
Chapter 3

Graphics and visualization

S
o far we have created programs that print out words and numbers, but of-

ten we will also want our programs to produce graphics, meaning pictures of

some sort. In this chapter we will see how to produce the two main types of

computer graphics used in physics. First, we look at that most common of scienti�c

visualizations, the graph: a depiction of numerical data displayed on calibrated axes.

And second, we will see how to make scienti�c diagrams and animations: depictions

of the arrangement or motion of the parts of a physical system, which can be useful

in understanding the structure or behavior of the system.

3.1 Graphs

A number of Python packages include features for making graphs. In this book we

will use the powerful and popular package matplotlib,1 and particularly the sub-

module within matplotlib called pyplot, which creates standard two-dimensional

plots. �is module can make plots of a variety of di�erent types. We will concentrate

on three that are especially useful in physics: ordinary line graphs, sca�er plots, and

density (or heat) plots.2

�ere are a large number of functions in the pyplot module and, rather than

import them individually when we need them, this is a situation where it makes

sense to import them all at once with a statement of the form

import matplotlib.pyplot as plt

(See Section 2.2.5 for a discussion of the import statement.) �is gives us access to

any function in the pyplot module. For instance, to use the basic plot function for

1Note that the name of the package is matplotlib—“mat” not “math”. It is a common programming

error to mistype the name of the package.

2One can also make contour plots, polar plots, pie charts, histograms, and more, and all of these �nd

occasional use in physics. If you �nd yourself needing one of these more specialized graph types, you can

�nd instructions for making them in the online documentation at matplotlib.org.
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3.1 | Graphs

making a graph we would say plt.plot. Let us see how this function is used.

To create an ordinary graph we use the function plot. In the simplest case, this

function takes one argument, which is a list or array of the values we want to plot.

�e function creates a graph of the given values in the memory of the computer,

but it doesn’t actually display it on the screen of the computer—it is stored in the

memory but not yet visible to the computer user. To display the graph we use a

second function from pyplot, the show function, which takes the graph in memory

and draws it on the screen. Here is a complete program for plo�ing a small graph:

import matplotlib.pyplot as plt

y = [1.0, 2.4, 1.7, 0.3, 0.6, 1.8]

plt.plot(y)

plt.show()

A�er importing pyplot as plt, we create the list of values to be plo�ed, create a

graph of those values with plt.plot(y), then display that graph on the screen with

plt.show(). Note that plt.show() has parentheses a�er it—it is a function that has

no argument, but the parentheses still need to be there.

If we run the program above, it produces a new window on the screen with a

graph in it like this:
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�e computer has plo�ed the values in the list y at unit intervals along the G-axis

(starting from zero in the standard Python style) and it has joined them up with

straight lines.

While it’s be�er than nothing, this is not a very useful kind of graph for physics

purposes. Normally we want to specify both the G- and ~-coordinates of the points

in the graph. We can do this using a plot statement with two arguments, thus:

import matplotlib.pyplot as plt

x = [0.0, 1.5, 2.0, 4.0, 7.0, 10.0]
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Chapter 3 | Graphics and visualization

y = [1.0, 2.4, 1.7, 0.3, 0.6, 1.8]

plt.plot(x,y)

plt.show()

which produces a graph like this:
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�e �rst of the two arguments is a list specifying the G-coordinates of each of the

points; the second speci�es the ~-coordinates. �e computer plots the points at the

given positions and then again joins them with straight lines. �e two lists must

have the same number of entries. If they do not, you will get an error message and

no graph.

Why do we need two functions, plot and show, to make a graph? In the examples

above it seems like it would be �ne to combine the two into a single function that both

creates a graph and shows it on the screen. However, there are more complicated

situations where it is useful to have separate functions. In particular, in cases where

we want to plot two or more di�erent curves on the same graph, we can do so by

using the plot function two or more times, once for each curve. �en we use the

show function once to make a single graph with all the curves on it. We will see

examples of this shortly.

Once you have displayed a graph on the screen you can do other things with it.

�e graph will appear in a window like the one shown in Fig. 3.1, with a number

of bu�ons along the bo�om. Among other things, these bu�ons allow you to zoom

in on portions of the graph, move your view around the graph, or save the graph

in various �le formats, allowing you to view it again later, print it, or insert it as a

�gure in a document.

Now let us apply the plot and show functions to the creation of a slightly more

interesting graph, a graph of the function sinG from G = 0 to G = 10. To do this we

�rst create an array of the G values, then we take the sines of those values to get the

~-coordinates of the points. Here is the program:
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3.1 | Graphs

Figure 3.1: A graph window as it appears on the computer screen.

import matplotlib.pyplot as plt

from numpy import linspace,sin

x = linspace(0,10,100)

y = sin(x)

plt.plot(x,y)

plt.show()

Notice how we used the linspace function from numpy (see Section 2.5) to generate

the array of G values, and the sin function from numpy, which is a special version

that works with arrays—it takes the sine of every element in the array. (We could

alternatively have used the ordinary sin function from the math package and taken

the sines of each element individually using a for loop. As is o�en the case, there is

more than one way to do the job.)

If we run this program we get the classic sine curve graph shown in Fig. 3.2.

Note that we have not really drawn a curve at all here: our plot consists of a �nite

set of points—a hundred of them in this case—and the computer draws straight lines

joining these points. So the end result is not actually curved; it is a set of straight-line

segments. To us, however, it looks like a convincing sine wave because our eyes are

not sharp enough to see the slight kinks where the segments meet. �is is a useful

89



Chapter 3 | Graphics and visualization

0 2 4 6 8 10
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.2: Graph of the sine function. A simple graph of the sine function produced by

the program given in the text.

and widely used trick for making curves in computer graphics: choose a set of points

spaced closely enough together that when joined with straight lines the result looks

like a curve even though it really isn’t.

As another example of the use of the plot function, suppose we have some ex-

perimental data in a computer �le values.txt, stored in two columns, like this:

0 12121.71

1 12136.44

2 12226.73

3 12221.93

4 12194.13

5 12283.85

6 12331.60

7 12309.25

...

We can make a graph of these data as follows:

from numpy import loadtxt

import matplotlib.pyplot as plt

data = loadtxt("values.txt",float)

x = data[:,0]

y = data[:,1]

plt.plot(x,y)

plt.show()
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Figure 3.3: Graph of data from a �le. �is graph was produced by reading two columns of

data from a �le using the program given in the text.

Here we have used the loadtxt function from numpy (see Section 2.4.3) to read the

values in the �le and put them in an array and then we have used Python’s array

slicing facilities (Section 2.4.5) to extract the �rst and second columns of the array

and put them in separate arrays x and y for plo�ing. �e end result is a plot as shown

in Fig. 3.3.

In fact, it is not necessary in this case to use the separate arrays x and y. We could

shorten the program by saying instead

data = loadtxt("values.txt",float)

plt.plot(data[:,0],data[:,1])

plt.show()

which achieves the same result. Arguably, however, this is more di�cult to read.

As we emphasized in Section 2.7, readability is a de�ning quality of well-wri�en

programs, so you might in this case want to use the extra arrays x and y even though

they are not strictly necessary.

An important point to notice about all of these examples is that the program

stops when it displays the graph. To be precise it stops when it gets to the show

function. Once you use show to display a graph, the program will go no further until

you close the window containing the graph. Only once you close the window will

the computer proceed with the next line of your program. �e function show is said

to be a blocking function—it blocks the progress of the program until the function is

done with its job. We have seen one other example of a blocking function previously,

the function input, which collects input from the user at the keyboard. It too halts

the running of the program until its job is done. (�e blocking action of the show

91
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function has li�le impact in the programs above, since the show statement is the

last line of the program in each case. But in more complex examples there might be

further lines a�er the show statement and their execution would be delayed until the

graph window was closed.)

