.6 but this is the �rst time we have seen one in use. In this

case the variables are arrays, x and w, containing the sample points and weights for

Gaussian quadrature on # points over the interval from 0 to 1.

�e program above is very simple—no more complicated than the program for

the trapezoidal rule in Example 5.1—yet when we run it, it prints the following:

4.4

�e program has calculated the answer exactly, with just three sample points. �is

is not a mistake, or luck, or a coincidence. It’s exactly what we expect. Gaussian

integration on# points gives exact answers for the integrals of polynomial functions

up to and including polynomials of degree 2# −1, which for# = 3means degree �ve.

�e function G4 − 2G + 1 that we are integrating here is a degree-four polynomial,

so we expect the method to return an exact answer, and it does. Nonetheless, the
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performance of the method does seem almost magical in this case: the program has

evaluated the integrand at just three points and from those three values alone it is,

amazingly, able to calculate the integral of the entire function exactly.

�is is the strength of Gaussian quadrature: it can give remarkably accurate an-

swers, even with small numbers of sample points. �is makes it especially useful in

situations where you cannot a�ord to use large numbers of points, either because

you need to be able to calculate an answer very quickly or because evaluating your

integrand takes a long time even for just a few points.

�e method does have its disadvantages. In particular, because the sample points

are not uniformly distributed it takes more work if we want to employ the trick of

repeatedly doubling # , as we did in Section 5.3, to successively improve the accuracy

of the integral—if we change the value of # then all the sample points and weights

have to be recalculated, and the entire sum over points, Eq. (5.52), has to be redone.

We cannot reuse the calculations for old sample points as we did with the trapezoidal

rule. In the language of computational physics we say that the sample points are not

nested.

Exercise 5.9: Heat capacity of a solid

Debye’s theory of solids gives the heat capacity of a solid at temperature ) to be

�+ = 9+ d:�

(
)

\�

)3 ∫ \�/)

0

G4eG

(eG − 1)2
dG,

where + is the volume of the solid, d is the number density of atoms, :� is Boltzmann’s

constant, and \� is the so-called Debye temperature, a property of solids that depends on their

density and speed of sound.

a) Write a Python function cv(T) that calculates �+ for a given value of the tempera-

ture, for a sample consisting of 1000 cubic centimeters of solid aluminum, which has a

number density of d = 6.022 × 1028m−3 and a Debye temperature of \� = 428 K. Use

Gaussian quadrature to evaluate the integral, with # = 50 sample points.

b) Use your function to make a graph of the heat capacity as a function of temperature

from ) = 5 K to ) = 500 K.

Exercise 5.10: Period of an anharmonic oscillator

�e simple harmonic oscillator crops up in many places. Its behavior can be studied readily

using analytic methods and it has the important property that its period is a constant, inde-

pendent of the amplitude of oscillation, making it useful, for instance, for keeping time in

watches and clocks.

Frequently in physics, however, we also come across anharmonic oscillators, whose period

varies with amplitude andwhose behavior cannot usually be calculated analytically. A general
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classical oscillator can be thought of as a particle in a concave potential well. When disturbed,

the particle will rock back and forth in the well:

V(x)

x

�e harmonic oscillator corresponds to a quadratic potential + (G) ∝ G2. Any other form

gives an anharmonic oscillator. (�us there are many di�erent kinds of anharmonic oscillator,

depending on the exact form of the potential.)

One way to calculate the motion of an oscillator is to write down the equation for the

conservation of energy in the system. If the particle has mass< and position G , then the total

energy is equal to the sum of the kinetic and potential energies thus:

� =
1
2<

(
dG

dC

)2
++ (G) .

Since the energy must be constant over time, this equation is e�ectively a (nonlinear) di�er-

ential equation linking G and C .

Let us assume that the potential + (G) is symmetric about G = 0 and let us set our anhar-

monic oscillator going with amplitude 0. �at is, at C = 0 we release it from rest at position

G = 0 and it swings back towards the origin. �us at C = 0 we have dG/dC = 0 and the equation

above reads � = + (0), which gives us the total energy of the particle in terms of the amplitude.

a) When the particle reaches the origin for the �rst time, it has gone through one quarter

of a period of the oscillator. By rearranging the equation above for dG/dC and then

integrating with respect to C from 0 to 1
4) , show that the period ) is given by

) =
√
8<

∫ 0

0

dG√
+ (0) −+ (G)

.

b) Suppose the potential is + (G) = G4 and the mass of the particle is < = 1. Write a

Python function that calculates the period of the oscillator for given amplitude 0 using

Gaussian quadrature with # = 20 points, then use your function to make a graph of

the period for amplitudes ranging from 0 = 0 to 0 = 2.

c) You should �nd that the oscillator gets faster as the amplitude increases, even though

the particle has further to travel for larger amplitude. And you should �nd that the

period diverges as the amplitude goes to zero. How do you explain these results?

Exercise 5.11: Suppose a plane wave of wavelength _, such as light or a sound wave, is

blocked by an object with a straight edge, represented by the solid bar at the bo�om of this

�gure:
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x

z

�ewave will be di�racted at the edge and the resulting intensity at the position (G, I) marked

by the dot is given by near-�eld di�raction theory to be

� =
�0

8

(
[2� (D) + 1]2 + [2( (D) + 1]2

)
,

where �0 is the intensity of the wave before di�raction and

D = G

√
2

_I
, � (D) =

∫ D

0
cos

( 1
2cC

2) dC, ( (D) =
∫ D

0
sin

( 1
2cC

2) dC .
Write a program to calculate �/�0 and make a plot of it as a function of G in the range −5m
to 5m for the case of a sound wave with wavelength _ = 1m, measured I = 3m past the

straight edge. Calculate the integrals using Gaussian quadrature with # = 50 points. You

should �nd signi�cant variation in the intensity of the di�racted sound—enough that you

could easily hear the e�ect if sound were di�racted, say, at the edge of a tall building.

5.6.4 Errors on Gaussian qadrature

In our study of the trapezoidal rule we derived an expression, the Euler–Maclaurin

formula of Eq. (5.20), for the approximation error on the value of an integral. �ere

exists a corresponding expression for Gaussian quadrature but it is, unfortunately,

ungainly and not easy to use in practice. What it does tell us, however, is that

Gaussian quadrature is impressively accurate. Roughly speaking, the approxima-

tion error—the di�erence between the value of an integral calculated using Gaus-

sian quadrature and the true value of the same integral, neglecting rounding error—

improves by a factor of 2/# 2 when we increase the number of samples by just one,

where 2 is a constant whose value depends on the detailed shape of the integrand

and the size of the domain of integration. �us, for instance, if we go from # = 10 to

# = 11 our estimate of the integral will improve by a factor of order a hundred. �is

means that we converge extremely quickly on the true value of the integral, and in

practice it is rarely necessary to use more than a few tens of points, or at most per-

haps a hundred, to get an estimate of an integral accurate to the limits of precision

of the computer.

�ere are some caveats. An important one is that it must be possible to capture

the shape of the integrand well by looking only at its values at the sample points.
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When one is calculating an integral using a relatively small number of sample points,

the points will inevitably be far apart, which leaves room for the function to vary sig-

ni�cantly between them. Since Gaussian quadrature looks only at the values at the

sample points and nowhere else, substantial variation between points is not taken

into account in calculating the value of the integral. �us for rapidly varying func-

tions one needs to use enough sample points to capture the variation, and in such

cases larger values of # may be warranted.

Another issue is that there is no direct equivalent of Eq. (5.28) for estimating the

error in practice. As we have said, however, the error improves by a factor of 2/# 2

when the number of samples is increased by one, which is typically a substantial

improvement if # is reasonably large. And if we double the value of # then we

compound many such improvements, giving an overall reduction in the error by a

factor of something like # −2# , which is typically a huge improvement.

If we make a Gaussian estimate �# of the true value � of an integral using #

sample points, then � = �# + X# , where X# is the approximation error. If we double

the number of samples to 2# , we have � = �2# + X2# . Equating the two expressions

for � and rearranging, we have

X# − X2# = �2# − �# . (5.95)

But, as we have argued, the error is expected to improve by a large factor when

we double the number of sample points, meaning that X2# ≪ X# . So, to a good

approximation,

X# ≃ �2# − �# . (5.96)

Another way of saying this is that �2# is so much be�er an estimate of the true value

of the integral than �# that for the purposes of estimating the error we can treat it

as if it were the true value, so that �2# − �# is a good estimate of the error.

We can use Eq. (5.96) in an adaptive integration method where we double the

number of sample points at each step, calculating the error and repeating until the

desired target accuracy is reached. Such a method is not entirely satisfactory, for a

couple of reasons. First, when we double the number of sample points from # to 2# ,

Eq. (5.96) gives us only the error on the previous estimate of the integral �# , not on

the new estimate �2# . �is means that we end up doubling # one more time than is

strictly necessary to achieve the desired accuracy, and the �nal value for the integral

will probably be signi�cantlymore accurate thanwe really need it to be, whichmeans

we have wasted time on unnecessary calculations. Second, we have to perform the

entire calculation of the integral anew for each new value of# . As mentioned earlier,

and unlike the adaptive trapezoidal method of Section 5.3, we cannot reuse the results

of earlier calculations to speed up the computation. So an adaptive calculation of this

typewould be slower than just a single instance of Gaussian quadrature. On the other

hand, it is straightforward to show that the total number of terms in all the sums we

perform, over all steps of the process, is never greater than twice the �nal value of #

used, which means that the adaptive procedure costs us no more than about twice
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the e�ort required for the simple Gaussian quadrature. Moreover, as we have said,

we rarely need to go beyond # = 100 to get a highly accurate answer, so the number

of times we double # is typically rather small. If we start with, say, # = 10, we

will probably only have to double three or four times. �e net result is that, despite

the extra work, Gaussian quadrature is o�en more e�cient than methods like the

trapezoidal rule or Simpson’s rule in terms of overall time needed to get an answer

to a desired degree of accuracy.

An alternative, though more complex, solution to the problem of estimating the

error in Gaussian quadrature is to use Gauss–Kronrod quadrature, a variant of Gaus-

sian quadrature based on the properties of Stieltjes polynomials, which provides not

only an accurate estimate of the integral (though not quite as accurate as ordinary

Gaussian quadrature) but also an estimate of the error. We will not use Gauss–

Kronrod quadrature in this book, but the interested reader can �nd a discussion,

with some derivations, in Appendix A, Section A.1.

5.7 Choosing an integration method

We have studied a number of integration methods in this chapter: the trapezoidal

rule and Simpson’s rule as well as adaptive versions of both, Romberg integration,

and Gaussian integration. You might ask at this point which of all these methods is

the best? Which one should you use, in practice, if you need to evaluate an integral?

�ere is no one answer to this question. Which method you should use depends

on the particular problem confronting you. A good general principle, however, is that

higher-order methods such as Romberg and Gaussian integration—methods that al-

low you to make accurate estimates of integrals using relatively few sample points—

work best when applied to smooth, well-behaved functions. If your function is not

smooth or is poorly behaved in someway, then simpler methods, and particularly the

trapezoidal rule, are the way to go. �e reason is that any integration method knows

only about the value of the integrand at its sample points. If the integrand varies

signi�cantly in between the sample points, then that variation will not be re�ected

in the computed value of the integral, which can lead to inaccurate results. If you

are evaluating an integral using only ten or twenty sample points, it is crucial that

those points give a good picture of the integrand—if you join up the dots the result

should capture most of the shape of the function. If it does not then methods using

few sample points will not do a good job. Conversely, for smooth functions whose

shape can be captured with relatively few sample points, methods such as Romberg

and Gaussian integration are excellent choices, providing impressive accuracy with

very li�le computational e�ort.

Bearing these principles in mind, here is a guide to the kinds of problems each of

our integration methods is good for.

�e trapezoidal rule: �e trapezoidal rule of Section 5.1.1 is trivial to program

and hence is a good choice when you need a quick answer for an integral. It is not
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very accurate, but sometimes you don’t need great accuracy. It uses equally spaced

sample points, which is appropriate for applications such as integrating data from

laboratory experiments that are sampled at uniform time intervals. �e trapezoidal

rule is also a good choice for poorly behaved functions—those that vary widely or

rapidly, contain singularities, or are noisy. It is usually a be�er choice for such func-

tions than the other methods we have considered. In its adaptive form (Section 5.3)

it can also give us a guaranteed accuracy for an integral, although it may take more

computer time to achieve that accuracy than other methods.

Simpson’s rule: Simpson’s rule (Section 5.1.2) has many of the bene�ts of the

trapezoidal rule, such as simplicity of programming and equally spaced sample points.

It gives greater accuracy than the trapezoidal rule with the same number of sample

points, or the same accuracy with fewer points, but relies on higher-order approx-

imation of the integrand, which can lead to problems if the integrand is noisy or

otherwise not smooth—use it with caution if you are unsure of the nature of your

integrand. Its adaptive form (Section 5.3) provides a result of guaranteed accuracy,

and does so faster than the equivalent trapezoidal rule calculation, but again may be

less suitable for poorly behaved integrands.

Romberg integration: When using equally spaced sample points, Romberg

integration (Section 5.4) is the quintessential higher-order integration method. It

gives exceptionally accurate estimates of integrals with a minimum number of sam-

ple points, plus error estimates that allow you to halt the calculation once you have

achieved a desired accuracy. Since it relies on extrapolating answers from measure-

ments of the integrand at only a few points, however, Romberg integration will not

work well for wildly varying integrands, noisy integrands, or integrands with math-

ematically pathological behaviors like singularities. It is best applied to smooth func-

tions whose form can be determined accurately from only a small number of sample

points.

