
Chapter 4

Accuracy and speed

I
n the preceding chapters we have seen the basic elements of programming in

Python: input and output, variables, functions, and arithmetic, loops and if

statements. With these we can perform a wide variety of calculations. We

have also seen how to visualize our results using various types of computer graphics.

�ere are many additional features of the Python language that we have not covered.

In later chapters of the book, for example, we will introduce specialized features for

doing linear algebra and performing Fourier transforms. But for now we have the

main components we need to start doing physics.

�ere is, however, one fundamental issue that we have not touched upon. Com-

puters have limitations. �ey cannot store values with an in�nite number of decimal

places. �ere is a limit to the largest and smallest numbers they can store. �ey can

perform calculations quickly, but not in�nitely quickly. In many cases these issues

need not bother us—the computer is fast enough and accurate enough for many of

the calculations we do in physics. However, there are also situations in which the

computer’s limitations will a�ect us signi�cantly, so it is crucial to understand those

limitations, as well as methods for mitigating them when necessary.

4.1 Variables and ranges

We have seen examples of the use of variables in computer programs, including

integer, �oating-point, and complex variables, as well as lists and arrays. Python

variables can hold numbers that span a wide range of values, including very large

numbers, but they cannot hold numbers that are arbitrarily large. For instance, the

largest value you can give a �oating-point variable is about 10308. (�ere is also a cor-

responding largest negative value of about −10308.) �is is enough for most physics

calculations, but we will see occasional examples where we run into problems. Com-

plex numbers are similar: both their real and imaginary parts can go up to about

120

4.1 | Variables and ranges

±10308 but not larger.1 Large numbers can be speci�ed in scienti�c notation, using

an “e” to denote the exponent. For instance, 2e9means 2×109 and 1.602e-19means

1.602 × 10−19. Note that numbers speci�ed in scienti�c notation are always �oats.

Even if the number is, mathematically speaking, an integer (like 2e9), the computer

will still treat it as a �oat.

If the value of a variable exceeds the largest �oating-point number that can be

stored on the computer we say the variable has over�owed. For instance, if a �oating-

point variable x holds a number close to themaximum allowed value of 10308 and then

we execute a statement like “y = 10*x” it is likely that the result will be larger than

the maximum and the variable y will over�ow (but not the variable x, whose value

is unchanged).

If this happened in the course of a calculation, you might imagine that the pro-

gram would stop, perhaps giving an error message, but in Python this is not what

happens. Instead the computer will set the variable to the special value “inf,” which

means in�nity. If you print such a variable with a print statement, the computer will

actually print the word “inf” on the screen. In e�ect, every number over 10308 is

in�nity as far as the computer is concerned. Unfortunately, this is usually not what

you want, and when it happens your program will probably give incorrect answers,

so you need to watch out for this problem. It’s rare, but it will probably happen to

you at some point.

�ere is also a smallest number (meaning smallest magnitude) that can be repre-

sented by a �oating-point variable. In Python this number is 10−308 roughly.2 If you
go any smaller than this the calculation under�ows and the computer will just set the

number to zero. Again, this usually messes things up and gives wrong answers, so

you need to be on the lookout.

What about integers? Here Python does something clever. �ere is no largest

integer value in Python: it can represent integers to arbitrary precision. �is means

that no ma�er how many digits an integer has, Python stores all of them, provided

you have enough memory on your computer.3 Be aware, however, that calculations

with integers, even simple arithmetic operations, take longer the more digits there

are, and can take a very long time if there are very many digits.

1�e actual largest number is 1.79769 × 10308, which is the decimal representation of the binary

number 21024, the largest number that can be represented in the IEEE 754 double-precision �oating-point

format used by the Python language.