A useful trick that we will employ frequently in this book is to build the lists of

G- and ~-coordinates for a graph step by step as we go through a calculation. It will

happen o�en that we do not know all of the G or ~ values for a graph ahead of time.

We work them out one by one as part of some calculation we are doing. In this case,

a good way to proceed is to start with two empty lists for the G- and ~-coordinates

and add points to them one by one, as we calculate the values. Going back to the

sine wave example, for instance, here is an alternative way to make a graph of sinG

that calculates the individual values one by one and adds them to a growing list:

from math import sin

from numpy import linspace

import matplotlib.pyplot as plt

xpoints = []

ypoints = []

for x in linspace(0,10,100):

xpoints.append(x)

ypoints.append(sin(x))

plt.plot(xpoints,ypoints)

plt.show()

If you run it, you will �nd that this program produces a picture of a sine wave iden-

tical to the one in Fig. 3.2. Notice how we created the two empty lists and then

appended values to the end of each of them, one by one, using a for loop. We will

use this technique o�en. (See Section 2.4.1 for a discussion of the append function.)

�e graphs we have seen so far are very simple, but there are many extra features

we can add to them, some of which are illustrated in Fig. 3.4. For instance, in the

previous graphs the computer chose the range of G and ~ values for the two axes.

Normally the computer makes good choices, but occasionally youmight like to make

di�erent ones. In our picture of a sine wave, Fig. 3.2, for instance, you might decide

that the graph would be clearer if there were a li�le more space at the top and bo�om

of the curve. You can override the computer’s choice of G- and ~-axis limits with the

functions xlim and ylim. �ese functions take two arguments each, for the lower

and upper limits of the range of the respective axes. �us, for instance, we might

modify our sine wave program as follows:

import matplotlib.pyplot as plt

from numpy import linspace,sin
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x = linspace(0,10,100)

y = sin(x)

plt.plot(x,y)

plt.ylim(-1.2,1.2)

plt.show()

�e resulting graph is shown in Fig. 3.4a and, as we can see, it now has a li�le extra

space above and below the curve because the ~-axis has been modi�ed to run from

−1.2 to +1.2. Note that the ylim statement has to come a�er the plot statement but

before the show statement—the plot statement has to create the graph �rst before

you can modify its axes.

It is good practice to label the axes of your graphs, so that you and anyone else

knowswhat they represent. You can add labels to theG- and~-axeswith the functions

xlabel and ylabel, which take a string argument—a string of le�ers or numbers in

quotation marks. �us we could modify our program as follows:

plt.plot(x,y)

plt.ylim(-1.2,1.2)

plt.xlabel("x axis")

plt.ylabel("y = sin x")

plt.show()

which produces the graph shown in Fig. 3.4b.

You can also vary the style in which the computer draws the curve on the graph.

To do this a third argument is added to the plot function, which takes the form of a

(slightly cryptic) string of characters, like this:

plt.plot(x,y,"ko-")

�e �rst le�er of the string tells the computer with what color to draw the curve.

Allowed le�ers are r, g, b, c, m, y, k, and w, for red, green, blue, cyan, magenta,

yellow, black, and white. �e second le�er speci�es a symbol or marker to be placed

at each data point along the curve. Possible symbols include s, o, x, *, and . for

squares, circles, crosses, stars, and dots, respectively. �e set of allowed symbols is

quite large—see the online documentation at matplotlib.org for a full list. �e third

part of the string speci�es the style of the line. Allowed styles include “-” for a solid

line, “--” for a dashed line, and “:” for a do�ed line. Any part of the string can be

omi�ed. If the color is omi�ed the plot will use the default color, which is blue. If the

symbol speci�er is omi�ed, there will be no symbols at all. If the line style is omi�ed

there will be no line. And if both symbol and line style are omi�ed then a solid line

is used with no symbols.

�us in the example above, the string "ko-" produces a graph in black with cir-

cular data points connected by solid lines. �e result is shown in Fig. 3.4c. Con-

versely, "rs--" would produce a graph in red with squares connected by dashed

93



Chapter 3 | Graphics and visualization

0 2 4 6 8 10
i

1.0

0.5

0.0

0.5

1.0

i

(a)

0 2 4 6 8 10
x axis

1.0

0.5

0.0

0.5

1.0

y 
= 

sin
 x

(b)

0 2 4 6 8 10
x axis

1.0

0.5

0.0

0.5

1.0

y 
= 

sin
 x

(c)

0 2 4 6 8 10
x axis

1.0

0.5

0.0

0.5

1.0

y 
= 

sin
 x

  o
r  

y 
= 

co
s x

(d)

Figure 3.4: Graph styles. Several di�erent versions of the same sine wave plot. (a) A basic graph, but with a li�le extra

space added above and below the curve to make it clearer. (b) A graph with labeled axes. (c) A graph with the data points

marked by circular dots. (d) Sine and cosine curves on the same graph.

lines, "g*" would produce green stars with no lines, and "m" on its own would pro-

duce a solid magenta line with no symbols.

Finally, we will o�en need to plot more than one curve or set of points on the

same graph. �is can be achieved by using the plot function repeatedly. For instance,

here is a complete program that plots both the sine function and the cosine function

on the same graph, one as a solid curve, the other as a dashed curve:

import matplotlib.pyplot as plt

from numpy import linspace,sin,cos
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x = linspace(0,10,100)

y1 = sin(x)

y2 = cos(x)

plt.plot(x,y1,"k-")

plt.plot(x,y2,"k--")

plt.ylim(-1.2,1.2)

plt.xlabel("x axis")

plt.ylabel("y = sin x or y = cos x")

plt.show()

�e result is shown in Fig. 3.4d.

�is last example emphasizes the bene�t of importing the entire pyplot module

under the name plt. As we use more and more functions from the module to tune

how our plot appears, it would become tedious to import each one individually. By

importing the entire module at once we avoid this.

�ere are many other variations and styles available in pyplot. You can add

legends and annotations to your graphs. You can change the color, size, or typeface

used in the labels. You can change the color or style of the axes, or add a background

color to the graph. �ese and many other possibilities are described in the online

documentation at matplotlib.org.

Exercise 3.1: Plotting experimental data

In the online resources you will �nd a �le called sunspots.txt, which contains the observed

number of sunspots on the Sun for each month since January 1749. �e �le contains two

columns of numbers, the �rst being the month and the second being the sunspot number.

a) Write a program that reads the data and makes a graph of sunspots as a function of

time.

b) Modify your program to display only the �rst 1000 data points on the graph.

c) Modify your program further to calculate and plot the running average of the data,

de�ned by

.: =
1

2A + 1
A∑

<=−A
~:+<

where A = 5 in this case (and the ~: are the sunspot numbers). Have the program plot

both the original data and the running average on the same graph, again over the range

covered by the �rst 1000 data points.