Gaussian quadrature: Gaussian quadrature (Section 5.6) has many of the same

advantages as Romberg integration (potentially very high accuracy from small num-

bers of sample points) but also the same disadvantages (poor performance for badly

behaved integrands). It is also simple to program, as simple as any of the other meth-

ods we have considered. �e hard work of the method lies in the calculation of the

integration points andweights, which is normally done for you by standard so�ware,

and the Gaussian integral itself requires only the evaluation of a single sum in the

form of Eq. (5.68). It has the additional advantage over Romberg integration of still

higher-order accuracy and indeed, in a certain formal sense, it is the highest-order,

and hence potentially most accurate, integration rule available. �e price you pay for

this is that the integration points are unequally spaced. If you need equally spaced

points, then Gaussian quadrature is not the method for you.

Armed with these guidelines, you should be able to choose a suitable integration

method for most problems you come up against.
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5.8 Integrals over infinite ranges

O�en in physics we encounter integrals over in�nite ranges, like
∫ ∞
0
5 (G) dG . �e

techniques we have seen so far do not work for these integrals because we would

need an in�nite number of sample points to span an in�nite range. �e solution to

this problem is to change variables. For an integral over the range from 0 to ∞ the

standard change of variables is

I =
G

1 + G or equivalently G =
I

1 − I . (5.97)

�en dG = dI/(1 − I)2 and
∫ ∞

0
5 (G) dG =

∫ 1

0

1

(1 − I)2 5
( I

1 − I
)
dI, (5.98)

which can be done using any of the techniques discussed earlier in the chapter, in-

cluding the trapezoidal and Simpson rules, or Gaussian quadrature.

�is is not the only change of variables we can use, however. In fact, a change of

the form

I =
G

2 + G (5.99)

would work for any value of 2 , or I = GW/(1+GW ) for any W , or any of a range of other
possibilities. Some choices typically work be�er than others for particular integrals

and sometimes you have to play around with things a li�le to �nd what works for

a given problem, but Eq. (5.97) is o�en a good �rst guess. (See Exercise 5.19 for a

counterexample.)

To do an integral over a range from some nonzero value 0 to ∞ we can use a

similar approach, but make two changes of variables, �rst to ~ = G − 0, which shi�s

the start of the integration range to 0, and then I = ~/(1 + ~) as in Eq. (5.97). Or we

can combine both changes into a single one:

I =
G − 0

1 + G − 0 or G =
I

1 − I + 0, (5.100)

and again dG = dI/(1 − I)2, so that

∫ ∞

0

5 (G) dG =

∫ 1

0

1

(1 − I)2 5
( I

1 − I + 0
)
dI. (5.101)

Integrals from −∞ to 0 can be done in a similar way using the substitution

I =
1

1 − G + 0 or G =
I − 1
I
+ 0, (5.102)

which gives ∫ 0

−∞
5 (G) dG =

∫ 1

0

1

I2
5
(I − 1
I
+ 0

)
dI. (5.103)
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For integrals that run from −∞ to ∞ we can split the integral into two parts,

one from −∞ to 0 and one from 0 to ∞, and then use the tricks above for the two

integrals separately. Or we can put the split at some other point 0 and perform

separate integrals from −∞ to 0 and from 0 to ∞. Alternatively, one could use a

single change of variables, such as

G =
I

1 − I2 , dG =
1 + I2
(1 − I2)2 dI, (5.104)

which would give

∫ ∞

−∞
5 (G) dG =

∫ 1

−1

1 + I2
(1 − I2)2 5

( I

1 − I2
)
dI. (5.105)

Another possibility, perhaps simpler, is

G = tan I, dG =
dI

cos2 I
, (5.106)

which gives ∫ ∞

−∞
5 (G) dG =

∫ c/2

−c/2

5 (tan I)
cos2 I

dI. (5.107)

Example 5.3: Integrating over an infinite range

Let us calculate the value of the following integral using Gaussian quadrature:

� =

∫ ∞

0
e−C

2

dC . (5.108)

We make the change of variables given in Eq. (5.97) and the integral becomes

� =

∫ 1

0

e−I
2/(1−I )2

(1 − I)2 dI. (5.109)

We can modify our program from Example 5.2 to perform this integral using Gaus-

sian quadrature with # = 50 sample points:

File: intinf.py from gaussxw import gaussxw

from math import exp

def f(z):

return exp(-z**2/(1-z)**2)/(1-z)**2

N = 50

a = 0.0

b = 1.0

x,w = gaussxw(N,a,b)

172



5.8 | Integrals over infinite ranges

s = 0.0

for k in range(N):

s += w[k]*f(x[k])

print(s)

If we run this program it prints

0.8862269254528359

In fact, the value of this integral is known exactly to be 1
2

√
c = 0.8862269254527580. . .

Again we see the impressive accuracy of the Gaussian quadrature method: with just

50 sample points, we have calculated an estimate of the integral that is correct to 13

decimal places.

Exercise 5.12: �e Stefan–Boltzmann constant

�e Planck theory of thermal radiation tells us that in the (angular) frequency interval l to

l + dl , a black body of unit area radiates electromagnetically an amount of thermal energy

equal to � (l) dl per second, where

� (l) = ℏ

4c222
l3

(eℏl/:�) − 1)
.

Here ℏ is Planck’s constant over 2c , 2 is the speed of light, and :� is Boltzmann’s constant.

a) Show that the total rate at which energy is radiated by a black body per unit area, over

all frequencies, is

, =
:4
�
) 4

4c222ℏ3

∫ ∞

0

G3

eG − 1 dG .

b) Write a program to evaluate the integral in this expression. Explain what method you

used, and how accurate you think your answer is.

c) Even before Planck gave his theory of thermal radiation around the turn of the 20th

century, it was known that the total energy, given o� by a black body per unit area

per second followed Stefan’s law:, = f) 4, where f is the Stefan–Boltzmann constant.

Use your value for the integral above to compute a value for the Stefan–Boltzmann

constant (in SI units) to three signi�cant �gures. Check your result against the known

value, which you can �nd online or in books. You should get good agreement.

Exercise 5.13: �antum uncertainty in the harmonic oscillator

In units where all the constants are 1, the wavefunction of the =th energy level of the one-

dimensional quantum harmonic oscillator—i.e., a spinless point particle in a quadratic poten-

tial well—is given by

k= (G) =
1√

2==!
√
c
e−G

2/2 �= (G),
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for = = 0 . . .∞, where �= (G) is the =th Hermite polynomial. Hermite polynomials satisfy a

relation somewhat similar to that for Fibonacci numbers, although more complex:

�=+1 (G) = 2G�= (G) − 2=�=−1 (G).

�e �rst two Hermite polynomials are �0 (G) = 1 and �1 (G) = 2G .

a) Write a user-de�ned function H(n,x) that calculates �= (G) for given G and any integer

= ≥ 0. Use your function to make a plot that shows the harmonic oscillator wavefunc-

tions for = = 0, 1, 2, and 3, all on the same graph, in the range G = −4 to G = 4. Hint:

�ere is a function factorial in the math package that calculates the factorial of an

integer.

b) Make a separate plot of the wavefunction for = = 30 from G = −10 to G = 10. Hint:

If your program takes too long to run in this case, then you’re doing the calculation

wrong—the program should take only a second or so to run.

c) �e quantum uncertainty in the position of a particle in the =th level of a harmonic

oscillator can be quanti�ed by its root-mean-square position
√
⟨G2⟩, where

⟨G2⟩ =
∫ ∞

−∞
G2 |k= (G) |2 dG .

Write a program that evaluates this integral using Gaussian quadrature with 100 points,

then calculates the uncertainty (i.e., the root-mean-square position of the particle) for

a given value of =. Use your program to calculate the uncertainty for = = 5. You should

get an answer in the vicinity of
√
⟨G2⟩ = 2.3.

5.9 Multiple integrals

Integrals over more than one variable are common in physics problems and can be

tackled using generalizations of the methods we have already seen. Consider for

instance the integral

� =

∫ 1

0

∫ 1

0
5 (G,~) dG d~. (5.110)

We can rewrite this by de�ning a function � (~) thus

� (~) =
∫ 1

0
5 (G,~) dG . (5.111)

�en

� =

∫ 1

0
� (~) d~. (5.112)

�us one way to do the multiple integral numerically is �rst to evaluate � (~) for
a suitable set of ~ values, which means performing the integral in Eq. (5.111), then

use those values of � (~) to do the integral in Eq. (5.112). For instance, if we do the
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y

x

Figure 5.5: Sample points for Gaussian quadrature in two dimensions. If one applies

Eq. (5.114) to integrate the function 5 (G,~) in two dimensions, using Gaussian quadrature

with # = 10 points along each axis, the resulting set of sample points in the two-dimensional

space looks like this.

integrals by Gaussian quadrature with the same number # of points for both G and

~ integrals, we have

� (~) ≃
#∑
8=1

F8 5 (G8 , ~) and � ≃
#∑
9=1

F 9� (~ 9 ). (5.113)

Alternatively, we can substitute the �rst sum into the second to get the Gauss–

Legendre product formula:

� ≃
#∑
8=1

#∑
9=1

F8F 9 5 (G8 , ~ 9 ). (5.114)

�is expression has a form similar to the standard integration formula for single

integrals, Eq. (5.52), with a sum over values of the function 5 (G,~) at a set of sample

points, multiplied by appropriate weights. Equation (5.114) represents a kind of two-

dimensional version of Gaussian quadrature, with weights F8F 9 distributed over a

two-dimensional grid of points as shown in Fig. 5.5.

Once you look at it this way, however, you realize that in principle there is no

reason why the sample points have to be on a grid. �ey could be anywhere—we

can use any set of 2D locations and suitable weights that give a good estimate of the

integral. Just as Gaussian quadrature gives the best choice of points for an integral

in one dimension, so we can ask what the best choice is for two dimensions, or for
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y

x

Figure 5.6: 128-point Sobol sequence. �e Sobol sequence is one example of a low-

discrepancy point set that gives good results for integrals in high dimensions. �is �gure

shows a Sobol sequence of 128 points in two dimensions.

higher dimensions like three or four. It turns out, however, that the answer to this

question is not known in general. �ere are some results for special cases, but no

general answer. Various point sets have been proposed for use with 2D integrals

that appear to give reasonable results, but there is no claim that they are the best

possible choices. Typically they are selected because they have some other desirable

properties, such as nesting, and not because they give the most accurate answer. One

common choice of point set is the Sobol sequence, shown for# = 128 points in Fig. 5.6.

Sobol sequences and similar sets of points are known as low-discrepancy point sets or

sometimes quasi-random point sets (although the la�er name is a poor one because

there is nothing random about them). Another common way to choose the sample

points is to choose them completely randomly, which leads to the method known as

Monte Carlo integration. Choosing points at random may seem like an odd idea, but

we will see that it can be a useful approach for certain types of integrals, particu-

larly integrals over very many variables. We will look at Monte Carlo integration in

Section 10.2, a�er we study random number generators.

In the integral of Eq. (5.110) the limits of both integrals are constant, whichmakes

the domain of integration rectangular in G~ space. It is not uncommon, however, for

the limits of one integral to depend on the other, as here:

� =

∫ 1

0
d~

∫ ~

0
dG 5 (G,~). (5.115)

176



5.9 | Multiple integrals

y

x

Figure 5.7: Integration over a non-rectangular domain. When the limits of multiple

integrals depend on one another they can produce arbitrarily shaped domains of integration.

�is �gure shows the triangular domain that results from the integral in Eq. (5.115). �e gray

region is the domain of integration. Note how the points become squashed together towards

the bo�om of the plot.

We can use the same approach as before to evaluate this integral. We de�ne

� (~) =
∫ ~

0
5 (G,~) dG, (5.116)

so that

� =

∫ 1

0
� (~) d~, (5.117)

and then do both integrals with anymethod we choose, such as Gaussian quadrature.

�e result, again, is a two-dimensional integration rule, but now with the sample

points arranged in a triangular space as shown in Fig. 5.7.

�is method will work, and will probably give reasonable answers, but it is not

ideal. In particular note how the sample points are cramped together in the lower le�

corner of the integration domain but much farther apart at the top. �is means, all

other things being equal, that we will have lower accuracy for the part of the integral

at the top. It would be be�er if the accuracy were roughly uniform.

And things can get more complicated still. Suppose the domain of integration

takes some more elaborate shape like Fig. 5.8. We will not come across any examples

this complicated in this book, but if we did there would be various techniques we

could use. One is the Monte Carlo integration method mentioned above, which we

study in detail in Section 10.2. Another is to set the integrand to zero everywhere

177



Chapter 5 | Integrals and derivatives

Figure 5.8: A complicated integration domain. Integration domains can be arbitrarily

complicated in their shapes. �ey can even contain holes, or take on complex topologies in

higher dimensions such as tori or kno�ed topologies.

outside the domain of integration and then integrate it using a standard method over

some larger, regularly shaped domain, such as a rectangle, that completely encloses

the irregular one. �ere are more sophisticated techniques as well, but we will not

need them for the moment.

Exercise 5.14: Gravitational pull of a uniform sheet

A uniform square sheet of metal is �oating motionless in space:

1 kg point mass

x

y

z

�e sheet is 10m on a side and of negligible thickness, and it has a mass of 10 metric tonnes.
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a) Consider the gravitational force due to the plate felt by a point mass of 1 kg a distance I

from the center of the square in the direction perpendicular to the sheet, as shown

above. Show that the component of the force along the I-axis is

�I = �fI

∬ !/2

−!/2

dG d~

(G2 + ~2 + I2)3/2
,

where � = 6.674 × 10−11m3 kg−1 s−2 is Newton’s gravitational constant and f is the

mass per unit area of the sheet.

b) Write a program to calculate and plot the force as a function of I from I = 0 to I = 10m.