2Actually 2.22507 × 10−308, which is 2−1022.
3�ese observations apply to most integers in Python, including normal integer variables and integer

elements of lists. An important exception, however, is integer arrays. For the sake of speed, the elements

of an integer array are limited to numbers that can be stored in 32 bits (on Windows) or 64 bits (Mac and

Linux), which implies an allowed range of ±2.1× 109 or ±9.2× 1018 respectively. �ese are certainly large

ranges, but they can be exceeded on occasion, in which case the computer will complain.

121

Chapter 4 | Accuracy and speed

Exercise 4.1: Write a program to calculate and print the factorial of a number entered by the

user. If you wish you can base your program on the user-de�ned function for factorials given

in Section 2.6, but write your program so that it calculates the factorial using integer variables,

not �oating-point ones. Use your program to calculate the factorial of 200.

Now modify your program to use �oating-point variables instead and again calculate the

factorial of 200. What do you �nd? Explain.

4.2 Numerical error

Floating-point numbers (unlike integers) are represented on the computer to only

a certain precision. �e standard level of precision, by international agreement, is

16 signi�cant digits. �is means that numbers like c or
√
2, which have an in�nite

number of digits a�er the decimal point, can only be represented approximately.

�us, for instance:

True value of c : 3.1415926535897932384626 . . .

Value in Python: 3.141592653589793

Di�erence: 0.0000000000000002384626 . . .

�e di�erence between the true value of a number and its value on the computer is

called the rounding error or round-o� error on the number. It is the amount by which

the computer’s representation of the number is wrong.

A number does not have to be irrational like c to su�er from rounding error—any

number whose true value has more than 16 signi�cant �gures will get rounded o�.

What’s more, when one performs arithmetic with �oating-point numbers, the an-

swers are only guaranteed accurate to about 16 �gures, even if the numbers that went

into the calculation were expressed exactly. If you add 1.1 and 2.2 in Python, then

obviously the answer should be 3.3, but the computer might give 3.299999999999999

instead.

Usually this is accurate enough, but there are times when it can cause problems.

One important consequence of rounding error is that you should never use an if state-

ment to test the equality of two �oats. For instance, you should never have a statement

like

if x==3.3:

print(x)

because it may not do what you want. If the value of x is supposed to be 3.3 but it

is actually 3.299999999999999, then as far as the computer is concerned it is not 3.3

and the if statement will fail. In fact, it rarely occurs in physics calculations that you

need to test the equality of �oats, but if you do, then you should do something like

this instead:

122

4.2 | Numerical error

epsilon = 1e-12

if abs(x-3.3)<epsilon:

print(x)

As we saw in Section 2.2.7, the built-in function abs calculates the absolute value of

its argument, so abs(x-3.3) is the absolute di�erence |G − 3.3|. �e code above tests

whether this di�erence is less than the small number epsilon. In other words, the

if statement will succeed whenever x is very close to 3.3, but the two do not have

to be exactly equal. If x is 3.299999999999999 things will still work as expected. �e

value of epsilon has to be chosen appropriately for the situation—there is nothing

special or universal about the value of 10−12 used above and a di�erent value may be

appropriate in another calculation.

�e rounding error on a number, which we will denote by X , is de�ned to be

the di�erence between the true value and the value calculated by the computer. Or,

equivalently, it is the amount you would have to add to the value calculated by the

computer to get the true value. For instance, if we do the following:

from math import sqrt

x = sqrt(2)

then we will not end up with exactly G =
√
2 (since

√
2 has an in�nite number of

decimal digits) but rather with G + X =
√
2, where X is the rounding error, or equiva-

lently G =
√
2 − X . �is is the same de�nition of error that one uses when discussing

measurement error in experiments. When we say, for instance, that the age of the

universe is 13.79±0.02 billion years, we mean that the measured value is 13.79 billion

years, but the true value is possibly greater or less than this by an amount of order

0.02 billion years.