Exercise 3.2: Curve plotting

Although the plot function is designed primarily for plo�ing standard G~ graphs, it can be

adapted for other kinds of plo�ing as well.
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a) Make a plot of the so-called deltoid curve, which is de�ned parametrically by the equa-

tions

G = 2 cos\ + cos 2\, ~ = 2 sin\ − sin 2\,
where 0 ≤ \ < 2c . Take a set of values of \ between zero and 2c and calculate G and ~

for each from the equations above, then plot ~ as a function of G .

b) Taking this approach a step further, one can make a polar plot A = 5 (\ ) for some

function 5 by calculating A for a range of values of \ and then converting A and \ to

Cartesian coordinates using the standard equations G = A cos\ , ~ = A sin\ . Use this

method to make a plot of the Galilean spiral A = \2 for 0 ≤ \ ≤ 10c .

c) Using the same method, make a polar plot of “Fey’s function”

A = ecos\ − 2 cos 4\ + sin5 \

12

in the range 0 ≤ \ ≤ 24c .

3.2 Scatter plots

On an ordinary graph, such as those of the previous section, there is one independent

variable, usually placed on the horizontal axis, and one dependent variable, on the

vertical axis. �e graph is a visual representation of the variation of the dependent

variable as a function of the independent one—voltage as a function of time, say,

or temperature as a function of position. In other cases, however, we measure or

calculate two dependent variables. A classic example in physics is the temperature

and brightness—also called the magnitude—of stars. Typically we might measure

temperature and magnitude for each star in a given set and we would like some way

to visualize how the two quantities are related. A standard approach is to use a sca�er

plot, a graph in which the two quantities are placed along the axes and we make a

dot on the plot for each pair of measurements, i.e., for each star in this case.

0

0.1

0.2

0.3

0 0.1 0.2 0.3

A small sca�er plot.

�ere are two di�erent ways to make a sca�er plot using the

pyplotmodule. One of them we have already seen: we can make

an ordinary graph, but with dots rather than lines to represent the

data points. Assuming we have imported pyplot under the name

plt as before, we could use a statement of the form

plt.plot(x,y,"ko")

to place a black circle at each point. A slight variant of the same

idea is this:

plt.plot(x,y,"k.")

which will produce smaller dots.

Alternatively, pyplot provides the function scatter, which is

designed speci�cally formaking sca�er plots. It works in a similar
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fashion to the plot function: you give it two lists or arrays, one containing the G-

coordinates of the points and the other containing the ~-coordinates, and it creates

the corresponding sca�er plot. We just write

plt.scatter(x,y)

You do not have to give a third argument telling scatter to plot the data as dots—all

sca�er plots use dots automatically. As with the plot function, scatter only creates

the sca�er plot in the memory of the computer but does not display it on the screen.

To display it you need to use the show function.

As an example, the �le stars.txt in the online resources contains a list of the

temperatures and magnitudes of a set of stars, like this:

4849.4 5.97

5337.8 5.54

4576.1 7.72

4792.4 7.18

5141.7 5.92

6202.5 4.13

...

�e�rst column is the temperature and the second is themagnitude. Here is a Python

program to make a sca�er plot of these data:

File: hrdiagram.pyimport matplotlib.pyplot as plt

from numpy import loadtxt

data = loadtxt("stars.txt",float)

x = data[:,0]

y = data[:,1]

plt.scatter(x,y)

plt.xlabel("Temperature")

plt.ylabel("Magnitude")

plt.xlim(0,13000)

plt.ylim(-5,20)

plt.show()

If we run this program it produces the plot shown in Fig. 3.5.

Many of the same variants illustrated in Fig. 3.4 for the plot function work for

the scatter function also. In this program we used xlabel and ylabel to label the

temperature and magnitude axes, and xlim and ylim to set the ranges of the axes.

You can also change the size, style, and color of the dots and many other things.

In addition, as with the plot function, you can use scatter two or more times in

succession to plot two or more sets of data on the same graph, or you can use any

97



Chapter 3 | Graphics and visualization

0 2000 4000 6000 8000 10000 12000
Temperature

5

0

5

10

15

20

M
ag

ni
tu
de

Figure 3.5: �eHertzsprung–Russell diagram. A sca�er plot of themagnitude (i.e., bright-

ness) of stars against their approximate surface temperature (which is estimated from the color

of the light they emit). Each dot on the plot represents one star out of a catalog of 7860 stars

that are close to our solar system.

combination of scatter and plot functions to draw sca�er data and graphs on the

same �gure. Again, see the online manual at matplotlib.org for more details.

�e sca�er plot of the magnitudes and temperatures in Fig. 3.5 reveals an inter-

esting pa�ern in the data: a substantial majority of the points lie along a rough band

running from top le� to bo�om right of the plot. �is is the so-called main sequence

to which most stars belong. Rarer types of stars, such as red giants and white dwarfs,

stand out in the �gure as dots that lie o� the main sequence. A sca�er plot of stellar

magnitude against temperature is called a Hertzsprung–Russell diagram a�er the as-

tronomers who �rst drew it. �e diagram is one of the fundamental tools of stellar

astrophysics.

In fact, Fig. 3.5 is, in a sense, upside down, because the Hertzsprung–Russell

diagram is, for historical reasons, normally plo�ed with both the magnitude and

temperature axes decreasing, rather than increasing.3 One of the nice things about

pyplot is that it is easy to change this kind of thing with just a small modi�cation

3�e magnitude of a star is de�ned in such a way that it actually increases as the star gets fainter,

so reversing the vertical axis makes sense since it puts the brightest stars at the top. �e temperature

axis is commonly plo�ed not directly in terms of temperature but in terms of the so-called color index,

which is a measure of the color of light a star emits, which is in turn a measure of temperature. Tempera-

ture decreases with increasing color index, which is why the standard Hertzsprung–Russell diagram has

temperature decreasing along the horizontal axis.
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of the Python program. All we need to do in this case is change the xlim and ylim

statements so that the start and end points of each axis are reversed, thus:

plt.xlim(13000,0)

plt.ylim(20,-5)

�en the �gure will be magically turned around.

3.3 Density plots

�ere are many situations in physics when we are working with two-dimensional

grids of data. A condensed ma�er physicist might measure variations in charge or

temperature or atomic deposition on a solid surface, a �uid dynamicist might mea-

sure the heights of waves in a ripple tank, a particle physicist might measure the dis-

tribution of particles incident on an imaging detector, and so on. Two-dimensional

data are harder to visualize on a computer screen than the one-dimensional lists of

values that go into an ordinary graph. One tool that is helpful in many cases is the

density plot, also sometimes called a heat map, a two-dimensional plot where color

or brightness is used to indicate data values. Figure 3.6 shows an example.
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Figure 3.6: A example of a density plot

In Python density plots are produced by the function

imshow from pyplot. Here is the program that produced

Fig. 3.6:

import matplotlib.pyplot as plt

from numpy import loadtxt

data = loadtxt("circular.txt",float)

plt.imshow(data)

plt.show()

�e �le circular.txt contains a simple array of values, like

this:

0.0050 0.0233 0.0515 0.0795 0.1075 ...

0.0233 0.0516 0.0798 0.1078 0.1358 ...

0.0515 0.0798 0.1080 0.1360 0.1639 ...

0.0795 0.1078 0.1360 0.1640 0.1918 ...

0.1075 0.1358 0.1639 0.1918 0.2195 ...

... ... ... ... ...

�e program reads the values in the �le and puts them in the two-dimensional array

data using the loadtxt function, then creates the density plot with the imshow func-

tion and displays it with show. �e computer automatically adjusts the color-scale so

that the picture uses the full range of available shades.
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�e computer also adds numbered axes along the sides of the �gure, which mea-

sure the rows and columns of the array, although it is possible to change the cali-

bration of the axes to use di�erent units. We will see how to do this in a moment.