For the double integral use (double) Gaussian quadrature, as in Eq. (5.114), with 100

sample points along each axis.

c) You should see a smooth curve, except at very small values of I, where the force should

drop o� suddenly to zero. �is drop is not a real e�ect, but an artifact of the way we

have done the calculation. Explain brie�y where this artifact comes from and suggest

a strategy to remove it, or at least to decrease its size.

�is calculation can thought of as a model for the gravitational pull of a galaxy. Most of the

mass in a spiral galaxy (such as our own Milky Way) lies in a thin plane or disk, and the

gravitational pull exerted by that plane on bodies outside the galaxy can be calculated by

methods like the ones we have employed here.

5.10 Derivatives

�e opposite of a numerical integral is a numerical derivative. Numerical derivatives

are used less than numerical integrals, in part because derivatives of known functions

can always be calculated analytically, so there is less need for numerical methods,

but they are nonetheless important in certain applications, including the solution of

partial di�erential equations and the training of arti�cial intelligence models. Like

integrals, there are a range of methods for calculating derivatives, from the simple

but not very accurate to sophisticated higher-order approximations. We look at each

of these in this section, alongwith the technique of “automatic di�erentiation,” which

plays a big role in machine learning.

5.10.1 Forward and backward differences

�e standard de�nition of a derivative, the one you see in calculus books, is

d5

dG
= lim
ℎ→0

5 (G + ℎ) − 5 (G)
ℎ

. (5.118)

�e basic method for calculating numerical derivatives is a computational implemen-

tation of this formula. We cannot take the limit ℎ → 0 in practice, but we can make ℎ

very small and then calculate

d5

dG
≃ 5 (G + ℎ) − 5 (G)

ℎ
. (5.119)
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Figure 5.9: Forward and backward di�erences. �e forward and backward di�erences

provide two di�erent approximations to the derivative of a function 5 (G) at the point G in

terms of the slopes of small segments measured in the forward (i.e., positive) direction from G

and the backward (negative) direction, respectively.

�is approximation to the derivative is called the forward di�erence because it is

measured in the forward (i.e., positive) direction from the point of interest G . You can

think of it in geometric terms as shown in Fig. 5.9—it is the slope of the curve 5 (G)
measured over a small interval of width ℎ in the forward direction from G .

�ere is also the backward di�erence, which has the mirror image de�nition

d5

dG
≃ 5 (G) − 5 (G − ℎ)

ℎ
. (5.120)

�e forward and backward di�erences typically give about the same answer and in

many cases you can use either. Most o�en one uses the forward di�erence, but there

are a few special cases where one is preferred over the other, particularly when there

is a discontinuity in the derivative of the function at the point G or when the domain

of the function is bounded and you want the value of the derivative on the boundary,

in which case only one or other of the two di�erence formulas will work. �e rest of

the time, however, there is li�le to choose between them.

Before using either the forward or backward di�erence we must choose a value

for ℎ and there is some art to ge�ing the value right. To work out what value to

use we need to look at the errors and inaccuracies involved in calculating numerical

derivatives.

5.10.2 Errors

Calculations of derivatives using forward and backward di�erences are not perfectly

accurate. �ere are two sources of error. �e �rst is rounding error of the type

discussed in Section 4.2. �e second is the approximation error that arises because

we cannot take the limit ℎ → 0, so our di�erences are not really true derivatives. By
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contrast with numerical integrals, where, as we have seen, rounding error is usually

negligible, it turns out that both sources of error are important when we calculate a

derivative.

To understand why this is, let us focus on the forward di�erence and consider

the Taylor expansion of 5 (G) about G :

5 (G + ℎ) = 5 (G) + ℎ5 ′ (G) + 1
2ℎ

2 5 ′′ (G) + . . . (5.121)

where 5 ′ and 5 ′′ denote the �rst and second derivatives of 5 . Rearranging this ex-

pression, we get

5 ′ (G) = 5 (G + ℎ) − 5 (G)
ℎ

− 1
2ℎ5

′′ (G) + . . . (5.122)

When we calculate the forward di�erence we calculate only the �rst part on the

right-hand side, and neglect the term in 5 ′′ (G) and all higher terms. �e size of

these neglected terms measures the approximation error on the forward di�erence.

�us, to leading order in ℎ, the absolute magnitude of the approximation error is
1
2ℎ |5 ′′ (G) |, which is linear in ℎ so that, as we would expect, we should get more

accurate answers if we use smaller values of ℎ.

But now here is the problem: as we saw in Section 4.2, subtracting numbers from

one another on a computer can give rise to big rounding errors (in fractional terms) if

the numbers are close to one another—so-called catastrophic cancellation. And that

is exactly what happens here. �e numbers 5 (G +ℎ) and 5 (G) that we are subtracting
will be very close to one another if we makeℎ small, and we will get a large rounding

error as a result. �is puts us in a di�cult situation: we want to makeℎ small to make

the forward di�erence approximation as accurate as possible, but if we make it too

small we will get a large rounding error. To get the best possible answer, we are

going to have to �nd a compromise.

In Section 4.2 we saw that the computer can typically calculate a number such

as 5 (G) to an accuracy of n 5 (G), where n is the machine precision, which is typically

about 10−16 in Python. Since 5 (G +ℎ) is normally close in value to 5 (G), the accuracy
of our value for 5 (G + ℎ) will also be about the same, and the absolute magnitude of

the total rounding error on 5 (G +ℎ) − 5 (G) will, in the worst case, be about 2n |5 (G) |.
It might be be�er than this if the two errors go in opposite directions and happen

to cancel out, but we cannot assume that this will be the case. �en the worst-case

rounding error on the complete forward di�erence, Eq. (5.119), will be 2n |5 (G) |/ℎ.
Meanwhile, the approximation error is, as we have said, 1

2ℎ |5 ′′ (G) | to leading

order in ℎ, from Eq. (5.122), which means that the total error X on our derivative, in

the worst case, is

X =
2n |5 (G) |

ℎ
+ 1

2ℎ
��5 ′′ (G)��. (5.123)

We want to �nd the value of ℎ that minimizes this error, so we di�erentiate with

respect to ℎ and set the result equal to zero, which gives

−2n |5 (G) |
ℎ2

+ 1
2

��5 ′′ (G)�� = 0, (5.124)
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or equivalently

ℎ =

√
4n

���� 5 (G)5 ′′ (G)

����. (5.125)

Substituting this value back into Eq. (5.123) we �nd that the error on our derivative is

X = ℎ |5 ′′ (G) | =
√
4n
��5 (G) 5 ′′ (G)��. (5.126)

�us, for instance, if 5 (G) and 5 ′′ (G) are of order 1, we should chooseℎ to be roughly
of order

√
n , which will be about 10−8, and the �nal error on our result will also be

about
√
n or 10−8. A similar analysis can be applied to the backward di�erence, and

gives the same result.

In other words, we can get about half of the usual numerical precision on our

derivatives but not be�er. If the machine precision is, as here, about 16 digits, then

we can get 8 digits of precision on our derivatives. �is is substantially poorer than

most of the calculations we have seen so far in this book, and could be a signi�cant

source of error for calculations that require high accuracy.

5.10.3 Central differences

We have seen that forward and backward di�erences are not very accurate. What

can we do to improve the situation? A simple improvement is to use the central

di�erence:

d5

dG
≃
5 (G + 1

2ℎ) − 5 (G −
1
2ℎ)

ℎ
. (5.127)

�e central di�erence is similar to the forward and backward di�erences, approxi-

mating the derivative using the di�erence between two values of 5 (G) at points a
distance ℎ apart. What has changed is that the two points are now placed symmet-

rically around G , one at a distance 1
2ℎ in the forward (i.e., positive) direction and the

other at a distance 1
2ℎ in the backward (negative) direction.

To calculate the approximation error on the central di�erence we write two Tay-

lor series:

5 (G + 1
2ℎ) = 5 (G) +

1
2ℎ5

′ (G) + 1
8ℎ

2 5 ′′ (G) + 1
48ℎ

3 5 ′′′ (G) + . . . (5.128)

5 (G − 1
2ℎ) = 5 (G) −

1
2ℎ5

′ (G) + 1
8ℎ

2 5 ′′ (G) − 1
48ℎ

3 5 ′′′ (G) + . . . (5.129)

Subtracting the second expression from the �rst and rearranging for 5 ′ (G), we get

5 ′ (G) =
5 (G + 1

2ℎ) − 5 (G −
1
2ℎ)

ℎ
− 1

24ℎ
2 5 ′′′ (G) + . . . (5.130)

To leading order the magnitude of the error is now 1
24ℎ

2 |5 ′′′ (G) |, which is one order

inℎ be�er than before. �ere is also, as before, a rounding error. Its size is unchanged
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from our previous calculation, havingmagnitude 2n |5 (G) |/ℎ, so the magnitude of the

total error on our estimate of the derivative is

X =
2n |5 (G) |

ℎ
+ 1

24ℎ
2
��5 ′′′ (G)��. (5.131)

Di�erentiating to �nd the minimum and rearranging, we �nd that the optimal value

of ℎ is

ℎ =

(
24n

���� 5 (G)5 ′′′ (G)

����
)1/3

, (5.132)

and substituting this back into Eq. (5.131) we �nd the optimal error itself to be

X =
1
8ℎ

2
��5 ′′′ (G)�� = (

9
8n

2 [5 (G)]2
��5 ′′′ (G)�� )1/3. (5.133)

�us, for instance, if 5 (G) and 5 ′′′ (G) are of order 1, the ideal value of ℎ is going to

be around n1/3, which is typically about 10−5, but the error will be around n2/3, or
about 10−10.

�us the central di�erence is indeed more accurate than the forward and back-

ward di�erences, by a factor of 100 or so in this case, although we get this accuracy

by using a larger value of ℎ. �is may seem surprising, but it is the correct result.

Example 5.4: Derivative of a sampled function

As an example of the central di�erence, suppose we are given the values of a func-

tion 5 (G)measured at regularly spaced sample points a distanceℎ apart—see Fig. 5.10.

One o�en gets such samples from data collected in the laboratory, for example. And

suppose we want to calculate the derivative of 5 at one of the points (case (a) in the

�gure). We could use a forward or backward di�erence based on the sample at G and

one of the adjacent ones, or we could use a central di�erence. However, if we use a

central di�erence, which is based on points equally spaced on either side of G , then

we must use the points at G + ℎ and G − ℎ. We cannot, as in Eq. (5.127), use points at

G + 1
2ℎ and G − 1

2ℎ because there are no such points—we only have the samples we

are given. �e formula for the central di�erence in this case will thus be

d5

dG
≃ 5 (G + ℎ) − 5 (G − ℎ)

2ℎ
. (5.134)

�ismeans that the interval between the points we use is 2ℎ for the central di�erence,

but only ℎ for the forward and backward di�erences. So which will give a be�er

answer? �e central di�erence because it is a be�er approximation or the forward

di�erence because of its smaller interval?

From Eq. (5.126) we see that the error on the forward di�erence is ℎ |5 ′′ (G) |
and from Eq. (5.133) the error on the central di�erence—with ℎ replaced by 2ℎ—is
1
2ℎ

2 |5 ′′′ (G) |. Which is smaller depends on the value of ℎ. For the central di�erence

to give the more accurate answer, we require 1
2ℎ

2 |5 ′′′ (G) | < ℎ |5 ′′ (G) | or

ℎ < 2

���� 5 ′′ (G)5 ′′′ (G)

����. (5.135)
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(b)

(a)

f	(x)

x

Figure 5.10: Derivative of a sampled function. (a) If we only know the function at a set of

sample points spaced a distance ℎ apart then we must chose between calculating the forward

or backward di�erence between adjacent samples, or the central di�erence between samples

2ℎ apart (straight lines). We cannot calculate a central di�erence using the standard formula,

Eq. (5.127), because we do not know the value of the function at G ± 1
2ℎ. (b) We can, however,

calculate the central di�erence at a point half way between two samples using the standard

formula.

Ifℎ is larger than this then the forward di�erence is actually the be�er approximation

in this case.

But now suppose that instead of calculating the value of the derivative at one of

the sample points, we calculate it at a point G that lies half way between two of the

samples—case (b) in Fig. 5.10. Viewed from that point we do have samples at G + 1
2ℎ

and G − 1
2ℎ, so now we can use the original form of the central di�erence, Eq. (5.127),

with an interval only ℎ wide, as with the forward di�erence. �is calculation will

give a more accurate answer, but only at the expense of calculating the result at a

point in between the samples.

Exercise 5.15: Even when we can �nd the value of 5 (G) for any value of G , the forward dif-

ference can still be more accurate than the central di�erence for su�ciently large ℎ. For what

values of ℎ will the approximation error on the forward di�erence of Eq. (5.119) be smaller

than on the central di�erence of Eq. (5.127)?

Exercise 5.16: Create a user-de�ned function f(x) that returns the value 1 + 1
2 tanh 2G , then

use a central di�erence to calculate the derivative of the function in the range −2 ≤ G ≤ 2.
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Calculate an analytic formula for the derivative and make a graph with your numerical result

and the analytic answer on the same plot. It may help to plot the exact answer as lines and the

numerical one as dots. (Hint: In Python the tanh function is found in the math package and it

is called simply tanh.)