�e error X in the example above could be either positive or negative, depend-

ing on how the variable G gets rounded o�. In general if G is accurate to a certain

number of signi�cant digits—say 16—then the rounding error will have a typical size

of G/1016. It is usually a good assumption to consider the error to be a (uniformly

distributed) random number with standard deviation f = nG , where n ≃ 10−16 in

this case. �e quantity n is called the machine precision or machine epsilon of the

computer.4 When quoting the error on a calculation we typically give the value of

the standard deviation f . (We can’t give the value of the error X itself, since we don’t

know it—if we did, then we could calculate G + X and recover the exact value for the

quantity of interest, so there would in e�ect be no error on the calculation at all.)

Rounding error is important, as described above, if we are testing the equality of

two �oating-point numbers, but in other respects it may appear to be only a minor

annoyance. An error of one part in 1016 does not seem very bad. �ere are how-

4�e technical de�nition of the machine epsilon is the di�erence between 1 and the smallest number

greater than 1 that the computer can faithfully represent. �us if we have 16 digits of precision then

n = 10−16.

123

Chapter 4 | Accuracy and speed

ever certain situations in which problems can arise. One is when you are adding or

subtracting numbers of very di�erent sizes. If you are adding a series of numbers

together and some are much smaller than others then the smaller ones can get lost.

A simple way to mitigate this problem is to add the numbers together in order from

smallest magnitude to largest (regardless of their signs). Doing this requires extra

work to sort the numbers into the correct order, so it is only worthwhile if numerical

precision is a signi�cant issue for the particular calculation you are doing.

However, the most severe problems arise when the numbers are of closely similar

size, and speci�cally when you are subtracting numbers. Suppose, for instance, that

we have the following two numbers:

G = 1000000000000000

~ = 1000000000000001.2345678901234

and suppose we want to calculate the di�erence ~ − G . Unfortunately, the computer

only represents these two numbers to 16 signi�cant �gures, which means that as far

as the computer is concerned,

G = 100000000000000

~ = 100000000000001.2

�e �rst number is represented exactly in this case, but the second has been trun-

cated. Now when we take the di�erence we get ~ − G = 1.2, when the true result

would be 1.2345678901234. In other words, instead of 16-�gure accuracy, we now

only have two �gures and the fractional error is several percent of the true value. In

situations like this our accuracy becomes very poor indeed.

To put this in more general terms, if the di�erence between two numbers is small,

so that it is comparable with the rounding error on the numbers, then the fractional

error can become very large. In computer science this phenomenon is called catas-

trophic cancellation.

Example 4.1: Catastrophic cancellation

To see an example of this e�ect in practice, consider the two numbers

G = 1, ~ = 1 + 10−14
√
2. (4.1)

Trivially we see that

1014 (~ − G) =
√
2. (4.2)

Let us perform the calculation in Python and see what we get. Here is the program:

from math import sqrt

x = 1.0

y = 1.0 + (1e-14)*sqrt(2)

print((1e14)*(y-x))

print(sqrt(2))

124

4.2 | Numerical error

�e penultimate line calculates the value in Eq. (4.2) while the last line prints the true

value of
√
2 (at least to the accuracy of the computer). Here is what we get when we

run the program:

1.42108547152

1.41421356237

Aswe can see, the calculation of 1014 (~−G) is accurate to only the �rst decimal place.

A�er that the rest is garbage.

�is issue, of large errors in calculations that involve the subtraction of numbers

that are nearly equal, arises with some frequency in physics calculations. We will

see various examples throughout the book. It is perhaps the most common cause

of signi�cant numerical error in computations and you need to be aware of it at all

times when writing programs.

Exercise 4.2: �adratic equations

Consider a quadratic equation 0G2 + 1G + 2 = 0 that has real solutions.

a) Write a program that takes as input the three numbers, 0, 1, and 2 , and prints out the

two solutions using the standard formula

G =
−1 ±

√
12 − 402
20

.