�e image produced is a direct picture of the array, laid out in the usual fashion for

matrices, row by row, starting at the top and working downwards. �us the top le�

corner in Fig. 3.6 represents the value stored in the array element data[0,0], fol-

lowed to the right by data[0,1], data[0,2], and so on. Immediately below those,

the next row is data[1,0], data[1,1], data[1,2], and so on.

�e numerical labels on the axes re�ect the array indices, meaning that the origin

of the �gure is at the top le� and the vertical axis increases downward. While this is

natural from the point of view of matrices, it is a li�le odd for a graph. Most of us are

accustomed to graphs whose vertical axes increase upwards. What’s more, the array

elements data[i,j] are wri�en (as is the standard with matrices) with the row index

�rst—i.e., the vertical index—and the column, or horizontal, index second. �is is the

opposite of the convention used with graphs where coordinates are normally in G,~

order—i.e., horizontal �rst, then vertical. �ere is nothing much we can do about

these conventions: they are the ones that mathematicians se�led upon centuries ago

and it is too late to change themnow. But the con�ict between them can be confusing,

so take this opportunity to make a mental note.

In fact, Python provides a way to deal with the �rst problem, of the origin in

a density plot being at the top. You can include an additional argument with the

imshow function thus:

plt.imshow(data,origin="lower")

which �ips the density plot top-to-bo�om, pu�ing the array element data[0,0] in

the lower le� corner, as is conventional, and changing the labeling of the vertical

axis accordingly, so that it increases in the upward direction. �e resulting plot is

shown in Fig. 3.7a. We will use this trick for most of the density plots in this book.

Note, however, that this does not �x our other problem: the indices i and j for the

element data[i,j] still correspond to vertical and horizontal positions respectively,

not the reverse. �at is, the index i corresponds to the ~-coordinate and the index j

corresponds to the G-coordinate. You need to keep this in mind whenmaking density

plots—it is easy to get the axes swapped by mistake.

�e black-and-white visuals in this book do not really do justice to the density

plot in Fig. 3.7a. �e original is in bright colors, ranging through the spectrum from

dark blue for the lowest values to yellow for the highest. If you wish, you can run the

program yourself to see the density plot in its full glory—both the program, which

is called circular.py, and the data �le circular.txt can be found in the online

resources. �is color scheme is the default choice for density maps in Python, but it

is not always the best. In fact, for most purposes, a simple gray-scale from black to

white is easier to read. Luckily, it is simple to change the color scheme. To change

100



3.3 | Density plots

0 100 200 300 400 500
0

100

200

300

400

500

(a)

0 100 200 300 400 500
0

100

200

300

400

500

(b)

0 2 4 6 8 100

1

2

3

4

5

(c)

2 3 4 5 6 7 80

1

2

3

4

5

(d)

Figure 3.7: Density plots. Four di�erent versions of the same density plot. (a) A plot with the vertical axis �ipped so that

the numbers increase up the page rather than down. (b) �e same plot, but using the gray color scheme, which runs from

black for the lowest values to white for the highest. (c) A plot with the calibration of the axes changed. Because the range

chosen is di�erent for the horizontal and vertical axes, the computer has altered the shape of the �gure to keep distances

equal in all directions. (d) �e same plot as in (c) but with the horizontal range reduced so that only the middle portion of

the data is shown.
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to gray-scale, for instance, you use the function gray, which takes no arguments:4

import matplotlib.pyplot as plt

from numpy import loadtxt

data = loadtxt("circular.txt",float)

plt.imshow(data,origin="lower")

plt.gray()

plt.show()

Figure 3.7b shows the result. In black-and-white it looks pre�y similar to the color

version in panel (a), but on the screen it looks entirely di�erent. Try it if you like.

All of the density plots in this book use the gray scale (except Figs. 3.6 and 3.7a).

It may not be �ashy, but it is informative, easy to read, and suitable for printing on

black-and-white printers or for publications that are in black-and-white only (like

this book and many scienti�c journals). However, pyplot provides many other color

schemes, which you may �nd useful occasionally. A complete list, with illustrations,

is given in the online documentation at matplotlib.org, but here are a few that

might �nd use in physics:

viridis �e default blue and yellow color scheme

jet A “heat map” color scheme that goes from blue to red

gray Gray-scale running from black to white

hot An alternative heat map that goes black-red-yellow-white

spectral A spectrum with 7 clearly de�ned colors, plus black and white

bone An alternative gray-scale with a hint of blue

hsv A rainbow scheme that starts and ends with red

Each of these has a corresponding function, viridis(), jet(), and so forth, that se-

lects the relevant color scheme for use in future plots. Many more color schemes are

given in pyplot and one can also de�ne one’s own schemes, although the de�nitions

involve some slightly tricky programming. Example code is given in Appendix C

and in the online resources to de�ne three additional schemes that can be useful for

physics:5

redblue Runs from red to blue via black

redwhiteblue Runs from red to blue via white

inversegray Runs from white to black, the opposite of gray

4�e function gray works slightly di�erently from other functions we have seen that modify plots,

such as xlabel or ylim. �ose functions modi�ed only the current plot, whereas gray (and the other color

scheme functions in pyplot) changes the color scheme for all subsequent density plots. If you write a

program that makes more than one plot, you only need to call gray once.

5To use these color schemes copy the �le colormaps.py from the online resources into the folder

containing your program and then in your program say, for example, “from colormaps import redblue”.

�en the statement “redblue()” will switch to the redblue color map.
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�ere is also a function colorbar() in the pyplot module that instructs Python to

add a bar to the side of your �gure showing the range of colors used in the plot,

along with a numerical scale indicating which values correspond to which colors,

something that can be helpful when you want to make a more precise quantitative

reading of a density plot.

As with graphs and sca�er plots, you can modify the appearance of density plots

in various ways. �e functions xlabel and ylabel work as before, adding labels

to the two axes. You can also change the scale marked on the axes. By default,

the scale corresponds to the elements of the array holding the data, but you might

want to calibrate your plot with a di�erent scale. You can do this by adding an extra

parameter to imshow, like this:

plt.imshow(data,origin="lower",extent=[0,10,0,5])

which results in a modi�ed plot as shown in Fig. 3.7c. �e argument consists of

“extent=” followed by a list of four values, which give, in order, the beginning and

end of the horizontal scale and the beginning and end of the vertical scale. �e

computer will use these numbers to mark the axes, but the actual content displayed

in the body of the density plot remains unchanged—the extent argument a�ects only

how the plot is labeled. �is trick can be very useful if you want to calibrate your

plot in “real” units. If the plot is a picture of the surface of the Earth, for instance,

you might want axes marked in units of latitude and longitude; if it is a picture of a

surface at the atomic scale you might want axes marked in nanometers.

Note also that in Fig. 3.7c the computer has changed the shape of the plot—its

aspect ratio—to accommodate the fact that the horizontal and vertical axes have dif-

ferent ranges. �e imshow function a�empts to make unit distances equal along the

horizontal and vertical directions where possible. Sometimes, however, this is not

what we want, in which case we can tell the computer to use a di�erent aspect ratio.

For instance, if we wanted the present �gure to remain square we would say:

plt.imshow(data,origin="lower",extent=[0,10,0,5],aspect=2.0)

�is tells the computer to use unit distances twice as large along the vertical axis as

along the horizontal one, which will make the plot square once more. You can also

specify the special value aspect="auto", which instructs the computer to choose the

aspect ratio automatically to match the shape of the window on the screen. You

can change the shape of the window a�er making the plot by dragging the window

corners with your mouse, and the aspect ratio will change with it, which allows you

to manually adjust the aspect ratio to get whatever result you want.