5.10.4 Higher-order approximations for derivatives

One way to think about the numerical derivatives of the previous sections is that we

are ��ing a straight line through two points, such as the points 5 (G) and 5 (G + ℎ),
and then asking about the slope of that line at the point G . �e trapezoidal rule of

Section 5.1.1 does a similar thing for integrals, approximating a curve by a straight

line between sample points and estimating the area under the curve using that line.

We saw that we can make a higher-order—and usually be�er—approximation to an

integral by ��ing a quadratic or higher-order polynomial instead of a straight line,

and this led to the Simpson and Newton–Cotes rules for integrals. We can take a

similar approach with derivatives by ��ing a polynomial to a set of sample points

and then calculating the derivative of the polynomial at G .

Consider, for example, ��ing a quadratic curve ~ = 0G2 + 1G + 2 to the func-

tion 5 (G). We require three sample points to make the �t, and suppose for example

that we are interested in the derivative at G = 0, so we place our three points at −ℎ,
0, and +ℎ, for some ℎ that we choose. Requiring that our quadratic is equal to 5 (G)
at these three points gives us three equations thus:

0ℎ2 − 1ℎ + 2 = 5 (−ℎ), 2 = 5 (0), 0ℎ2 + 1ℎ + 2 = 5 (ℎ), (5.136)

In principle, we can now solve these equations for the three parameters 0, 1, and 2 .

(�is is the same calculation that we did in Section 5.1.2 for Simpson’s rule.) However,

in this case, we don’t need the whole solution, because we don’t need all of the

parameters. Given the quadratic �t ~ = 0G2 + 1G + 2 , the derivative of the curve at
the point G = 0 is

d~

dG
=
[
20G + 1

]
G=0

= 1. (5.137)

So we need only the one parameter 1, which we can get from Eq. (5.136) by subtract-

ing the �rst equation from the third to give 21ℎ = 5 (ℎ) − 5 (−ℎ) and rearranging.

�us our approximation for the derivative at G = 0 is

d5

dG
≃ 5 (ℎ) − 5 (−ℎ)

2ℎ
. (5.138)

We have done this calculation for the derivative at G = 0, but the same result applies

at any other point—we can slide the whole function up or down the G-axis, to put

any point G at the origin and then calculate the derivative from the formula above.

Or, equivalently, we can just write

d5

dG
≃ 5 (G + ℎ) − 5 (G − ℎ)

2ℎ
(5.139)
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Degree 5 (− 5
2ℎ) 5 (−2ℎ) 5 (− 3

2ℎ) 5 (−ℎ) 5 (− 1
2ℎ) 5 (0) 5 ( 12ℎ) 5 (ℎ) 5 ( 32ℎ) 5 (2ℎ) 5 ( 52ℎ) Error

1 −1 1 O(ℎ2)
2 − 1

2
1
2 O(ℎ2)

3 1
24 − 27

24
27
24 − 1

24 O(ℎ4)
4 1

12 − 2
3

2
3 − 1

12 O(ℎ4)
5 − 3

640
25
384 − 75

64
75
64 − 25

384
3
640 O(ℎ6)

Table 5.1: Coe�cients for numerical derivatives. �e coe�cients for central approximations to the �rst derivative of

5 (G) at G = 0. To derive the full expression for an approximation, multiply the samples listed in the top row of the table by

the coe�cients in one of the other rows, then divide by ℎ. For instance, the cubic approximation would be
[
1
24 5

(
− 3
2ℎ

)
−

27
24 5

(
− 1
2ℎ

)
+ 27
24 5

( 1
2ℎ

)
− 1

24 5
( 3
2ℎ

) ]
/ℎ. For derivatives at points other than G = 0 the same coe�cients apply—one just uses the

appropriate sample points around the value G of interest. �e �nal column of the table gives the order of the approximation

error on the derivative.

for general G .

�is is the correct result for the quadratic approximation, but it is a disappointing

one, since Eq. (5.139) is nothing other than the central di�erence approximation for

sample points 2ℎ apart, which we already saw in Eq. (5.134). In other words, the

higher-order approximation has not helped us in this case.

However, going to still higher orders does help. If we use a cubic or quartic

approximation, we do get improved estimates of the derivative. At higher orders

there is a distinction between the odd- and even-order approximations. For the odd-

order ones the sample points fall at “half-way” points, as with the central di�erence

of Eq. (5.127). For instance, to get the four sample points required for a cubic ap-

proximation, symmetrically distributed about zero, we would choose them to fall at

G = − 3
2ℎ, −

1
2ℎ,

1
2ℎ, and

3
2ℎ. For even-order approximations, on the other hand, the

samples fall at “integer” points. �e �ve points for the quartic approximation, for

instance, fall at −2ℎ, −ℎ, 0, ℎ, and 2ℎ. �e methodology for deriving the higher-order

approximations follows the same pa�ern as for the quadratic case: we write down

the required value of the polynomial at each of the sample points, which gives us a

set of simultaneous equations in the polynomial coe�cients. As before, we actually

need only one of those coe�cients, the coe�cient of the linear term in the poly-

nomial. Solving for this coe�cient gives us our expression for the derivative. At

each order the expression is a linear combination of the samples, divided by ℎ. We

will not go through the derivations in detail, but Table 5.1 gives the coe�cients of

the combinations for the �rst �ve approximations.

Each of the approximations given in the table is exact, apart from rounding er-

ror, if the function being di�erentiated is actually a polynomial of the appropriate

(or lower) degree, so that the polynomial �t is a perfect one. Most of the time, how-

ever, this will not be the case and there will be an approximation error involved in

calculating the derivative. One can calculate this error to leading order for each of

the approximations by a method analogous to our calculations for the forward, back-

ward, and central di�erences: we perform Taylor expansions about G = 0 to derive
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expressions for 5 (G) at each of the sample points, then plug these expressions into

the formula for the derivative. �e order inℎ of the resulting error is listed in the �nal

column of Table 5.1. As before, this approximation error must be balanced against

the rounding error and a suitable value of ℎ chosen to minimize the overall error in

the derivative.

An interesting point to notice about Table 5.1 is that the coe�cient for 5 (0) in all

the approximations is zero. �e value of the function exactly at the point of interest

never plays a role in the evaluation of the derivative. Another (not unrelated) point

is that the order in ℎ of the error given in the �nal column does not go up uniformly

with the degree of the polynomial—it is the same for the even-degree polynomials

as for the next-lower odd-degree ones. We saw a special case of this result for the

quadratic: the quadratic �t just gives us an ordinary central di�erence and therefore

necessarily has an error O(ℎ2), the same as the central di�erence derived from the

linear �t. In general, the odd-degree approximations give us slightly more accurate

results than the even-degree ones—the error is of the same order inℎ but the constant

of proportionality is smaller. On the other hand, the odd-degree approximations

require samples at the half-way points, as we have noted, which can be inconvenient.

As discussed in Example 5.4, we sometimes have samples at only the “integer” points,

in which case we must use the even-degree approximations.

5.10.5 Richardson extrapolation

An alternative way to compute higher-order approximations to derivatives is to use

Richardson extrapolation. We encountered Richardson extrapolation previously in

our study of Romberg integration in Section 5.4, where it provided us with a way

to increase the accuracy of integral evaluations, while doing only a li�le extra com-

putational work. Richardson extrapolation can also be applied to derivatives. We

illustrate the approach here using central di�erences, although it can also be applied

to forward and backward di�erences.

Equation (5.130) on page 182 tells us that the basic central di�erence has an ap-

proximation error O(ℎ2) to leading order. In fact, noting the alternating signs in the

Taylor expansion of Eq. (5.129), it is straightforward to see that the central di�er-

ence only has error terms of even order in ℎ and no odd-order terms. So the central

di�erence for a function 5 (G) can be wri�en

5 ′ (G) =
5 (G + 1

2ℎ) − 5 (G −
1
2ℎ)

ℎ
+ 2ℎ2 + O(ℎ4), (5.140)

where 2 is a constant. Suppose we make an estimate—call it �1—of the derivative of

5 (G) using a central di�erence with step size ℎ1:

�1 =
5 (G + 1

2ℎ1) − 5 (G −
1
2ℎ1)

ℎ1
. (5.141)
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�en from (5.140) we have

5 ′ (G) = �1 + 2ℎ21 + O(ℎ41). (5.142)

Now let us halve our step size to ℎ2 =
1
2ℎ1 and repeat the calculation to get another

estimate �2 such that

5 ′ (G) = �2 + 2ℎ22 + O(ℎ42). (5.143)

Equations (5.142) and (5.143) are both expressions for the same derivative, so we can

equate them to get

�1 + 2ℎ21 + O(ℎ41) = �2 + 2ℎ22 + O(ℎ42), (5.144)

or

2ℎ22 =
1
3 (�2 − �1) + O(ℎ42), (5.145)

wherewe havemade use ofℎ1 = 2ℎ2. Substituting this expression back into Eq. (5.143),

we now have

5 ′ (G) = �2 + 1
3 (�2 − �1) + O(ℎ42), (5.146)

which is accurate to order ℎ3 and has a error of order ℎ4, two orders be�er than the

original central di�erence.

We can take this argument further. Suppose we compute a whole series of central

di�erences, �1, �2, �3 . . ., each with half the step size of the previous one, and let us

de�ne a notation similar to the one we used for Romberg integration in Section 5.4,

such that

'8,1 = �8 , '8,2 = �8 + 1
3 (�8 − �8−1) = '8,1 +

1
3 ('8,1 − '8−1,1). (5.147)

�en, from Eq. (5.146),

5 ′ (G) = '8,2 + 22ℎ48 + O(ℎ68 ), (5.148)

where 22 is another constant and we have made use of the fact that the series for the

central di�erence contains only even powers of ℎ. Similarly,

5 ′ (G) = '8−1,2 + 22ℎ48−1 + O(ℎ68−1) = '8−1,2 + 1622ℎ48 + O(ℎ68 ). (5.149)

Equating (5.148) and (5.149) and rearranging, we get

22ℎ
4
8 =

1
15 ('8,2 − '8−1,2) + O(ℎ

6
8 ). (5.150)

And substituting this expression back into (5.148) gives

5 ′ (G) = '8,2 + 1
15 ('8,2 − '8−1,2) + O(ℎ

6
8 ). (5.151)

Now we have eliminated the ℎ48 term and generated an estimate of the derivative

accurate to ��h order, with a sixth-order error.
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We can continue this process, calculating higher and higher order terms and get-

ting more and more accurate results. �e derivation follows the same the lines as for

Romberg integration and gives similar looking formulas, with a recurrence relation

for the Richardson estimates of

'8,<+1 = '8,< +
1

4< − 1 ('8,< − '8−1,<), (5.152)

and an error on '8,< of

2<ℎ
2<
8 =

1

4< − 1 ('8,< − '8−1,<). (5.153)

To make use of these results we do the following:

1. First we calculate our initial central di�erences �1 ≡ '1,1 and �2 ≡ '2,1, using
the standard formula, Eq. (5.127).

2. From these we calculate the more accurate estimate '2,2 using Eq. (5.152). �is

is as much as we can do with only the two starting estimates.

3. Now we calculate the next central di�erence �3 ≡ '3,1 and from this, with

Eq. (5.152), we calculate '3,2, and then '3,3.

4. At each successive stage we compute one more central di�erence �8 ≡ '8,1,
and from it, with very li�le extra e�ort, we can calculate '8,2 . . . '8,8 .

5. For each estimate we can also calculate the error, Eq. (5.153).

We can now continue this process until the error reaches a desired level of accuracy

then stop, or we can simply continue until the value ofℎ decreases to the point where

rounding error makes further calculations pointless, which for the central di�erence

is around ℎ = 10−5 (see Section 5.10.3).

�e structure of the calculation can be represented with a diagram similar to the

one we used for Romberg integration:

�1 ≡ '1,1
↘

�2 ≡ '2,1 → '2,2
↘ ↘

�3 ≡ '3,1 → '3,2 → '3,3
↘ ↘ ↘

�4 ≡ '4,1 → '4,2 → '4,3 → '4,4
↘ ↘ ↘ ↘

Each row here corresponds to one central di�erence estimate �8 followed by the

other higher-order estimates derived from it. �e most accurate estimate we get

from the whole process is the very last one: if we do = levels of the process, then the

last estimate is '=,= , which is accurate to order ℎ2== .

5.10.6 Second derivatives

So far our discussion has focused on calculation of the �rst derivative of a func-

tion 5 (G), but we can also calculate numerical approximations to the second and
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higher derivatives. �e second derivative is, by de�nition, the derivative of the �rst

derivative, so we can calculate it by applying our �rst-derivative formulas twice.

For example, starting with the central di�erence formula, Eq. (5.127), we can write

expressions for the �rst derivative at G + 1
2ℎ and G − 1

2ℎ thus:

5 ′ (G + 1
2ℎ) ≃

5 (G + ℎ) − 5 (G)
ℎ

, 5 ′ (G − 1
2ℎ) ≃

5 (G) − 5 (G − ℎ)
ℎ

. (5.154)

�enwe apply the central di�erence again to get an expression for the second deriva-

tive:

5 ′′ (G) ≃
5 ′ (G + 1

2ℎ) − 5 ′ (G −
1
2ℎ)

ℎ

=
[5 (G + ℎ) − 5 (G)]/ℎ − [5 (G) − 5 (G − ℎ)]/ℎ

ℎ

=
5 (G + ℎ) − 25 (G) + 5 (G − ℎ)

ℎ2
. (5.155)

�is is the simplest approximation for the second derivative. We will use it exten-

sively in Chapter 9 for solving second-order di�erential equations. Higher-order

approximations exist too, but we will not use them in this book.