Use your program to compute the solutions of 0.001G2 + 1000G + 0.001 = 0.

b) �ere is another way to write the solutions to a quadratic equation. Multiplying top

and bo�om of the solution above by −1 ∓
√
12 − 402 , show that the solutions can also

be wri�en as

G =
22

−1 ∓
√
12 − 402

.

Add further lines to your program to print these values in addition to the earlier ones

and again use the program to solve 0.001G2 +1000G +0.001 = 0. What do you see? How

do you explain it?

c) Using what you have learned, write a new program that calculates both roots of a

quadratic equation accurately in all cases.

�is is a good example of how computers do not always work the way you expect them to. If

you simply apply the standard formula for the quadratic equation, the computer will some-

times get the wrong answer. In practice the method you have worked out here is the correct

way to solve a quadratic equation on a computer, even though it is more complicated than the

standard formula. If you were writing a program that involved solving many quadratic equa-

tions, this method might be a good candidate for a user-de�ned function. You could put the

details of the solution method inside a function to save yourself the trouble of going through

it step by step every time you have a new equation to solve.

125

Chapter 4 | Accuracy and speed

Exercise 4.3: Calculating derivatives

Suppose we have a function 5 (G) and we want to calculate its derivative at a point G . We can

do that with pencil and paper if we know the mathematical form of the function, or we can

do it on the computer by making use of the de�nition of the derivative:

d5

dG
= lim
ℎ→0

5 (G + ℎ) − 5 (G)
ℎ

.

On the computerwe cannot actually take the limit asℎ goes to zero, but we can get a reasonable

approximation just by making ℎ small.

a) Write a program that de�nes a function f(x) returning the value G (G − 1), then cal-

culates the derivative of the function at the point G = 1 using the formula above with

ℎ = 10−2. Calculate the true value of the same derivative analytically and compare with

the answer your program gives. �e two will not agree perfectly. Why not?

b) Repeat the calculation for ℎ = 10−4, 10−6, 10−8, 10−10, 10−12, and 10−14. You should

see that the accuracy of the calculation initially gets be�er as ℎ gets smaller, but then

gets worse again. Why is this?

We will look at numerical derivatives in more detail in Section 5.10, where we will study

techniques for dealing with these issues and maximizing the accuracy of our calculations.

Exercise 4.4: Calculating variances

�e mean and variance of a set of # numbers G1 . . . G# are given by the standard formulas

G =
1

#

#∑
8=1

G8 , varG =
1

#

#∑
8=1

(G8 − G)2 . (4.3)

�e la�er expression is o�en rewri�en as

varG =
1

#

#∑
8=1

(
G28 − 2G8G + G

2)
= G2 − G2, (4.4)

where G2 is the mean-square value of G .

a) By any means you like, work out on paper the variance of the �ve numbers G − 2, G − 1,
G , G + 1, and G + 2. You should �nd that the result is just a constant, independent of G .

b) Se�ing G to 1 billion, write a program to calculate the variance of these �ve numbers in

two di�erent ways, �rst using Eq. (4.3) and then using Eq. (4.4). What do you observe

and how do you explain it?

c) In practice, if you were going to write a program to calculate the variance, which for-

mula should you use?

4.3 Program speed

As we have seen, computers are not in�nitely accurate. Neither are they in�nitely

fast. �ey work at amazing speeds, but many physics calculations require the com-

puter to perform millions or billions of individual computations to get a desired �nal

126

4.3 | Program speed

result and collectively those computations can take a signi�cant amount of time.

Some of the example calculations described in Chapter 1 took months to complete,

even though they were run on some of the most powerful computers in the world.

It will be useful to us to have a feel for how fast computers really are. As a

general guide, performing a million mathematical operations is no big problem for

a modern computer—it usually takes less than a second. Adding a million numbers

together, for instance, or �nding amillion square roots, can be done in very li�le time.

A billion operations would take longer, typically a few minutes—less convenient, but

still acceptable if you are patient. Performing a trillion operations, however, would

take a few days. For very important or valuable results we may be willing to wait

this long, but most people doing day-to-day computational physics would not. So a

fair rule of thumb is that the calculations we can perform on a computer are ones

that can be done in a few billion operations or less.