Note that we are free to use any or all of the origin, extent, and aspect ar-

guments together in the same function. We don’t have to use them all if we don’t

want to—any selection is allowed—and they can come in any order. We can also limit

our density plot to just a portion of the data using the functions xlim and ylim, as

with graphs and sca�er plots. �ese functions work with the scales speci�ed by the

103



Chapter 3 | Graphics and visualization

extent argument, if there is one, or with the row and column indices otherwise. So,

for instance, we could say plt.xlim(2,8) to reduce the density plot of Fig. 3.7b to

just the middle portion of the horizontal scale, from 2 to 8. Figure 3.7d shows the re-

sult. Note that, unlike the extent argument, xlim and ylim do change which data are

displayed in the body of the density plot—the extent argument makes purely cos-

metic changes to the labeling of the axes, but xlim and ylim actually change which

data appear.

Finally, you can use the functions plot and scatter to superimpose graphs or

sca�er plots of data on the same axes as a density plot. You can use any combination

of imshow, plot, and scatter in sequence, followed by show, to create a single graph

with density data, curves, or sca�er data, all on the same set of axes.

Example 3.1: Wave interference

Suppose we drop a pebble into a pond and ripples radiate out from the spot where

it fell. We could create a simple representation of the physics with a sine wave,

spreading out in a uniform circle, to represent the height of the waves at some later

time. If the center of the circle is at G1, ~1 then the distance A1 to the center from a

point G,~ is

A1 =
√
(G − G1)2 + (~ − ~1)2 (3.1)

and the sine wave for the height is

b1 (G,~) = b0 sin:A1 , (3.2)

where b0 is the amplitude and : is the wavevector, related to the wavelength _ by

: = 2c/_.
Now suppose we drop another pebble in the pond, creating another set of circular

waves with the same wavelength and amplitude but centered on a di�erent point

G2, ~2:

b2 (G,~) = b0 sin:A2 with A2 =
√
(G − G2)2 + (~ − ~2)2 . (3.3)

�en, assuming the waves add linearly (which is a reasonable assumption for water

waves, provided they are not too big), the total height of the surface at point G,~ is

b (G,~) = b0 sin:A1 + b0 sin:A2. (3.4)

Suppose the wavelength of the waves is _ = 5 cm, the amplitude is 1 cm, and the

centers of the circles are 20 cm apart. Here is a program to make an image of the

height over a 1 meter square region of the pond. To make the image we create an

array of values representing the height b at a grid of points and then use that array

to make a density plot. In this example we use a grid of 500× 500 points to cover the
1m square, which means the grid points have a separation of 100/500 = 0.2 cm.
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File: ripples.pyfrom math import sqrt,sin,pi

from numpy import empty

import matplotlib.pyplot as plt

wavelength = 5.0

k = 2*pi/wavelength

xi0 = 1.0

separation = 20.0 # Separation of centers in cm

side = 100.0 # Side of the square in cm

points = 500 # Number of grid points along each side

spacing = side/points # Spacing of points in cm

# Calculate the positions of the centers of the circles

x1 = side/2 + separation/2

y1 = side/2

x2 = side/2 - separation/2

y2 = side/2

# Make an array to store the heights

xi = empty([points,points],float)

# Calculate the values in the array

for i in range(points):

y = spacing*i

for j in range(points):

x = spacing*j

r1 = sqrt((x-x1)**2+(y-y1)**2)

r2 = sqrt((x-x2)**2+(y-y2)**2)

xi[i,j] = xi0*sin(k*r1) + xi0*sin(k*r2)

# Make the plot

plt.imshow(xi,origin="lower",extent=[0,side,0,side])

plt.gray()

plt.show()

�is is the longest and most involved program we have seen so far, so it may

be worth taking a moment to make sure you understand how it works. Note in

particular how the height is calculated and stored in the array xi. �e variables i

and j go through the rows and columns of the array respectively, and from these we

calculate the values of the coordinates G and ~. Since, as discussed earlier, the rows

correspond to the vertical axis and the columns to the horizontal axis, the value of G

is calculated from j and the value of ~ is calculated from i. Other than this subtlety,
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Figure 3.8: Interference pattern. �is plot, produced by the program given in the text,

shows the superposition of two circular sets of sine waves, creating an interference pa�ern

with fringes that appear as the gray bars radiating out from the center of the picture.

the program is a fairly straightforward translation of Eqs. (3.1) to (3.4).6

If we run the program above, it produces the picture in Fig. 3.8, showing clearly

the interference of the two sets of waves. Interference fringes are visible as the gray

bands radiating from the center.

Exercise 3.3: �ere is a �le in the online resources called stm.txt, which contains a grid

of values from scanning tunneling microscope measurements of the (111) surface of silicon.

A scanning tunneling microscope is a device that measures the shape of a surface at the atomic

level by tracking a sharp tip over the surface and measuring quantum tunneling current as a

function of position. �e end result is a grid of values that represent the height of the surface

and the �le stm.txt contains just such a grid of values. Write a program that reads the data

contained in the �le and makes a density plot of the values. Use the various options and

6One other small detail is worth mentioning. We called the variable for the wavelength “wavelength”.

You might be tempted to call it “lambda” but if you did you would get an error message and the program

would not run. �e word lambda has a special meaning in the Python language and cannot be used as

a variable name, just as words like “for” and “if” cannot be used as variable names. (See footnote 4 on

page 15.) �e names of other Greek le�ers—alpha, beta, gamma, and so on—are allowed as variable names.
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variants you have learned about to make a picture that shows the structure of the silicon

surface clearly.

3.4 Drawing

One of the �ashiest applications of computers today is computer animation. In

any given week millions of people �ock to cinemas worldwide to watch the latest

computer-animated movie from the big animation studios. Graphics and animation

�nd a more humble, but very useful, application in computational physics as a tool

for visualizing the behavior of physical systems.

�ere are a number of di�erent packages available for making general drawings

and animations in Python, some of them very complex. In this book we will use the

package qdraw, a simpler package intended speci�cally for the sort of scienti�c dia-

grams and animations we will be making.7 �e package works by creating speci�ed

objects on the screen, such as circles, squares, lines, and so forth, and then optionally

changing their position or orientation to make them move around. Here is a short

�rst program using the package:

from qdraw import window,circle,show

window(xlim=[-1,1],ylim=[-1,1])

circle(pos=[0,0],size=1)

show()

When we run this program a window appears on the screen with a circle in it, as

shown in Fig. 3.9. �e program has done a number of things. First, the window func-

tion creates the window on your screen and also speci�es the axes of the window.

�e xlim and ylim arguments give the beginning and end of the horizontal and ver-

tical scales respectively, so in this case both axes run from −1 to +1. We use these

coordinates to place and move objects in the window.

Next, the circle function creates a circle with a given position and size. �e

pos argument gives the position of the center of the circle—right at the origin in this

case—and the size argument gives the diameter of the circle. �e arguments of the

window and circle functions in our example are all integers, but this is not required.

�ey can also be �oating-point numbers.

�e circle function only creates the circle in the memory of the computer, in a

manner similar to the plot function in pyplot. �e circle does not actually appear

until we call the show function in the last line of the program. �is function serves

a purpose similar to the show function in pyplot. It draws the circle on the screen

and then “blocks” the program so that you can see the results: the program pauses

at the show function until you close the graphics window, then continues, although

7�e qdraw package was wri�en by the author of this book, but employs Python’s native “turtle”

graphics engine, a standard part of the Python language.
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Figure 3.9: �e circle drawn by the qdraw example in the text.

in most cases the show function will be the last line of the program anyway, so the

program just �nishes once the window is closed. In this simple program, it may seem

pointless to have separate circle and show functions, but, like the corresponding

construction in pyplot, the show function is useful for assembling more complex

diagrams. It allows you to place many objects one a�er another and then visualize

them all by calling the show function once.