We can also calculate the error on Eq. (5.155). We perform two Taylor expansions

of 5 (G) thus:

5 (G + ℎ) = 5 (G) + ℎ5 ′ (G) + 1
2ℎ

2 5 ′′ (G) + 1
6ℎ

3 5 ′′′ (G) + 1
24 5
′′′′ (G) + . . . (5.156)

5 (G − ℎ) = 5 (G) − ℎ5 ′ (G) + 1
2ℎ

2 5 ′′ (G) − 1
6ℎ

3 5 ′′′ (G) + 1
24 5
′′′′ (G) − . . . (5.157)

Adding them together and rearranging, we �nd that

5 ′′ (G) = 5 (G + ℎ) − 25 (G) + 5 (G − ℎ)
ℎ2

− 1
12ℎ

2 5 ′′′′ (G) + . . . (5.158)

�e �rst term on the right is our formula for the second derivative, Eq. (5.155), and

the remainder of the terms measure the error. �us, to leading order, the absolute

error inherent in our approximation to the second derivative is 1
12ℎ

2 |5 ′′′′ (G) |. As

before, we also need to take rounding error into account, which contributes an error

of roughly n |5 (G) | on each value of 5 (G), where n is the machine precision, so that,

in the worst case, the total rounding error in the numerator of (5.155) is 4n |5 (G) | and
the rounding error on the whole expression is 4n |5 (G) |/ℎ2. �en the complete error

on the derivative is

X =
4n |5 (G) |
ℎ2

+ 1
12ℎ

2
��5 ′′′′ (G)��. (5.159)

Di�erentiating with respect to ℎ and se�ing the result to zero then gives an optimum

value of ℎ of

ℎ =

(
48n

���� 5 (G)
5 ′′′′ (G)

����
)1/4

. (5.160)
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Substituting this expression back into Eq. (5.159) gives the size of the error to be

X =
1
6ℎ

2
��5 ′′′′ (G)�� = (

4
3n

��5 (G) 5 ′′′′ (G)�� )1/2. (5.161)

So if, for instance, 5 (G) and 5 ′′′′ (G) are of order 1, the error will be roughly of order√
n , which is typically about 10−8. �is is about the same accuracy as we found

for the forward and backward di�erence approximations to the �rst derivative in

Section 5.10.2. �us our expression for the second derivative is not very accurate—

about as good as, but not be�er than, the forward di�erence. As mentioned above,

there are higher-order approximations for the second derivative that can give more

accurate answers. But for our purposes Eq. (5.155) will be good enough.

We can use the same method to derive expressions for higher derivatives too. For

instance, the third derivative is given by

5 ′′′ (G) ≃
5 (G + 3

2ℎ) − 35 (G +
1
2ℎ) + 35 (G −

1
2ℎ) − 5 (ℎ −

3
2ℎ)

ℎ3
, (5.162)

and there are similar formulas for fourth and higher derivatives too. In this book,

however, we will only need derivatives up to the second.

5.10.7 Partial derivatives

We will come across a number of situations in this book where we need to calculate

partial derivatives—derivatives of a function of several variables with respect to only

one of those variables. �e calculation of such partial derivatives is a simple gener-

alization of the calculation of ordinary derivatives. If you have a function 5 (G,~) of
two variables, for instance, then the central di�erence approximations to derivatives

with respect to G and ~ are

m5

mG
=
5 (G + 1

2ℎ,~) − 5 (G −
1
2ℎ,~)

ℎ
, (5.163)

m5

m~
=
5 (G,~ + 1

2ℎ) − 5 (G,~ −
1
2ℎ)

ℎ
. (5.164)

By analogy with our approach for the second derivative in Section 5.10.6 we can

also calculate second derivatives with respect to either variable, or a mixed second

derivative with respect to both, which is given by

m2 5

mGm~
=
5 (G + 1

2ℎ,~ +
1
2ℎ) − 5 (G −

1
2ℎ,~ +

1
2ℎ) − 5 (G +

1
2ℎ,~ −

1
2ℎ) + 5 (G −

1
2ℎ,~ −

1
2ℎ)

ℎ2
. (5.165)

We leave the derivation to the avid reader.

5.10.8 Derivatives of noisy data

Suppose we have some measurements of a quantity that, when plo�ed on a graph,

look like Fig. 5.11a. Perhaps they come from an experiment in the lab, for instance.
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Figure 5.11: Derivative of noisy data. (a) An example of a noisy data set. �e data plo�ed

in this graph have a clear underlying form, but contain some random noise or experimental

error as well. (b) �e derivative of the same data calculated using a forward di�erence. �e

action of taking the derivative ampli�es the noise and makes the underlying form di�cult to

discern.

�e overall shape of the curve is clear from the �gure, but there is some noise in the

data, so the curve is not completely smooth.

Now suppose we calculate the �rst derivative of this curve. We write a program

to calculate, say, the forward di�erence at each point and plot the values we get. �e

result is shown in Fig. 5.11b. As you can see, taking the derivative has made our noise

problem much worse. Now it is almost impossible to see the shape of the curve. �is

is a known problem with numerical derivatives. If there is any noise in the curve

you are di�erentiating, then it can be greatly exaggerated by taking the derivative,

perhaps to the point where the results are useless.

�e reason for the problem is easy to see if you zoom in on a small portion of the
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Figure 5.12: An expanded view of the noisy data. �e jagged line in this plot is an en-

largement of the �rst portion of the data from Fig. 5.11a, while the do�ed line is a guess about

the form of the underlying curve, without the noise.

original data, as shown in Fig. 5.12. In this �gure the solid line represents the actual

data, and the do�ed line is a sketch of what the underlying curve, without the noise,

probably looks like. (We do not usually know the underlying curve, so this is just a

guess.) When viewed close-up like this, we can see that, because of the noise, the

slope of the noisy line is very steep in some places, and completely di�erent from the

slope of the underlying curve. Although the noisy curve follows the general form of

the underlying one, its derivative does not. So now, whenwe calculate the derivative,

we generate spurious large values where there should be none.

Unfortunately, this kind of issue is common with physics data, and this is one of

the reasons why numerical derivatives are less used than numerical integrals. �ere

are some things we can do to mitigate the problem, although they all also decrease

the accuracy of our results:

1. �e simplest thing we can do is increase the value of ℎ. We can treat the noise

in the same way that we treat rounding error and calculate an optimum value

for ℎ that balances the error from the noise against the error in our approxi-

mation of the derivative. �e end result is a formula similar to Eq. (5.125) for

the forward di�erence or Eq. (5.132) for the central di�erence, but with the

machine precision n replaced by the fractional error introduced into the data

by the noise (which is the inverse of the signal-to-noise ratio).

2. Another approach is to �t a curve to a portion of the data near the point where

we want the derivative, then di�erentiate the curve. For instance, we might

�t a quadratic or a cubic, then di�erentiate that. We do not, however, �t a

quadratic to just three sample points or a cubic to just four, as we did in Sec-

tion 5.10.4. Insteadwe �nd the curve that best approximates a larger number of
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Figure 5.13: Smoothed data and an improved estimate of the derivative. �e gray curve

in this plot is a version of the data from Fig. 5.11a that has been smoothed to remove noise

using a Fourier transform method. �e black curve shows the numerical derivative of the

smoothed function, which is a signi�cant improvement over Fig. 5.11b.

points, even though it will not typically pass exactly through all those points.

In e�ect, we are trying to �nd an approximation to the underlying smooth

curve depicted in Fig. 5.12. �e derivative of this curve then gives an estimate

of the true derivative of the data without noise. Methods for ��ing curves to

data like this are discussed in Section 11.5.

3. A third approach is to smooth the data in some other manner before di�eren-

tiating, which can be done, for instance, using Fourier transforms, which we

study in Chapter 7. (See Exercise 7.4 for an example of Fourier smoothing.)

Figure 5.13 shows a version of the data from Fig. 5.11 that has been smoothed

in this way, and the corresponding derivative, which is much cleaner now.

5.11 Automatic differentiation

A completely di�erent approach to the numerical calculation of derivatives is auto-

matic di�erentiation. Automatic di�erentiation is a technique that allows us to cal-

culate an exact value (apart from rounding error) for the derivative of any function

for which we can write computer code. Automatic di�erentiation can be used to cal-

culate the derivative of a simple polynomial function for instance, or something as

complicated as a sum or integral computed with many loops and operations. How-

ever, it cannot be used for calculating the derivative of something like experimental

data—it applies only to functions calculated on the computer. But for these it is far

more accurate than typical numerical derivatives, such as forward or backward dif-

ferences, and does not even involve a great deal of computational e�ort. Automatic

di�erentiation is a mainstay of a number of important technologies, particularly in
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machine learning and arti�cial intelligence—it is a crucial component of the algo-

rithms used to train these systems.

Automatic di�erentiation with respect to a variable C works by replacing any

other variable G that depends on C with a pair of values [G, G ′], where G is the value

of the variable at some C and G ′ is its derivative with respect to C at the same point.

For instance, if we are calculating the value of G = C2 at C = 1 we would actually store

the pair of values [1, 2], because G = C2 = 1 and G ′ = 2C = 2.

Automatic di�erentiation further replaces each elementary mathematical opera-

tion in a programwith a generalized version that takes as input these value/derivative

pairs and produces similar pairs as output. For instance, the operation of multiply-

ing a variable by a constant G → 2G would be replaced by the operation [G, G ′] →
[2G, 2G ′]. Or consider the operation of taking a power G → G2 . Applying the chain

rule, the derivative of G2 with respect to C is

d

dC
(G2 ) = 2G2−1 dG

dC
, (5.166)

so our operation G → G2 becomes [G, G ′] → [G2 , 2G2−1G ′].
Here is a list of common operations:

G → G + 2 becomes [G, G ′] → [G + 2, G ′]
G → 2G becomes [G, G ′] → [2G, 2G ′]
G → G2 becomes [G, G ′] → [G2 , 2G2−1G ′]
G → 2G becomes [G, G ′] → [2G , (2G ln 2) G ′]
G → logG becomes [G, G ′] → [logG, G ′/G]
G → sinG becomes [G, G ′] → [sinG, G ′ cosG]
G → cosG becomes [G, G ′] → [cosG,−G ′ sinG]
G → tanG becomes [G, G ′] → [tanG, G ′ sec2 G]

�ese are all unary operations, ones that operate on a single variable G . We can

also de�ne generalizations of binary mathematical operations, such as addition. For

two variables G and~ the standard addition operation that maps G,~ → G+~ becomes

[G, G ′], [~,~′] → [G + ~, G ′ + ~′]. A more complex example is multiplication: if we

multiply G and ~ together, then, by the chain rule, the derivative of their product is

d

dC
(G~) = G d~

dC
+ ~ dG

dC
. (5.167)

So the normalmultiplication operationG,~ → G~ becomes [G, G ′], [~,~′] → [G~, G~′+
~G ′]. Here is a list of common binary operations:

G,~ → G + ~ becomes [G, G ′], [~,~′] → [G + ~, G ′ + ~′]
G,~ → G − ~ becomes [G, G ′], [~,~′] → [G − ~, G ′ − ~′]
G,~ → G~ becomes [G, G ′], [~,~′] → [G~, G~′ + ~G ′]

G,~ → G

~
becomes [G, G ′], [~,~′] →

[G
~
,
~G ′ − G~′

~2

]
G,~ → G~ becomes [G, G ′], [~,~′] → [G~, (G~ logG)G ′ + ~G~−1~′]
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And so forth. �e general rule for unary operations* (G) is

G → * (G) becomes [G, G ′] → [* (G),* ′ (G) G ′],

where* ′ denotes the derivative of* with respect to its argument. �e general rule

for binary operations �(G,~) is

G,~ → �(G,~) becomes [G, G ′], [~,~′] → [�(G,~), �G (G,~) G ′ + �~ (G,~) ~′],

where �G and �~ denote the partial derivatives of � with respect to G and ~.

Armed with this machinery, we can now combine elementary operations to cal-

culate any more complicated function that can be expressed as a sequence of such

operations—which means essentially any function we can evaluate on a computer.

For instance, suppose we want to calculate the function 5 (G) = 3G2 + eG . We could

do this by performing the following sequence of operations:

D1 = G
2, (5.168a)

D2 = 3D1, (5.168b)

D3 = eG , (5.168c)

then

5 (G) = D2 + D3 . (5.169)

With automatic di�erentiation, each mathematical operation—raising to the power

of 2, multiplying by 3, taking the exponential, and adding the two �nal terms—would

be performed using the generalized operations listed above and the end result would

be a pair [5 , 5 ′], representing the value of 5 and its derivative.

Now here is the �nal trick: to calculate the derivative 5 ′ (C) at any value of C ,

we simply evaluate our function 5 (G) with argument [C, 1] for whatever value of C
we are interested in. By de�nition this is the correct value/derivative pair for the

independent variable C , because dC/dC = 1 always. So if we use this pair as the

argument of our function, wewill get out a pair representing the value of the function

5 (C) and its derivative 5 ′ (C), at the chosen value of C .