�is is only a rough guide. Not all operations are equal and it makes a di�erence

whether we are talking about additions or multiplications of single numbers (which

are quick and easy) versus, say, calculating Bessel functions or multiplying matrices

(which are not). Computers are also not all equal, and it makes a di�erence whether

you are doing a calculation on a ten-year-old laptop or a supercomputer with a thou-

sand CPUs. Moreover, computers are ge�ing faster all the time and calculations may

be within reach tomorrow that would be impossible today. Overall, however, limit-

ing yourself to a few billion operations is a good general rule when thinking about

what is possible in computational physics.

Example 4.2: The Madelung constant

In condensed ma�er physics theMadelung constant gives the total electric poten-

tial felt by an atom in a solid. It depends on the charges on the other atoms nearby and

their locations. Consider for instance solid sodium chloride—table salt. �e sodium

chloride crystal has atoms arranged on a cubic la�ice, but with alternating sodium

and chlorine atoms, the sodium ones having a single positive charge +4 and the chlo-
rine ones a single negative charge −4 , where 4 is the charge on the electron. If we

label each position in the la�ice by three integer coordinates 8, 9, : , then the sodium

atoms fall at positions where 8 + 9 + : is even and the chlorine atoms at positions

where 8 + 9 + : is odd.

Consider a sodium atom at the origin 8 = 9 = : = 0. If the spacing of atoms in

the la�ice is 0, then the distance from the origin to the atom at position (8, 9, :) is√
(80)2 + (90)2 + (:0)2 = 0

√
82 + 92 + :2, (4.5)

and the potential at the origin created by such an atom is

+ (8, 9, :) = (−1)8+9+: 4/4cn0
0
√
82 + 92 + :2

, (4.6)

127

Chapter 4 | Accuracy and speed

with n0 being the permi�ivity of the vacuum and the factor of (−1)8+9+: giving us

the appropriate positive or negative sign depending on whether 8 + 9 + : is even or

odd. �e total potential felt by the sodium atom is then the sum of this quantity over

all other atoms.

Let us assume a cubic sample of salt around the sodium at the origin, with !

atoms in all directions. �en the total electric potential felt by the atom is

+total =
∑

8, 9,:=−! to !
not 8=9=:=0

+ (8, 9, :) = 4

4cn00
", (4.7)

where the Madelung constant" is the dimensionless quantity

" =
∑

8, 9,:=−! to !
not 8=9=:=0

(−1)8+9+:√
82 + 92 + :2

. (4.8)

Technically the Madelung constant is actually the value when ! → ∞, but one can
get an approximation just by making ! large, although the quality of the approxi-

mation depends on how large a value we use. Of course, larger ! also means the

calculation will take longer to complete, because there are more terms in the sum, so

there is a balance to be struck between accuracy and computation time. Let us see

how good an answer we can get in a reasonable amount of time.

Here is a program to calculate the Madelung constant from the formula above:

from math import sqrt

L = 10

M = 0.0

for i in range(-L,L+1):

for j in range(-L,L+1):

for k in range(-L,L+1):

if i==0 and j==0 and k==0:

continue

if (i+j+k)%2==0:

M += 1/sqrt(i*i+j*j+k*k)

else:

M -= 1/sqrt(i*i+j*j+k*k)

print("M =",M)

Note a few features of this program:

1. We have three loops, nested inside one another, which run through every pos-

sible value of 8 , 9 , and : between −! and !.

2. If 8 = 9 = : = 0 we skip the loop using the continue statement, since this term

is excluded from the sum. Otherwise, we check whether 8 + 9 + : is even or

128

4.3 | Program speed

odd (using the modulo operator) and add the appropriate term to the running

total of" .