Both the window and circle functions can have additional arguments that specify

various details. For the window function we have:8

width Speci�es the width of the window in pixels

height Speci�es the height of the window in pixels

bgcolor Speci�es the background color of the window

For the circle function we have:

8It is possible to specify values for width and height that impose a di�erent aspect ratio on the

window than the one implied by xlim and ylim, e�ectively forcing the pixels in the window to be non-

square. Python does not handle this situation well, producing distorted or glitchy images. To avoid this,

you should specify at most three out of width, height, xlim, and ylim. If you specify less than three, the

computer will use sensible defaults for the others. If you specify all four, it will ignore the height and

behave as if only the other three were given. In most cases, giving xlim and ylim only will give good

results.
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color Speci�es the color of the circle

olcolor Speci�es the color of the outline of the circle

olwidth Speci�es the width of the outline in pixels

Documentation for these functions and others in the qdraw package is given in Ap-

pendix B on page 568.

Colors in qdraw can be given as strings surrounded by quotation marks and spec-

i�ed in various ways. You can use single le�ers as in pyplot: r, g, b, c, m, y, k, and w

for red, green, blue, cyan, magenta, yellow, black, and white, respectively. You can

also use complete words, like "black" or "orange". Or, if you are an expert, you can

use full RGB colors speci�ed either as hexadecimal strings of the form "#12ab34"

or as trios of real numbers [0.22,0.75,0.31] with each number between zero and

one. Finally, colors can be speci�ed as a single real number between zero and one

that gets converted into a color using one of the matplotlib color schemes, such as

the default blue-yellow “viridis” color scheme or the gray-scale color scheme—see

Section 3.3. �e color scheme and the range of numbers used in the mapping can be

speci�ed using the function setcmap—see Appendix B again.

�e qdraw package also includes squares, rectangles, ellipses, and arbitrary poly-

gons with any shape or size. Here are the functions that create each of these objects:

square(size=s,pos=[x,y])

rectangle(left=l,right=r,bottom=b,top=t,pos=[x,y])

ellipse(width=w,height=h,pos=[x,y])

polygon([[x1,y1],[x2,y2],...],pos=[x,y])

For a detailed explanation of the meaning of all the parameters and full documenta-

tion take a look at Appendix B. In addition to the parameters above, ones like color

and olcolor can also be used to give the objects a di�erent appearance.

By placing many objects on the screen in di�erent positions and orientations,

one can build up complex diagrams. Note that when we place multiple objects, the

later ones are drawn on top of the earlier ones and may partially hide them from

sight. When all the objects are in black, which is the default, this has no e�ect, since

they all blend together anyway, but it can be noticeable if they have di�erent colors.

Example 3.2: Picturing an atomic lattice

Suppose we have a solid composed of atoms arranged on a simple square la�ice. We

can visualize the arrangement of the atoms using the qdraw package by creating a

picture with many circles at integer positions (8, 9) with 8, 9 = −! . . . !, thus:

File: lattice.pyfrom qdraw import window,circle,show

L = 5

s = 0.3
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Figure 3.10: Visualization of atoms on a square lattice. A simple drawing of atoms on a

square la�ice, generated using the program in the text.

window(xlim=[-L,L],ylim=[-L,L])

for i in range(-L,L+1):

for j in range(-L,L+1):

circle(pos=[i,j],size=s)

show()

Observe how this program uses two nested for loops to run through all combinations

of the values of i and j. When we run this program it produces the picture shown

in Fig. 3.10. Download the program and try it if you like. You can also change the

value of L to make a bigger la�ice or s to alter the sizes of the atoms.

Of course real atomic la�ices are (mostly) three-dimensional, whereas our simple

picture here is two-dimensional. Nonetheless such visualizations can be helpful. See

Exercise 3.4 below for some examples.

Exercise 3.4: Using the program from Example 3.2 above as a starting point, or starting from

scratch if you prefer, create the following visualizations.

a) A sodium chloride crystal has sodium and chlorine atoms arranged on a square la�ice,

but the atoms alternate between sodium and chlorine in checkerboard fashion, so that

each sodium is surrounded by chlorines and each chlorine is surrounded by sodiums.

Create a visualization of (a two-dimensional) sodium chloride la�ice using two di�erent

colors to represent the two types of atoms.
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b) �e face-centered cubic (fcc) la�ice is the most common la�ice in naturally occurring

crystals. It consists of a square la�ice with an additional atom at the center of each

square. Create a two-dimensional visualization of an fcc la�ice with a single species of

atom (such as occurs in metallic nickel, for instance).

3.5 Animation

It is possible to change the properties of a circle or other shape a�er it is �rst created,

including its position, size, and color. By doing so repeatedly, we can make the object

appear to move on the screen and hence create an animation of a moving system. We

will use this approach extensively in this book to visualize the workings of physical

systems, such as the swing of a pendulum or the motions of the planets.

Consider a circle again. In order to change the properties of a circle on the screen

a�er it is created, we use a slightly di�erent form of the circle function, like this:

c = circle(size=1,pos=[0,0])

�is form, in addition to placing a circle on the screen, creates a variable c in amanner

similar to the way functions like zeros or empty create arrays (see Section 2.4.2). �e

new variable c is a variable of type “circle,” in the same way that other variables are

of type int or float.9 �is is a special variable type used only in the qdraw package

to store the properties of circles and we can change those properties by performing

operations on the variable. �us, for example, we can say

from qdraw import window,circle,draw

window(xlim=[-1,1],ylim=[-1,1])

c = circle(size=1,pos=[0,0])

c.setpos(0.5,0.5)

draw()

�e statement c.setpos(0.5,0.5)moves the center of the circle to new coordinates

(0.5, 0.5), but the change only occurs in the memory of the computer and not (yet)

on the screen. �at is what the draw statement is for: it tells the computer to draw

all objects with their current positions. If the position of an object has changed, as

here, this means the object will move on the screen. If we have multiple objects on

the screen at once we can change all of their positions and then do draw() once and

they will all move simultaneously.

�e draw function is similar to the show function, but with a crucial di�erence: it

is not a blocking function. It updates the drawing on the screen and then the program

9Technically, it is a Python Turtle object. See Appendix B and the documentation for the turtle

package at https://docs.python.org/3/library/turtle.html if you want to learn more.
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continues. �is allows us to make a series of changes to the position of an object or

objects, each followed by draw(), and create an animation.

To illustrate this approach let usmake a simple animation of a circlewhich is itself

looping around in a larger circle. �e steps involved in doing this are: (1) create the

circle, (2) go round a for loop and calculate the position of the circle at each step, then

(3) update the position and call the draw function on each step to move the circle on

the screen. Here is what the code looks like:

File: revolve.py from qdraw import window,circle,draw

from math import cos,sin,pi

from numpy import arange

window(xlim=[-1.1,1.1],ylim=[-1.1,1.1])

c = circle(size=0.2,pos=[1,0])

for theta in arange(0,10*pi,0.02):

x = cos(theta)

y = sin(theta)

c.setpos(x,y)

draw()

Obviously we cannot illustrate this moving animation on the static page of this

book. You will have to run the program yourself, but if you do you will discover

that, while it does work, it is not very useful because the circle moves so fast you can

barely see it. On any reasonably fast computer the program will make hundreds of

moves per second and the moving circle will just be a blur. To overcome this issue,

the draw function can pause for a moment each time it updates the screen. We can

say

draw(0.01)

and the programwill pause for 0.01 seconds each time around the loop, meaning that

the animation will have a framerate of 100 frames per second, more than enough to

ensure a smooth motion of the circle without being too fast. �e version of the

program in the online resources includes this modi�cation and produces a good an-

imation of a revolving circle. �is simple program could be the basis, for instance,

for an animation of the simultaneous motions of the planets of the solar system.