Example 5.5: Automatic differentiation

An example should help to make this clear. Let us store our value/derivative pairs as

two-element lists in Python of the form [value,derivative]. We begin by de�ning

some functions to perform basic mathematical operations on these lists:

File: autodiff.py from math import exp

def multiply(x,c):

vx,dx = x

return [c*vx,c*dx]
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def power(x,c):

vx,dx = x

return [vx**c,c*vx**(c-1)*dx]

def exponential(x):

vx,dx = x

return [exp(vx),exp(vx)*dx]

def add(x,y):

vx,dx = x

vy,dy = y

return [vx+vy,dx+dy]

Each function takes one or two pairs, plus potentially some other arguments, and

returns a single pair as result. Now we can combine these elementary operations to

calculate a more complicated function, such as our function 5 (G) = 3G2 + eG :

def f(x):

u1 = power(x,2)

u2 = multiply(u1,3)

u3 = exponential(x)

return add(u2,u3)

Now we call this function with argument [C, 1] to compute the derivative at C . For

instance, to calculate the derivative of 5 (C) at C = 1
2 we could write:

print(f([0.5,1]))

If we run the whole program, it prints:

[2.398721270700128, 4.648721270700128]

�e �rst number is 5
(
1
2

)
and the second is 5 ′

(
1
2

)
. We can check the results:

5 (C) = 3C2 + eC = 3
4 + e

1/2
= 2.3987 . . . , (5.170)

5 ′ (C) = 6C + eC = 3 + e1/2 = 4.6487 . . . , (5.171)

so our program has indeed correctly found both the value of the function and its

derivative.

Note that there is no approximation involved in calculating derivatives this way,

other than the rounding error inherent in all computer calculations. �e answers we

get are accurate to the limits of machine precision. �e method only applies, as we

have said, to functions that can be calculated on the computer—we cannot apply this

kind of di�erentiation to lab data for example. But it is applicable in many situations

in computational physics and in science and engineering more broadly.
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Automatic di�erentiation can also be extended to the calculation of higher deriva-

tives by keeping track of more derivatives for each variable. For instance, if we are

interested in the second derivative, then each variable G gets replaced by a three-

valued triple [G, G ′, G ′′], and the general rule for unary operations* (G) is

G → * (G) becomes [G, G ′, G ′′] → [* (G),* ′ (G) G ′,* ′′ (G) (G ′)2 +* ′ (G) G ′′],

while the rule for binary operations �(G,~) is
G,~ → �(G,~) becomes [G, G ′, G ′′], [~,~′, ~′′] → [�(G,~), �G (G,~) G ′ + �~ (G,~) ~′,

�GG (G,~) (G ′)2 + 2�G~ (G,~) G ′~′ + �~~ (G,~) (~′)2 + �G (G,~) G ′′ + �~ (G,~) ~′′],

where �G and �~ are �rst derivatives of �(G,~) with respect to its two arguments

and �GG , �G~ , and �~~ are second derivatives.

Implementing automatic di�erentiation does require writing many individual

user-de�ned functions to perform elementarymathematical operations, like the ones

in Example 5.5 above. Because of the wide use of automatic di�erentiation in both

science and commercial applications, however, people have created Python pack-

ages that de�ne large collections of such functions for you, to save you the e�ort. If

you plan to use automatic di�erentiation extensively, you may want to look at these

packages. Examples include TensorFlow, PyTorch, and JAX.

Exercise 5.17: In Exercise 5.13 we encountered the Hermite polynomials, which are de�ned

iteratively by

�=+1 (G) = 2G�= (G) − 2=�=−1 (G), with �0 (G) = 1 and �1 (G) = 2G .

a) Write a Python function H(n,x) to compute the value and derivative of the =th Hermite

polynomial at the point G using automatic di�erentiation.

b) Use your function to verify the values of the derivatives � ′3
( 1
2

)
= −6 and � ′10

( 1
2

)
=

129 620.

c) Make a plot of the derivative of �100 (G) between G = −2 and G = 2.

Hint: If you program is taking a long time to run, then you are probably doing the calculation

the wrong way. It should only take a second or two to �nish.

5.12 Interpolation

We tackle one more topic in this chapter, namely interpolation, which is not directly

related to integrals and derivatives, but uses similar mathematical methods, making

this a good moment to look at it.

Suppose you are given the value of a function 5 (G) at two points G = 0, 1 and

you want to estimate the value at another point G in between. �ere are a number of
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Straight line

Figure 5.14: Linear interpolation. �e value of 5 (G) in between the two known points at

G = 0 and G = 1 is estimated by assuming a straight line from 5 (0) to 5 (1).

ways of making such estimates, of which the simplest is linear interpolation, which

is illustrated in Fig. 5.14. We assume our function follows a straight line from 5 (0)
to 5 (1), which in most cases is an approximation—likely the function follows some

sort of curve—but if we make this assumption then we can calculate 5 (G) with some

elementary geometry.

�e slope of the straight-line approximation is

< =
5 (1) − 5 (0)

1 − 0 , (5.172)

and the distancemarked~ on the �gure is given in terms of this slope by~ =<(G−0).
�e distance marked I is equal to 5 (0), so

5 (G) ≃ ~ + I = 5 (1) − 5 (0)
1 − 0 (G − 0) + 5 (0)

=
(1 − G) 5 (0) + (G − 0) 5 (1)

1 − 0 . (5.173)

�is is the fundamental formula of linear interpolation. In fact, this same formula

can also be used to extrapolate the function to points outside the interval from 0 to 1,

although one should not extrapolate too far. �e further you go, the less likely it is

that the extrapolation will be accurate.

Another way to look at the linear interpolation formula is to de�ne two positive

weights

D1 = 1 − G, D2 = G − 0, (5.174)
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in terms of which, Eq. (5.173) can be wri�en as

5 (G) ≃ D1 5 (0) + D2 5 (1)
D1 + D2

. (5.175)

In other words, linear interpolation is equivalent to taking a weighted average of the

two values 5 (0) and 5 (1), with weights that depend on the distances between the

point G and the ends of the interval 0, 1. As we will see in the following discussion,

all interpolation formulas eventually boil down to some kind of weighted average

over the known values of the function.

How accurate is the linear interpolation formula? �e calculation of the error is

similar to that for derivatives, making use of two Taylor expansions:

5 (0) = 5 (G) + (0 − G) 5 ′ (G) + 1
2 (0 − G)

2 5 ′′ (G) + . . . (5.176)

5 (1) = 5 (G) + (1 − G) 5 ′ (G) + 1
2 (1 − G)

2 5 ′′ (G) + . . . (5.177)

Multiplying the �rst of these by 1 − G and the second by 0 − G , then subtracting one

from the other, the terms in 5 ′ (G) cancel and we get

(1 −G) 5 (0) + (G −0) 5 (1) = (1 −0) 5 (G) + 1
2 (0−G) (1 −G) (0−1) 5

′′ (G) + . . . , (5.178)

which can be rearranged to read

5 (G) = (1 − G) 5 (0) + (G − 0) 5 (1)
1 − 0 + (0 − G) (1 − G) 5 ′′ (G) + . . . (5.179)

�e �rst term on the right-hand side is our linear interpolation formula; the rest of

the terms are the error. Note that the leading-order error term vanishes as G tends

to either 0 or 1, so that either 1 − G or 0 − G becomes small. And, assuming 5 ′′ (G)
varies slowly, the error will be largest in the middle of the interval. If we denote the

width of the interval by 1 − 0 = ℎ, then when we are in the middle we have G − 0 =

1 − G =
1
2ℎ and the absolute magnitude of the leading-order error is 1

4ℎ
2 |5 ′′ (G) |.

�us, like the central di�erence formula for a �rst derivative, the worst-case error

on a linear interpolation is O(ℎ2), and we can make the interpolation more accurate

by making ℎ smaller.

By contrast with the case of derivatives, however, we do not need to be particu-

larly careful about rounding error when using linear interpolation. �e interpolation

formula, Eq. (5.173), involves the sum of values of 5 (G) at two closely spaced points,

not the di�erence, so we don’t normally run into the accuracy problems that plague

calculations based on subtractions (like calculations of derivatives).

Can we do be�er than linear interpolation? Not if we know the value of the

function 5 (G) at only two points—there is no be�er approximation in that case. If

we know the function at more than two points there are several ways to improve on

linear interpolation. �e most obvious is to interpolate with higher-order polyno-

mials, using the method known as Lagrange interpolation. If we have three points,
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for instance, we can �t a quadratic through them, which will usually give a bet-

ter match to the underlying curve. Four points allows us to �t a cubic, and so on.

A straightforward way to �t such polynomials is using the Lagrange interpolating

polynomials q: (G) of Eq. (5.53) on page 155, which for # points at G1 . . . G# are a set

of # polynomials, each of degree # − 1. In Eq. (5.56) and the accompanying discus-

sion we showed that the unique polynomial of degree#−1 that �ts the function 5 (G)
at all of the # points is given by

Φ(G) =
#∑
:=1

5 (G: )q: (G), (5.180)

and we can use the value of this function as our interpolation.

Note that for the special case where 5 (G: ) = 1 for all : , the unique polynomial

that goes through all the points is trivially just Φ(G) = 1, and hence (5.180) tells

us that
∑#
:=1

q: (G) = 1 for all G : the sum of the Lagrange polynomials at any G

is always 1. Given this fact, we can see that Eq. (5.180) again takes the form of a

weighted average over the known values 5 (G: ) with weights q: (G) that sum to one.

When the number of points becomes large, however, the Lagrange interpolation

approach breaks down. If we have a large number # of points then you might think

the best thing to do would be to �t an (# − 1)th order polynomial through them, but

it turns out this does not work because very high order polynomials tend to have a

lot of wiggles in them4 and can deviate from the ��ed points badly in the intervals

between points. It is be�er in this case to �t many lower-order polynomials such

as quadratics or cubics to smaller sets of adjacent points. Unfortunately, the naive

implementation of such a scheme gives rather uneven interpolations because the

slope of the interpolation changes at the join-points between polynomials. A more

satisfactory approach is to �t polynomials to the measured points and the derivatives

at their ends, so that one gets a function that goes through the points and has a

smooth slope everywhere. Such interpolations are called splines. �e most widely

used type are cubic splines. We will not need these methods in this book however, so

we will go into them further here.

5.12.1 Interpolation in two or more dimensions

Sometimes we need to interpolate in more than one dimension. For instance, we

might have an image, such as an astronomical image, represented as a grid of pixels

of varying intensity, andwewant to estimatewhat the intensity is between the pixels.

We can do this using bilinear interpolation.

We have a function 5 (G,~) de�ned in a two-dimensional space and we know its

value on the points of a square or rectangular grid. Figure 5.15 shows a sketch of one

4�is is primarily a problem when the sample points are evenly spaced. For unevenly spaced points

it may be possible to get good results using high-degree polynomials.
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of the rectangles in the grid and let us write the values of the function at the four

corners as

511 = 5 (G1, ~1), 521 = 5 (G2, ~1), 512 = 5 (G1, ~2), 522 = 5 (G2, ~2). (5.181)

Figure 5.15: Bilinear interpolation. In

bilinear interpolation we interpolate �rst

along the top and bo�om lines of a rect-

angle and then vertically between the re-

sulting two points.

Our goal is to estimate the value of the function at a general point

(G,~) inside the rectangle. �e idea of bilinear interpolation is that

we �rst interpolate linearly along the two horizontal lines at top and

bo�om of the rectangle to estimate the values at the points (G,~1)
and (G,~2), and then interpolate vertically between those two points
to estimate 5 (G,~).

�us, using our linear interpolation formula, Eq. (5.173), we

have

5 (G,~1) =
(G2 − G) 511 + (G − G1) 521

G2 − G1
, (5.182a)

5 (G,~2) =
(G2 − G) 512 + (G − G1) 522

G2 − G1
, (5.182b)

and then

5 (G,~) = (~2 − ~) 5 (G,~1) + (~ − ~1) 5 (G,~2)
~2 − ~1

=
D11 511 + D21 521 + D12 512 + D22 522

D11 + D21 + D12 + D22
, (5.183)

where

D11 = (G2 − G) (~2 − ~), (5.184a)

D21 = (G − G1) (~2 − ~), (5.184b)

D12 = (G2 − G) (~ − ~1), (5.184c)

D22 = (G − G1) (~ − ~1). (5.184d)

�us, as with our previous interpolation formulas, our estimate of 5 (G,~) is a

weighted average of the known values of the function.

One might imagine that there are two di�erent ways to perform bilinear interpo-

lation, either by interpolating horizontally �rst then vertically, or vice versa. In fact,

however, both of these lead to same formula, given above, and hence there is only

one way to do the calculation.

A di�erent type of two-dimensional interpolation arises when the known values

of the function are not on a rectilinear grid, but are arranged in some other, possibly

irregular fashion. In this case one can interpolate between trios of points forming

triangles. Any location r within the area covered by the known points falls inside

(or on the edge of) at least one such triangle, and when it does it divides the triangle
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into three smaller triangles with areas D1, D2, D3 as shown in Fig. 5.16. We de�ne the

interpolated value of the function 5 (r) within the triangle by

5 (r) = D1 51 + D2 52 + D3 53
D1 + D2 + D3

, (5.185)

where 51, 52, 53 are the values at the corners. Again this takes the form of a weighted

average. It also takes the values 51, 52, and 53, as it should, at the three corners of

the large triangle, and it interpolates linearly between them when we are within the

triangle.

u1

u2

r1

r2

r3

ru3

Figure 5.16: Weights for interpolation

within a triangle. Any point r within a triangle

divides the triangle into three smaller ones,

whose areas D1, D2, D3 can be used as weights for

interpolation.

�e areas of the three small triangles are most easily cal-

culated by vector methods. �e area of any triangle is given

in terms of the lengths 0, 1 of any two of its edges and the an-

gle \ between them by 1
201 sin\ =

1
2 |a×b|, where a and b are

the vectors along the edges and the × symbol represents the

vector cross-product. �e factor of 1
2 is not important—we

can multiplyD1, D2, andD3 by 2 and Eq. (5.185) is una�ected—

so let us drop the 1
2 . �en the value of D1 can be calculated

from the cross-product of the edge vectors r − r3 and r2 − r3
thus:

D1 = | (r − r3) × (r2 − r3) | = |r × (r2 − r3) + r2 × r3 |, (5.186)

where we have made use of r3 × r2 = −r2 × r3 and r3 × r3 = 0.