3. �e total number of terms in the sum is (2!+1)3−1 and each term involves �ve

main operations—squaring the three coordinates, calculating the square root,

and then taking the reciprocal of the result. (Also there are three additions,

but these are generally quite quick and don’t add much to the running time.)

So the total number of operations is 5× [(2! + 1)3 − 1] ≃ 40!3. With ! = 10 as

above, for example, we have to do about 40 000 operations.

If we run the program we get this result:

M = -1.6925789282594415

�is calculation takes 0.02 seconds on the author’s laptop. Now let us try increasing

the value of !. �is will make our approximation more accurate and give us a be�er

estimate of the Madelung constant, but at the expense of taking more time. If we

increase ! to 100, for instance, the answer changes quite signi�cantly:

M = -1.7418198158396654

�is calculation requires 40!3 = 40 million operations and takes 1.7 seconds, which

is signi�cantly longer than before, but still a short time in absolute terms. Normally

we would be �ne waiting this long to get a be�er answer.

But now let us increase ! to 1000, meaning the number of operations is 40 billion.

When we do this the calculation takes 29 minutes to �nish, but the result changes

only slightly:

M = -1.7469875326230075

�ere are three morals to this story. First, a few billion operations is indeed

doable—if a calculation is important to us we can probably wait half an hour for an

answer. But this is approaching the limit of what is reasonable. If we increased !

by another factor of ten to ! = 10 000, the calculation would take a thousand times

longer or about three weeks, which is not practical for most people.

Second, there is a balance to be struck between time spent and accuracy. In this

case it was worthwhile to do the calculation with ! = 100. It didn’t take long and

the result was noticeably improved from the result for ! = 10. But it is arguable

whether the change to ! = 1000 was worth the e�ort—the calculation took much

longer to complete but the answer was li�le changed. If we needed a particularly

accurate answer, we might be willing to take the extra time to get it, but there are

diminishing returns as we invest larger and larger amounts of time. We will see

plenty of further examples in this book of calculations like this where we need to

�nd an appropriate balance between speed and accuracy.

�ird, it is pre�y easy to write a program that will basically take forever to �nish,

so it is worth taking a moment, before you spend a whole lot of time writing and

129

Chapter 4 | Accuracy and speed

running a program, to do a quick estimate of how long you expect your calculation to

take. If it is going to take a year then it is not worth it: you need to �nd a faster way to

do the calculation, or se�le for a quicker but less accurate answer. �e simplest way

to estimate running time is to make a rough count of the number of mathematical

operations the calculation will involve. If the number is more than a few billion, you

may have a problem.

Example 4.3: Matrix multiplication

Suppose we have two # ×# matrices represented as arrays A and B on the computer

and we want to multiply them together to calculate their matrix product. Here is a

fragment of code to do the multiplication and place the result in a new array called C:

from numpy import zeros

N = 1000

C = zeros([N,N],float)

for i in range(N):

for j in range(N):

for k in range(N):

C[i,j] += A[i,k]*B[k,j]

We could use this code, for example, as the basis for a user-de�ned function to mul-

tiply matrices together. (As we saw in Section 2.4.4, Python already provides the

function “dot” for calculating matrix products, but it is a useful exercise to write our

own code for the calculation. Among other things, it helps us understand how many

operations are involved in calculating such a product.)

How large a pair of matrices could we multiply together in this way if the cal-

culation is to take a reasonable amount of time? �e program has three nested for

loops in it. �e innermost loop, which runs through values of the variable k, goes

around # times, doing one multiplication operation each time plus one addition. Ad-

ditions take a negligible amount of time compared to multiplications though, so it is

safe to ignore them and just say we do a total of # operations each time around the

innermost loop. �at whole loop is itself executed # times, once for each value of j

in the middle loop, giving # 2 operations. And those # 2 operations are themselves

performed # times as we go through the values of i in the outermost loop. �e end

result is that the matrix multiplication takes # 3 operations overall. �us if # = 1000,

as above, the whole calculation would involve a billion operations, which is feasible

in a minute or two of running time. Larger values of# , however, will rapidly become

intractable. For # = 10 000, for instance, we would have a trillion operations, which

could take hours or days to complete. �us the largest matrices we can multiply in

130

4.3 | Program speed

reasonable time are about 1000 × 1000 in size or a li�le larger.5

Exercise 4.5: Calculating integrals

Suppose we want to calculate the value of the integral

� =

∫ 1

−1

√
1 − G2 dG .