Exercise 3.7 below invites you to create such an animation.

Another nice touch is to add the line

c.trail(length=30)

immediately a�er the circle is �rst created with the circle function. �is statement

turns on a “trail,” which is a sort of short streamer that gets dragged behind the circle

as it moves, so that you can see where the circle has been. Give it a try. �e length

parameter controls how long the streamer is: the length is speci�ed as an integer =

112



3.5 | Animation

and the streamer shows the last = movements of the object. If no length parameter is

provided then the trail has no length limit—it records every movement of the object

for as long as the animation lasts. When we look at the more complicated motions

of real physical systems, this feature will be useful for clear visualization of those

motions.

In addition to position there are various other properties of objects that we can

change, such as color, rotation, and whether they are visible at all. For example,

the statement c.setcolor("green") will change the color of our circle to green.

And c.visible(False) will make the circle invisible, though not actually delete it—

it still exists and maintains its position, and it can be made to appear again with

c.visible(True).

If we say c.setangle(0.5) the orientation of the object will be rotated to +0.5
radians from its initial position, in a counterclockwise direction. If our object is a

circle this has no visible e�ect—a circle does not change when we rotate it. But for

other objects it does make a di�erence. Here is a program, for instance, that produces

an animation of a rotating square:

File: spin.pyfrom qdraw import window,square,draw

from math import pi

from numpy import arange

window(xlim=[-1.1,1.1],ylim=[-1.1,1.1])

s = square(size=1)

for theta in arange(0,20*pi,0.02):

s.setangle(theta)

draw(0.01)

�ere are a number of other features of the qdraw package that we will describe

as the need arises later in the book, but for now this introduction will be enough to

get us started.

Exercise 3.5: Lissajous �gures

In the program revolve.py abovewe calculated the position of the circle asG = cos\ ,~ = sin\ .

Modify the program so that instead it uses G = cos<\ , ~ = cos=\ , where< and = are positive

integers. Also add a trail to the circle using c.trail(). Run the program with< = 1, = = 2

and with< = 2, = = 3 and observe the motion you get. �is type of motion is called a Lissajous

�gure, a�er French physicist Jules Lissajous.

Exercise 3.6: Make a program in which there are # circles, equally spaced in a larger circle

and all rotating around it at the same speed. # should be a variable and your program should

be wri�en so that you can change the value of # in only one place and the number of circles
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around the loop will automatically change. Give some thought to how you are going to store

the # circle objects, and what the formulas are for the G and ~ positions of each circle.

Exercise 3.7: Visualization of the solar system

�e innermost six planets of our solar system revolve around the Sun in roughly circular orbits

that all lie approximately in the same (ecliptic) plane. Here are some basic parameters:

Radius of object Radius of orbit Period of orbit

Object (km) (millions of km) (days)

Mercury 2440 57.9 88.0

Venus 6052 108.2 224.7

Earth 6371 149.6 365.3

Mars 3386 227.9 687.0

Jupiter 69173 778.5 4331.6

Saturn 57316 1433.4 10759.2

Sun 695500 – –

Using the qdraw package, create an animation of the solar system that shows the following:

a) �e Sun and planets as circles in their appropriate positions and with sizes proportional

to their actual sizes. Because the radii of the planets are tiny compared to the distances

between them, represent the planets by circles with radii 21 times larger than their

correct proportionate values, so that you can see them clearly. Find a good value for

21 that makes the planets visible. You will also need to �nd a good radius for the Sun.

Choose any value that gives a clear visualization. (It doesn’t work to scale the radius

of the Sun by the same factor you use for the planets, because it will come out looking

much too large. So just use whatever works.) For added realism, you may also want to

make your circles di�erent colors. For instance, Earth could be blue and the Sun could

be yellow.

b) �e motion of the planets as they move around the Sun (by making the circles move).

In the interests of alleviating boredom, construct your program so that time in your

animation runs a factor of 22 faster than real time. Find a good value for 22 that makes

the motion of the orbits easily visible but not unreasonably fast. Make use of the time

delay argument of the draw function to make your animation run smoothly.

Hint: You could de�ne individual circle variables for each planet, but it may be more conve-

nient to store them in an array or a list. You can append circle variables to a list just as you

would any other variable, or you can create an array of type circle with

from qdraw import circle

planet = empty(nplanets,circle)

In other words, circle works as both the name of the function that creates a circle and as the

type of the variable it creates.
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Chapter summary

• Graphs can be produced in Python using the matplotlib package, and speci�-

cally the module pyplot.

• �is package includes the functions plot for making normal G~ graphs, scatter

for making sca�er plots, and imshow for making density plots. A fourth function,

show, displays the �nished graph on the screen.

• �ere are variety of other functions that allow you to modify the appearance of

your graphs, including functions for se�ing the scale on the G and ~ axes, adding

labels to the axes, and changing the color scheme.

• �epackage qdraw, specially wri�en for this book, provides away tomake simple

diagrams and animations of physical systems. It provides functions that draw

various objects, such as circles, squares, polygons, and lines, on the screen.

• Once drawn, objects can be moved around with functions that change their loca-

tion or orientation. Moves only become visible once an additional function draw

is called. By a sequence of moves, each followed by draw, one can then animate

the objects on the screen to visualize the behavior of the system.

Further exercises

3.8 Deterministic chaos and the Feigenbaum plot: One of the most famous examples of

the phenomenon of chaos is the logistic map, de�ned by the equation

G ′ = AG (1 − G) .

For a given value of the constant A you take a value of G—say G =
1
2—and you feed it into the

right-hand side of this equation, which gives you a value of G ′. �en you take that value and

feed it back in on the right-hand side again, which gives you another value, and so forth. �is

is an iterative map. You keep doing the same operation over and over on the values of G , and

one of three things happens:

1. �e value se�les down to a �xed number and stays there. �is is called a �xed point.

For instance, G = 0 is always a �xed point of the logistic map. (You put G = 0 on the

right-hand side and you get G ′ = 0 on the le�.)

2. It does not se�le down to a single value, but it se�les down into a periodic pa�ern,

rotating around a set of values, such as say four values, repeating them in sequence.

�is is called a limit cycle.

3. It goes crazy. It generates a seemingly random sequence of numbers that appear to have

no rhyme or reason to them at all. �is is deterministic chaos. “Chaos” because it really

does look chaotic, and “deterministic” because even though the values look random,
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they’re not. �ey are clearly entirely predictable, because they are given to you by one

simple equation. �e behavior is determined, although it may not look like it.

Write a program that calculates and displays the behavior of the logistic map. Here is

what you need to do. For a given value of A , start with G =
1
2 and iterate the logistic map

equation a thousand times. �at will give it a chance to se�le down to a �xed point or limit

cycle if it is going to. �en run for another thousand iterations and plot the points (A, G) on
a graph where the horizontal axis is A and the vertical axis is G . You can either use the plot

function with the options "ko" or "k." to draw a graph with dots, one for each point, or you

can use the scatter function to draw a sca�er plot (which always uses dots). Repeat the whole

calculation for values of A from 1 to 4 in steps of 0.01, plo�ing the dots for all values of A on

the same �gure and then �nally using the function show once to display the complete �gure.