For a �xed grid of points, the quantities r2− r3 and r2× r3 can
be calculated ahead of time and stored to allow quick inter-

polation, and we can write similar expressions for D2 and D3:

D2 = |r × (r3 − r1) + r3 × r1 |, (5.187)

D3 = |r × (r1 − r2) + r1 × r2 |. (5.188)

�e cross-product can be calculated in Python using the cross function from

numpy. �e cross-product of a pair of two-dimensional vectors in the G~ plane is

always in the I-direction, so when given two-dimensional vectors as inputs the cross

function returns only a single �oating-point value, equal to the I-component of the

cross-product. For example, we can calculate the area of a triangle with corners at

(0, 0), (5, 0), and (2, 4) thus:

from numpy import array,cross

a = array([5,0],float)

b = array([2,4],float)

print(abs(cross(a,b))/2)

Note the use of the abs function here, since we want the magnitude of the cross-

product. When we run this program it correctly prints “10.0”.
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�ough it may not be immediately obvious, this triangular interpolation is a lin-

ear interpolation, since Eqs. (5.186) to (5.188) are linear in r. An alternative, geo-

metric way to look at the interpolation is to think of 5 (r) as de�ning the height of

a two-dimensional surface as a function of position (G,~) and the known points at

the corners of the triangles as points on this surface. �en our interpolation scheme

is equivalent to interpolating within each triangle using the �at plane that passes

exactly through the points at the three corners of the triangle. �e la�er is clearly a

linear interpolation, and since there is only one plane that passes through the cor-

ners, it is the unique linear interpolation that takes the correct values at the corners.

�e interpolation de�ned in Eq. (5.185) is also linear and also takes the correct val-

ues at the corners, hence the two interpolations must be the same. Triangular linear

interpolation, viewed in this geometric way, forms one of the mathematical pillars

of computer animation and video games, where surfaces are commonly represented

by triangular meshes and the surface itself approximated using interpolation.

Both bilinear interpolation and triangular interpolation can be generalized to

higher dimensions. �e generalization of bilinear interpolation in three dimensions,

for example, is a natural one: you interpolate linearly �rst along the G axis, then

the ~ axis, and �nally the I axis. �e resulting formulas are an obvious extension of

Eqs. (5.183) and (5.184). �e generalization of the triangular interpolation to three

dimensions involves interpolating within tetrahedra and is analogous to the two-

dimensional version. Any point within a tetrahedron divides it into four smaller

tetrahedra, whose areas can be used as the weights in a weighted average over the

values of the function at the four corners.

We will not need these methods in this book, however. For our purposes, two

dimensions will be enough.

Chapter summary

• �e trapezoidal rule is the simplest of methods for evaluating integrals on a

computer. It approximates a function with straight-line segments and then cal-

culates the area underneath those straight lines.

• For sample points spaced a distance ℎ apart the trapezoidal rule gives an answer

accurate to order ℎ, with an error of order ℎ2.

• Simpson’s rule approximates the function using quadratics instead of straight

lines and usually gives a more accurate answer than the trapezoidal rule. It is

accurate to order ℎ3 with an error of order ℎ4.

• Adaptive versions of the trapezoidal rule and Simpson’s rule allow you to com-

pute an answer to a required accuracy by increasing the number of sample points

until you hit the desired target.
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• Romberg integration is an extension of the trapezoidal rule that usesRichard-

son extrapolation to increase the accuracy of integrals, in many cases substan-

tially improving on the accuracy of either the trapezoidal rule or Simpson’s rule.

• Gaussian quadrature abandons equally spaced sample points and creates an in-

tegration rule that is superbly accurate, and also simple to use, but at the expense

of unevenly spaced points.

• Integrals over in�nite ranges cannot be performed directly on a computer, but

they can be done by �rst making a change of variables so that the in�nite range

becomes a �nite one.

• Multiple integrals can be performed by nesting integrals one inside another.

�is can become computationally demanding for high-dimensional integrals. In-

tegrals in more than three or four dimensions can be challenging.

• Derivatives can be calculated numerically using forward, backward, or cen-

tral di�erences. Central di�erences are generally more accurate than forward

or backward ones.

• More accurate values for derivatives can be calculated using a range of higher-

order approximations or by applying Richardson extrapolation again.

• Second derivatives and other higher derivatives are calculated as derivatives of

derivatives.

• An alternative approach to calculating derivatives is automatic di�erentiation,

which allows one to calculate exact values (apart from rounding error), but is lim-

ited to derivatives of functions that can be evaluated on the computer. It cannot

be used, for example, to di�erentiate experimental measurements.

• Interpolation is the process of estimating the value of a function between

known sample points. �e simplest approach is linear interpolation, which

assumes a straight line between points.

• Higher-order interpolations can be calculated using Lagrange interpolating

polynomials, although caution should be used when using polynomials of high

degree, which can lead to numerical instability.

• Interpolation in two or more dimensions can be performed using bilinear

interpolation within rectangles or linear interpolation within triangles (or the

equivalent in three or more dimensions).
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Further exercises

5.18 �e value of π: It can be shown that∫ ∞

0

dG

G2 + 1
=
c

2
.

Write a program to calculate the value of c to 10 decimal places using this result. Use an

adaptive integration method that guarantees the required accuracy.

5.19 �e gamma function: A commonly occurring function in physics calculations is the

gamma function Γ(0), which is de�ned by the integral

Γ(0) =
∫ ∞

0
G0−1e−G dG .

�ere is no closed-form expression for the gamma function, but one can calculate its value for

given 0 by performing the integral above numerically. You have to be careful how you do it,

however, if you wish to get an accurate answer.

a) Write a program to make a graph of the value of the integrand G0−1e−G as a function

of G from G = 0 to G = 5, with three separate curves for 0 = 2, 3, and 4, all on the same

axes. You should �nd that the integrand starts at zero, rises to a maximum, and then

decays again for each curve.

b) Show analytically that the maximum falls at G = 0 − 1.
c) Most of the area under the integrand falls near the maximum, so to get an accurate

value of the gamma function we need to do a good job of this part of the integral. We

can change the integral from 0 to ∞ to one over a �nite range from 0 to 1 using the

change of variables in Eq. (5.97), but this tends to squash the peak towards the edge of

the [0, 1] range and does a poor job of evaluating the integral accurately. We can do a

be�er job by making a di�erent change of variables that puts the peak in the middle of

the integration range, around 1
2 . We will use the change of variables

I =
G

2 + G .

For what value of G does this change of variables give I =
1
2 ? Hence what is the ap-

propriate choice of the parameter 2 that puts the peak of the integrand for the gamma

function at I = 1
2 ?

d) Before we can calculate the gamma function, there is another detail we need to a�end to.

�e integrand G0−1e−G can be di�cult to evaluate because the factor G0−1 can become

very large and the factor e−G very small, causing numerical over�ow or under�ow, or

both, for some values of G . Write G0−1 = e(0−1) lnG to derive an alternative expression

for the integrand that does not su�er from these problems (or at least not so much).

Explain why your new expression is be�er than the old one.

e) Now, using the change of variables above and the value of 2 you have chosen, write

a user-de�ned function gamma(a) to calculate the gamma function for arbitrary argu-

ment 0. Use whatever integration method you feel is appropriate. Test your function

by using it to calculate and print the value of Γ( 32 ), which is known to be equal to
1
2

√
c ≃ 0.886.
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f) For integer values of 0 it can be shown that Γ(0) is equal to the factorial of 0 − 1. Use

your Python function to calculate Γ(3), Γ(6), and Γ(10). You should get answers closely
equal to 2! = 2, 5! = 120, and 9! = 362 880.

5.20 Gauss’s law: Consider a function 5 (G,~, I) in three-dimensional space. �e integral �

of that function over a sphere of radius ' centered on the origin can be calculated by writing

G,~, I in spherical polar coordinates G = ' sin\ sinq , ~ = ' sin\ cosq , I = ' cos\ and then

using

� =

∫ 2c

0

∫ c

0
5 (G,~, I) '2 sin\ d\ dq.

a) Suppose we have three electric charges of 1 coulomb each at positions r1, r2, and r3 in

otherwise empty space. Write an expression for the electric �eld E that results from

these three charges at an arbitrary point r . Hence show that the radial component �A
of that �eld, meaning the component in the direction directly away from the origin, is

given by

�A =
1

4cn0

r

|r| ·
[

r − r1
|r − r1 |3

+ r − r2
|r − r2 |3

+ r − r3
|r − r3 |3

]
,

where n0 is the permi�ivity of the vacuum.

b) Let 5 (G,~, I) = �A . Write a program to evaluate the integral � de�ned above for this

choice of 5 in the case where

r1 = (0, 0, 0), r2 = (1, 0, 0), r3 = (0, 1, 0),

and the radius of the sphere is ' = 2. Use whatever integration method you feel is

appropriate.

c) Gauss’s law tells us that the integral of the radial component of the �eld should be equal

to the total charge inside the sphere divided by the permi�ivity n0. Verify that your

integral gives the correct value.

d) Try a few other positions for the three charges, some inside the sphere and some outside,

and recompute the integral. Verify that Gauss’s law is obeyed in each case.

5.21 Rearranging Eq. (5.19) on page 143 into a slightly more conventional form, we have:

∫ 1

0
5 (G) dG = ℎ

[
1
2 5 (0) +

1
2 5 (1) +

#−1∑
:=1

5 (0 + :ℎ)
]
+ 1

12ℎ
2
[
5 ′ (0) − 5 ′ (1)

]
+ O(ℎ4) .

�is result gives a value for the integral on the le� which has an error of order ℎ4—a factor of

ℎ2 be�er than the error on the trapezoidal rule and as good as Simpson’s rule. We can use this

formula as a new rule for evaluating integrals, distinct from any of the others we have seen in

this chapter. We might call it the “Euler–Maclaurin rule.”

a) Write a program to calculate the value of the integral
∫ 2
0
(G4 − 2G + 1) dG using this

formula. (�is is the same integral that we studied in Example 5.1, whose true value

is 4.4.) �e order-ℎ term in the formula is just the ordinary trapezoidal rule; the ℎ2

term involves the derivatives 5 ′ (0) and 5 ′ (1), which you should evaluate using central

di�erences, centered on 0 and 1 respectively. Note that the size of the interval you use

for calculating the central di�erences does not have to equal the value of ℎ used in the
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trapezoidal rule part of the calculation. An interval of about 10−5 gives good values for
the central di�erences.

Use your program to evaluate the integral with # = 10 slices and compare the ac-

curacy of the result with that obtained from the trapezoidal rule alone with the same

number of slices.

b) Good though it is, this integrationmethod is not much used in practice. Suggest a reason

why not.

5.22 Di�raction gratings: Light with wavelength _ is incident on a di�raction grating of

total widthF , gets di�racted, is focused with a lens of focal length 5 , and falls on a screen:

In
ci

d
en

t 
li

g
h

t

Grating

Lens
Screen

f

x

�eory tells us that the intensity of the di�raction pa�ern on the screen, a distance G from the

central axis of the system, is given by

� (G) =
����
∫ F/2

−F/2

√
@(D) ei2cGD/_5 dD

����
2

,

where @(D) is the intensity transmission function of the di�raction grating at a distance D from

the central axis, de�ned as the fraction of the incident light that the grating lets through at

that point.

a) Consider a grating with transmission function @(D) = sin2 UD. What is the separation

of the “slits” in this grating, expressed in terms of U?

b) Write a Python function q(u) that returns the transmission function @(D) = sin2 UD as

above at position D for a grating whose slits have separation 20 `m.

c) Use your function in a program to calculate and graph the intensity of the di�raction

pa�ern produced by such a grating having ten slits in total, if the incident light has

wavelength _ = 500 nm. Assume the lens has a focal length of 1 meter and the screen is

10 cm wide. You can use whatever method you think appropriate for doing the integral.

Once you have made your choice you will also need to decide the number of sample

points you will use. What criteria play into this decision?

Notice that the integrand in the equation for � (G) is complex, so you will have to use

complex variables in your program. As mentioned in Section 2.2.5, there is a version

of the math package for use with complex variables called cmath. In particular you may

�nd the exp function from cmath useful because it can calculate exponentials of complex

arguments.
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d) Create a visualization of how the di�raction pa�ern would look on the screen using a

density plot (see Section 3.3). Your plot should look something like this:

e) Modify your program further to make pictures of the di�raction pa�erns produced by

gratings with the following pro�les:

i) A transmission pro�le that obeys @(D) = sin2 UD sin2 VD, with U as before and the

same total grating widthF , and V =
1
2U .

ii) Two “square” slits, meaning slits with 100% transmission through the slit and 0%

transmission everywhere else. Calculate the di�raction pa�ern for non-identical

slits, one 10 `mwide and the other 20 `mwide, with a 60 `m gap between the two.

5.23 A more advanced adaptive method for the trapezoidal rule: In Section 5.3 we

studied an adaptive version of the trapezoidal rule in which the number of steps is increased—

and the width ℎ of the slices correspondingly decreased—until the calculation gives a value for

the integral accurate to some desired level. Although this method varies ℎ, it still calculates

the integral at any individual stage of the process using slices of equal width throughout the

domain of integration. In this exercise we look at a more sophisticated adaptive method that

uses di�erent step sizes in di�erent parts of the domain, which can be useful particularly for

poorly behaved functions that vary rapidly in certain regions but not others. Remarkably, this

method is not much more complicated to program than the ones we have already seen, if one

knows the right tricks. Here is how the method works.