�e integrand looks like a semicircle of radius 1:

0−1 1

and hence the value of the integral—the area under the curve—must be 1
2c = 1.57079632679 . . .

Alternatively, we can evaluate the integral on the computer by dividing the domain of

integration into a large number # of slices of width ℎ = 2/# each and then using the Riemann

de�nition of the integral:

� = lim
#→∞

#∑
:=1

ℎ~: ,

where

~: =

√
1 − G2

:
and G: = −1 + ℎ:.

We cannot in practice take the limit # → ∞, but we can make a reasonable approximation

just by making # large.

5Interestingly, the direct matrix multiplication represented by the code given here is not the fastest

way to multiply two matrices on a computer. Strassen’s algorithm is an iterative method for multiplying

matrices that uses some clever shortcuts to reduce the number of operations needed so that the total

number is proportional to about# 2.8 rather than# 3. For very largematrices this can result in signi�cantly

faster computations. Unfortunately, Strassen’s algorithm su�ers from large numerical errors because of

problems with subtraction of nearly equal numbers (see Section 4.2) and for this reason is rarely used.

On paper, an even faster method for matrix multiplication is the Coppersmith–Winograd algorithm, which

requires a number of operations proportional to only about# 2.4, but in practice this method is so complex

to program as to be essentially worthless—the extra complexity means that in real applications the method

is always slower than direct multiplication.

131

Chapter 4 | Accuracy and speed

a) Write a program to evaluate the integral above with # = 100 and compare the re-

sult with the exact value. �e two will not agree very well because # = 100 is not a

su�ciently large number of slices.

b) Increase # to get a more accurate value for the integral. If we require that the program

runs in about one second or less, how accurate a value can you get?

Evaluating integrals is a common task in computational physics calculations. We will study

techniques for doing integrals in detail in Chapter 5. As we will see, there are substantially

quicker and more accurate methods than the simple one we have used here.

Chapter summary

• �ere is a limit to the largest and smallest values that can be represented by

most Python variables. Floating-point variables have amaximum value of around

10308. If you exceed this limit the calculation will over�ow and the value of the

variable becomes inf, meaning in�nity.

• Integer variables normally have no largest value. �ey can become as large as

you like, although calculations with very large integers are slow.

• Integer values stored speci�cally in arrays do have a largest value, which is either

232 or 264 depending on your operating system.

• Floating-point arithmetic is limited in its precision. In Python, �oating-point

values are normally stored to about 16 signi�cant �gures. Any numbers with

more than 16 �gures are rounded o�, and this leads to rounding error.

• �e size of the rounding error on a number G is given by nG , where n is the

machine precision ormachine epsilon, which has a value of about n ≃ 10−16

in Python.

• In many cases rounding errors are small enough that you can ignore them, but

there are three particular situations where theymay not be. �e �rst occurs when

you are testing two �oats to see if they are equal. �e second is when you are

adding or subtracting numbers of very di�erent sizes, in which case smaller num-

bers can get washed out by larger ones. �e third and most important situation

is when you are subtracting two numbers with closely equal values, which can

lead to the phenomenon of catastrophic cancellation.

• Computers are fast, but not in�nitely fast. On today’s computers a Python pro-

gram can perform a few billion mathematical operations in a few minutes. �is

sets a rough limit for what can be done in reasonable time. �e calculations that

can be done on a computer are ones that involve a few billion operations or

less.

132