Your program should generate a distinctive plot that looks like a tree bent over on its side.

�is famous picture is called the Feigenbaum plot, a�er its discoverer Mitchell Feigenbaum, or

sometimes the �gtree plot, a play on the fact that it looks like a tree and Feigenbaum means

“�gtree” in German.10

Give answers to the following questions:

a) For a given value of A , what would a �xed point look like on the Feigenbaum plot? How

about a limit cycle? And what would chaos look like?

b) Based on your plot, at what value of A does the systemmove from orderly behavior (�xed

points or limit cycles) to chaotic behavior? �is point is sometimes called the “edge of

chaos.”

�e logistic map is a very simple mathematical system, but deterministic chaos is seen

in many more complex physical systems also, including especially �uid dynamics and the

weather. Because of its apparently random nature, the behavior of chaotic systems is di�-

cult to predict and strongly a�ected by small perturbations in initial conditions or parameter

values. You have probably heard of the classic exemplar of chaos in weather systems, the

bu�er�y e�ect, which was popularized by physicist Edward Lorenz in 1972 when he gave a

lecture to the American Association for the Advancement of Science entitled, “Does the �ap

of a bu�er�y’s wings in Brazil set o� a tornado in Texas?”11

3.9 Hydrogen wavefunction: In suitable units the (spatial part of the) electronic wave-

function of the 2p atomic level of hydrogen is

k (G,~, I) = I (2 − A ) e−A ,

10�ere is another approach for computing the Feigenbaum plot, which is neater and faster, making

use of Python’s ability to perform arithmetic with entire arrays. You could create an array r with one

element containing each distinct value of A you want to investigate: [1.0, 1.01, 1.02, ... ]. �en

create another array x of the same size to hold the corresponding values of G , which should all be initially

set to 0.5. �en an iteration of the logistic map can be performed for all values of A at once with a statement

of the form x = r*x*(1-x). Because of the speed with which Python can perform calculations on arrays,

this method should be signi�cantly faster than the more basic method above.

11Although arguably the �rst person to suggest the bu�er�y e�ect was not a physicist at all, but the

science �ction writer Ray Bradbury in his famous 1952 short story A Sound of �under, in which a time

traveler’s careless destruction of a bu�er�y during a tourist trip to the Jurassic era changes the course of

history.
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where A =
√
G2 + ~2 + I2.

a) Write a user-de�ned function to return the value ofk (G,~, I) for arbitrary G,~, I.
b) Use your function to make a density plot of the probability density |k |2 of the electron

in the GI plane, for values of G and I between −2 and 2.

3.10 �e Mandelbrot set: �e Mandelbrot set, named a�er its discoverer, French mathe-

matician Benoı̂t Mandelbrot, is a fractal, an in�nitely rami�ed mathematical object that con-

tains structure within structure as deep as we care to look. �e de�nition of the Mandelbrot

set is in terms of complex numbers as follows.

Consider the equation

I′ = I2 + 2,
where I is a complex number and 2 is a complex constant. For any given value of 2 this

equation turns an input number I into an output number I′. �e de�nition of the Mandelbrot

set involves the repeated iteration of this equation: we take an initial starting value of I and

feed it into the equation to get a new value I′. �en we take that value and feed it in again to

get another value, and so forth. �e Mandelbrot set is the set of points in the complex plane

that satis�es the following de�nition:

For a given complex value of 2 , start with I = 0 and iterate repeatedly. If the mag-

nitude |I | of the resulting value is ever greater than 2, then the point in the complex

plane at position 2 is not in the Mandelbrot set, otherwise it is in the set.

In order to use this de�nition one would, in principle, have to iterate in�nitely many times

to prove that a point is in the Mandelbrot set, since a point is in the set only if the iteration

never passes |I | = 2 ever. In practice, however, one usually just performs some large number

of iterations, say 100, and if |I | has not exceeded 2 by that point then we call that good enough.
Write a program to make an image of the Mandelbrot set by performing the iteration

for all values of 2 = G + i~ on an # × # grid spanning the region where −2 ≤ G ≤ 2 and

−2 ≤ ~ ≤ 2. Make a density plot in which grid points inside the Mandelbrot set are colored

black and those outside are colored white. �e Mandelbrot set has a very distinctive shape

that looks something like a beetle with a long snout—you’ll know it when you see it.

Hint: You will probably �nd it useful to start o� with quite a coarse grid, i.e., with a small

value of #—perhaps # = 100—so that your program runs quickly while you are testing it.

Once you are sure it is working correctly, increase the value of # to produce a �nal high-

quality image of the shape of the set.

If you are feeling enthusiastic, here is another variant of the same exercise that can produce

amazing looking pictures. Instead of coloring points just black or white, color points according

to the number of iterations of the equation before |I | becomes greater than 2 (or the maximum

number of iterations if |I | never becomes greater than 2). If you use one of the more colorful

color schemes Python provides for density plots, such as the viridis or jet schemes, you

can make some spectacular images this way. Another interesting variant is to color according

to the logarithm of the number of iterations, which helps reveal some of the �ner structure

outside the set.

3.11 �e Spirograph: �e Spirograph is a classic mechanical toy, invented in the 1960s,

that makes geometric drawings. A plastic ring about 15 or 20 cm across is pinned to a piece of

paper. �e ring has teeth around its inner rim and a small cog wheel rolls around inside this
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Figure 3.11: �e Spirograph. A Spirograph has a toothed wheel that rolls inside a toothed

ring. �e wheel has a small hole in it, through which one pokes a pen and the pen traces an

elaborate �ower-like pa�ern on the paper underneath as it moves.

rim, meshing with the teeth and turning as it goes—see Fig. 3.11. �e cog wheel has a hole in

it, through which one can stick the tip of a ball-point pen, which draws a trail across the paper

as you push the wheel around in circles. �e result is a pleasing �ower-like pa�ern, whose

details can be adjusted by changing the size of the ring or the wheel. In this exercise, you

will write a program to create an animation of the motion of the Spirograph and the pa�ern

it generates.

Suppose the ring of the Spirograph is centered at the origin and its inner rim has radius 'A ,

as shown in Fig. 3.11. If the wheel has radius'F , then the distance from the origin to the center

of the wheel is 'A −'F and when the wheel has rolled an angle \ around the rim the position

GF , ~F of the center is given by

GF = ('A − 'F) cos\, ~F = ('A − 'F) sin\ .

�e distance traveled by the wheel along the inside of the rim is \'A , so the angle q turned by

the wheel as it rolls is q = −\'A /'F , with the minus sign indicating that the wheel turns in

the opposite direction to its movement around the rim. If the distance between the center of

the wheel and the pen hole is '? , then the position of the pen hole is given by

G? = GF + '? cosq, ~? = ~F + '? sinq.

a) Write a program that makes an animation showing the stationary ring, the wheel mov-

ing around the inner rim of the ring, and pen hole as it moves, using a circle for each

one, with 'A = 0.83, 'F = 0.4, and '? = 0.35 (in arbitrary units).
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b) Remove the circles representing the ring and the wheel from your animation, keeping

only the one for the pen hole, and add a trail to represent the line drawn by the pen,

so you can see what pa�ern it generates. (Hint: If you specify no length parameter for

the trail it will have no length limit and will record the entire path of the pen hole as it

moves.)

c) Vary the values of the three radii 'A , 'F , and '? and �nd at least two more se�ings that

produce interesting pa�erns.
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