Suppose we wish to evaluate the integral � =
∫ 1
0
5 (G) dG and we want an error of no

more than n on our answer. To put that another way, if we divide up the integral into slices of

width ℎ then we require an accuracy per slice of

ℎ
n

1 − 0 = ℎX,

where X = n/(1 − 0) is the target accuracy per unit interval.

We start by evaluating the integral using the trapezoidal rule with just a single slice of

width ℎ1 = 1 − 0. Let us call the estimate of the integral from this calculation �1. Usually �1
will not be very accurate, but that does not ma�er. Next we make a second estimate �2 of the

integral, again using the trapezoidal rule but now with two slices of width ℎ2 =
1
2ℎ1 each.

Equation (5.28) tells us that the error on this second estimate is 1
3 (�2 − �1) to leading order. If

the absolute value of this error is smaller than the required accuracy n then our calculation is

complete and we need go no further. �2 is a good enough estimate of the integral.

Most likely, however, this will not be the case; the accuracy will not be good enough. If

so, then we divide the integration interval into two equal parts of size 1
2 (1 − 0) each, and we

repeat the process above in each part separately, calculating estimates �1 and �2 using one and

two slices respectively, estimating the error, and checking to see if it is less than the required

accuracy, which is now 1
2 (1 − 0)X =

1
2n .

We keep on repeating this process, dividing each slice in half and in half again, as many

times as necessary to achieve the desired accuracy in every slice. Di�erent slices may be

divided di�erent numbers of times, and hence we may end up with di�erent sized slices in
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di�erent parts of the integration domain. �e method automatically uses whatever size and

number of slices is appropriate in each region.

Write a program using this method to calculate the integral

� =

∫ 10

0

sin2 G

G2
dG,

to an accuracy of n = 10−4. You should carry out the following steps.

a) Start by writing a function to calculate the integrand 5 (G) = (sin2 G)/G2. Note that the
limiting value of the integrand at G = 0 is 1. You will probably have to include this point

as a special case in your function using an if statement.

b) �e best way to perform the integration itself is to use recursion, the ability of a Python

function to call itself—see Section 2.6.1. Write a function step(x1,x2,f1,f2) that takes

as arguments the beginning and end points G1, G2 of a slice and the values 5 (G1), 5 (G2)
of the integrand at those two points, and returns the value of the integral from G1 to G2.

�is function should evaluate the two estimates �1 and �2 of the integral from G1 to G2,

calculated with one and two slices respectively, and the error 1
3 (�2 − �1). If this error

meets the target value, which is (G2 − G1)X , then the calculation is complete and the

function simply returns the value �2. If the error fails tomeet the target, then the function

calls itself, twice, to evaluate the integral separately on the �rst and second halves of

the interval and returns the sum of the two results. (And then those functions can call

themselves, and so forth, subdividing the integral as many times as necessary to reach

the required accuracy.)

c) As icing on the cake, when the error target is met and the function returns a value for

the integral in the current slice, it can, in fact, return a slightly be�er value than the

estimate �2. Since you will already have calculated the value of the integrand 5 (G) at
G1, G2, and the midpoint G< =

1
2 (G1 + G2) in order to evaluate �2, you can use those

results to compute the improved Simpson’s rule estimate, Eq. (5.7), for this slice. You

just return the value 1
6ℎ[5 (G1) +45 (G<) + 5 (G2)] instead of the trapezoidal rule estimate

1
4ℎ[5 (G1) +25 (G<) + 5 (G2)] (where ℎ = G2−G1). �is involves very li�le extra work, but

gives a value that is more accurate by two orders in ℎ. (Technically, this is an example

of “local extrapolation,” although it is perhaps not obvious what we are extrapolating

in this case. We will discuss local extrapolation again when we study adaptive methods

for the solution of di�erential equations in Section 8.4.)

d) Why does the function step(x1,x2,f1,f2) take not only the positions G1 and G2 as

arguments, but also the values 5 (G1) and 5 (G2)? Since we know the function 5 (G), we
could just calculate these values from G1 and G2. Nonetheless, it is a smart move to

include the values of 5 (G1) and 5 (G2) as arguments to the function. Why?

e) Modify your program to make a plot of the integrand with dots added showing where

the edges of each integration slice lie. You should see larger slices in portions of the

integrand that follow reasonably straight lines (because the trapezoidal rule gives an

accurate value for straight-line integrands) and smaller slices in portions with more

curvature.

5.24 Electric �eld of a charge distribution: Suppose we have a distribution of charges

and we want to calculate the resulting electric �eld. One way to do this is to �rst calculate the
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electric potential q and then take its gradient. For a point charge @ at the origin, the electric

potential at a distance A from the origin is q = @/4cn0A and the electric �eld is E = −∇q .
a) You have two charges, of ±1 C, 10 cm apart. Write a program to calculate the result-

ing electric potential on a 1m × 1m square plane surrounding the charges and passing

through them. Calculate the potential at 1 cm spaced points in a grid and make a visu-

alization on the screen of the potential using a density plot.

b) Now calculate the partial derivatives of the potential with respect to G and ~ and hence

�nd the electric �eld in the G~ plane. Make a visualization of the �eld also. �is is a li�le

trickier than visualizing the potential, because the electric �eld has both magnitude and

direction. One way to do it might be to make two density plots, one for the magnitude,

and one for the direction, the la�er using the “hsv” color scheme in pyplot, which is

a rainbow scheme that passes through all the colors but starts and ends with the same

shade of red, which makes it suitable for representing things like directions or angles

that go around the full circle and end up where they started. A more sophisticated

visualization might use the quiver function from pyplot, which draws a grid of arrows

with direction and length that you specify.

5.25 Di�erentiating by integrating: If you are familiar with the calculus of complex vari-

ables, you may �nd the following technique useful and interesting.

Suppose we have a function 5 (I) whose value we know not only on the real line but also

for complex values of its argument. �en we can calculate derivatives of that function at any

point I0 by performing a contour integral, using the Cauchy derivative formula:(
d<5

dI<

)
I=I0

=
<!

2c i

∮
5 (I)

(I − I0)<+1
dI,

where the integral is performed counterclockwise around any contour in the complex plane

that surrounds the point I0 but contains no poles in 5 (I). Since numerical integration is

signi�cantly easier and more accurate than numerical di�erentiation, this formula provides

us with a method for calculating derivatives—and especially multiple derivatives—accurately

by turning them into integrals.

Suppose, for example, that we want to calculate derivatives of 5 (I) at I = 0. Let us apply

the Cauchy formula above using the trapezoidal rule to calculate the integral along a circular

contour centered on the origin with radius 1. �e trapezoidal rule will be slightly di�erent

from the version we are used to because the value of the interval ℎ is now a complex number,

and moreover is not constant from one slice of the integral to the next—it stays constant in

modulus, but its argument changes from one slice to another.

We will divide our contour integral into # slices with sample points I: distributed uni-

formly around the circular contour at positions I: = ei2c:/# for : = 0 . . . # . �en the distance

between consecutive sample points is

ℎ: = I:+1 − I: = ei2c (:+1)/# − ei2c:/# ,

and, introducing the shorthand 6(I) = 5 (I)/I<+1 for the integrand, the trapezoidal rule ap-
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proximation to the integral is

∮
6(I) dI ≃

#−1∑
:=0

1
2

[
6(I:+1) + 6(I: )

] [
ei2c (:+1)/# − ei2c:/#

]

=
1
2

[#−1∑
:=0

6(I:+1) ei2c (:+1)/# −
#−1∑
:=0

6(I: ) ei2c:/#

−
#−1∑
:=0

6(I:+1) ei2c:/# +
#−1∑
:=0

6(I: ) ei2c (:+1)/#
]
.

Noting that I# = I0, the �rst two sums inside the brackets cancel each other in their entirety,

and the remaining two sums are equal except for trivial phase factors, so the entire expression

simpli�es to

∮
6(I) dI ≃ 1

2

[
ei2c/# − e−i2c/#

] #−1∑
:=0

6(I: ) ei2c:/# ≃
2c i

#

#−1∑
:=0

5 (I: ) e−i2c:</# ,

where we have used the de�nition of 6(I) again. Combining this result with the Cauchy

formula, we then have

(
d<5

dI<

)
I=0

≃ <!

#

#−1∑
:=0

5 (I: ) e−i2c:</# .

Write a program to calculate the �rst twenty derivatives of 5 (I) = e2I at I = 0 using this

formula with # = 10 000. You will need to use the version of the exp function from the cmath

package, which can handle complex arguments. You may also �nd the function factorial

from the math package useful; it calculates factorials of integer arguments.

�e correct value for the<th derivative in this case is easily shown to be 2< , so it should

be straightforward to tell if your program is working—the results should be powers of two,

2, 4, 8, 16, 32, etc. You should �nd that it is possible to get reasonably accurate results for all

twenty derivatives rapidly using this technique. If you use standard di�erence formulas for

the derivatives, on the other hand, you will �nd that you can calculate only the �rst three or

four derivatives accurately before the numerical errors become so large that the results are

useless. In this case, therefore, the Cauchy formula gives be�er results.

�e sum
∑
: 5 (I: ) e−i2c:</# that appears in the formula above is known as the discrete

Fourier transform of the complex samples 5 (I: ). �ere exists an elegant technique for evalu-

ating the Fourier transform for many values of< simultaneously, known as the fast Fourier

transform, which could be useful in cases where the direct evaluation of the formula is slow.

We will study the fast Fourier transform in Chapter 7.

5.26 Image processing and the STM:When light strikes a surface, the amount falling per

unit area depends not only on the intensity of the light, but also on the angle of incidence.

If the direction the light is coming from makes an angle \ to the normal, then the light only

“sees” cos\ of area per unit of actual area on the surface:
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Surface

What the light sees

Light

θ

So the intensity of illumination is 0 cos\ , if 0 is the raw intensity of the light. �is simple

physical law is a central element of 3D computer graphics. It allows us to calculate how

light falls on three-dimensional objects and hence how they will look when illuminated from

various angles.

Suppose, for instance, that we are looking down on the Earth from above and we see

mountains. We know the height of themountainsF (G,~) as a function of position in the plane,
so the equation for the Earth’s surface is simply I = F (G,~), or equivalently I −F (G,~) = 0,

and the normal vector v to the surface is given by the gradient of I −F (G,~) thus:

v = ∇[I −F (G,~)] = ©­«
m/mG
m/m~
m/mI

ª®¬
[I −F (G,~)] = ©­«

−mF/mG
−mF/m~

1

ª®¬
.

Now suppose we have incident light represented by a vector a that points toward the source

of the light and has magnitude equal to the intensity. �e dot product of the vectors a and v is

a · v = |a| |v| cos\,

where \ is the angle between the vectors. Employing the cosine rule discussed above, the

intensity of illumination of the surface of the mountains is then

� = |a| cos\ =
a · v
|v| =

−0G (mF/mG) − 0~ (mF/m~) + 0I√
(mF/mG)2 + (mF/m~)2 + 1

.

Let us take the simple case where the light is shining horizontally with unit intensity, and the

direction it is coming from makes an angle q to the east-west axis, so that a = (cosq, sinq, 0).
�en our intensity of illumination simpli�es to

� = − cosq (mF/mG) + sinq (mF/m~)√
(mF/mG)2 + (mF/m~)2 + 1

.

If we can calculate the derivatives of the height F (G,~) and we know q we can calculate the

intensity at any point.

a) In the online resources you will �nd a �le called altitude.txt, which contains the

altitudeF (G,~) in meters above sea level (or depth below sea level) of the surface of the

Earth, measured on a grid of points (G,~). Write a program that reads this �le and stores

the data in an array. �en calculate the derivatives mF/mG and mF/m~ at each grid point.

Explain what method you used to calculate them andwhy. (Hint: Youwill probably have

to use more than one method to get every grid point, because awkward things happen

at the edges of the grid.) To calculate the derivatives you will need to know the value

of ℎ, the distance in meters between grid points, which is about 30 000m in this case.5

5It is actually not precisely constant because we are representing the spherical Earth on a �at map,

but ℎ = 30 000m will give reasonable results.
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b) Now, using your values for the derivatives, calculate the intensity for each grid point,

with q = 45◦, and make a density plot of the resulting values in which the brightness of

each dot depends on the corresponding intensity value. If you get it working right, the

plot should look like a relief map of the world—you should be able to see the continents

and mountain ranges in 3D. (Common problems include a map that is upside-down or

sideways, or a relief map that is “inside-out,” meaning the high regions look low and

vice versa. Work with the details of your program until you get a map that looks right

to you.)

Hint: Note that the intensity � in the formula above can be either positive or negative—

it ranges from +1 to −1. What does a negative intensity mean? It means that the area

in question is in shadow—it lies on the wrong side of the mountain to receive any light

at all. You could represent this by coloring these areas of the map completely black,

although in practice you will get a nicer-looking image (if arguably less true-to-life) by

simply using a continuous range of grays from +1 to −1.
c) �ere is another �le in the online resources called stm.txt, which contains a grid of val-

ues from scanning tunneling microscope measurements of the (111) surface of silicon.

A scanning tunneling microscope (STM) is a device that measures the shape of surfaces

at the atomic level by tracking a sharp tip over the surface and measuring quantum tun-

neling current as a function of position. �e end result is a grid of values that represent

the height of the surface as a function of position and the data in the �le stm.txt contain

just such a grid of values. Modify the program you just wrote to visualize the STM data

and hence create a 3D picture of what the silicon surface looks like. �e value of ℎ for

the derivatives in this case is around ℎ = 2.5 (in arbitrary units).
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