CHAPTER 3

GRAPHICS AND VISUALIZATION

O FAR we have created programs that print out words and numbers, but of-
ten we will also want our programs to produce graphics, meaning pictures of
some sort. In this chapter we will see how to produce the two main types of

computer graphics used in physics. First, we look at that most common of scientific
visualizations, the graph: a depiction of numerical data displayed on calibrated axes.
And second, we will see how to make scientific diagrams and animations: depictions
of the arrangement or motion of the parts of a physical system, which can be useful
in understanding the structure or behavior of the system.

3.1 GRAPHS

A number of Python packages include features for making graphs. In this book we
will use the powerful and popular package matplotlib,! and particularly the sub-
module within matplotlib called pyplot, which creates standard two-dimensional
plots. This module can make plots of a variety of different types. We will concentrate
on three that are especially useful in physics: ordinary line graphs, scatter plots, and
density (or heat) plots.?

There are a large number of functions in the pyplot module and, rather than
import them individually when we need them, this is a situation where it makes
sense to import them all at once with a statement of the form

import matplotlib.pyplot as plt

(See Section 2.2.5 for a discussion of the import statement.) This gives us access to
any function in the pyplot module. For instance, to use the basic plot function for

INote that the name of the package is matplotlib—“mat” not “math”. It is a common programming
error to mistype the name of the package.

20ne can also make contour plots, polar plots, pie charts, histograms, and more, and all of these find
occasional use in physics. If you find yourself needing one of these more specialized graph types, you can
find instructions for making them in the online documentation at matplotlib.org.

86

making a graph we would say plt.plot. Let us see how this function is used.

To create an ordinary graph we use the function plot. In the simplest case, this
function takes one argument, which is a list or array of the values we want to plot.
The function creates a graph of the given values in the memory of the computer,
but it doesn’t actually display it on the screen of the computer—it is stored in the
memory but not yet visible to the computer user. To display the graph we use a
second function from pyplot, the show function, which takes the graph in memory
and draws it on the screen. Here is a complete program for plotting a small graph:

import matplotlib.pyplot as plt

y =1[1.0, 2.4, 1.7, 0.3, 0.6, 1.8]
plt.plot(y)

plt.show()

After importing pyplot as plt, we create the list of values to be plotted, create a
graph of those values with plt.plot(y), then display that graph on the screen with
plt.show(). Note that plt.show() has parentheses after it—it is a function that has
no argument, but the parentheses still need to be there.

If we run the program above, it produces a new window on the screen with a
graph in it like this:

2.5

2.04

1.59

1.04

0.5

0 1 2 3 4 5

The computer has plotted the values in the list y at unit intervals along the x-axis
(starting from zero in the standard Python style) and it has joined them up with
straight lines.

While it’s better than nothing, this is not a very useful kind of graph for physics
purposes. Normally we want to specify both the x- and y-coordinates of the points
in the graph. We can do this using a plot statement with two arguments, thus:

import matplotlib.pyplot as plt
x = [0.0, 1.5, 2.0, 4.0, 7.0, 10.0]

3.1

GRAPHS

87

CHAPTER 3

88

GRAPHICS AND VISUALIZATION

y = [1.0, 2.4, 1.7, 0.3, 0.6, 1.8]
plt.plot(x,y)
plt.show()

which produces a graph like this:

2.5

2.0

1.54

1.04

0.5

0 2 4 6 8 10

The first of the two arguments is a list specifying the x-coordinates of each of the
points; the second specifies the y-coordinates. The computer plots the points at the
given positions and then again joins them with straight lines. The two lists must
have the same number of entries. If they do not, you will get an error message and
no graph.

Why do we need two functions, plot and show, to make a graph? In the examples
above it seems like it would be fine to combine the two into a single function that both
creates a graph and shows it on the screen. However, there are more complicated
situations where it is useful to have separate functions. In particular, in cases where
we want to plot two or more different curves on the same graph, we can do so by
using the plot function two or more times, once for each curve. Then we use the
show function once to make a single graph with all the curves on it. We will see
examples of this shortly.

Once you have displayed a graph on the screen you can do other things with it.
The graph will appear in a window like the one shown in Fig. 3.1, with a number
of buttons along the bottom. Among other things, these buttons allow you to zoom
in on portions of the graph, move your view around the graph, or save the graph
in various file formats, allowing you to view it again later, print it, or insert it as a
figure in a document.

Now let us apply the plot and show functions to the creation of a slightly more
interesting graph, a graph of the function sin x from x = 0 to x = 10. To do this we
first create an array of the x values, then we take the sines of those values to get the
y-coordinates of the points. Here is the program:

Figure 1 v oA X
2.5
2.0
1.5
1.04
0.5
0 2 4 6 8 10
AED> Q=

Figure 3.1: A graph window as it appears on the computer screen.

import matplotlib.pyplot as plt
from numpy import linspace,sin

x = linspace(0,10,100)
y = sin(x)
plt.plot(x,y)
plt.show()

Notice how we used the linspace function from numpy (see Section 2.5) to generate
the array of x values, and the sin function from numpy, which is a special version
that works with arrays—it takes the sine of every element in the array. (We could
alternatively have used the ordinary sin function from the math package and taken
the sines of each element individually using a for loop. As is often the case, there is
more than one way to do the job.)

If we run this program we get the classic sine curve graph shown in Fig. 3.2.
Note that we have not really drawn a curve at all here: our plot consists of a finite
set of points—a hundred of them in this case—and the computer draws straight lines
joining these points. So the end result is not actually curved; it is a set of straight-line
segments. To us, however, it looks like a convincing sine wave because our eyes are
not sharp enough to see the slight kinks where the segments meet. This is a useful

3.1

GRAPHS

89

CHAPTER 3 | GRAPHICS AND VISUALIZATION

1.00+

—0.251

—0.501

—0.751

—1.00

Figure 3.2: Graph of the sine function. A simple graph of the sine function produced by
the program given in the text.

and widely used trick for making curves in computer graphics: choose a set of points
spaced closely enough together that when joined with straight lines the result looks
like a curve even though it really isn’t.

As another example of the use of the plot function, suppose we have some ex-
perimental data in a computer file values. txt, stored in two columns, like this:

12121.71
12136.44
12226.73
12221.93
12194.13
12283.85
12331.60
12309.25

~N o Ol w NN =2

We can make a graph of these data as follows:

from numpy import loadtxt
import matplotlib.pyplot as plt

data = loadtxt("values.txt",float)
x = datal:,0]

y = datal:,1]

plt.plot(x,y)

plt.show()

90

140004

130001

120001

110004

100001

9000

8000

7000

0 200 400 600 800 1000

Figure 3.3: Graph of data from a file. This graph was produced by reading two columns of
data from a file using the program given in the text.

Here we have used the loadtxt function from numpy (see Section 2.4.3) to read the
values in the file and put them in an array and then we have used Python’s array
slicing facilities (Section 2.4.5) to extract the first and second columns of the array
and put them in separate arrays x and y for plotting. The end result is a plot as shown
in Fig. 3.3.

In fact, it is not necessary in this case to use the separate arrays x and y. We could
shorten the program by saying instead

data = loadtxt("values.txt",float)
plt.plot(datal:,0],datal:,11)
plt.show()

which achieves the same result. Arguably, however, this is more difficult to read.
As we emphasized in Section 2.7, readability is a defining quality of well-written
programs, so you might in this case want to use the extra arrays x and y even though
they are not strictly necessary.

An important point to notice about all of these examples is that the program
stops when it displays the graph. To be precise it stops when it gets to the show
function. Once you use show to display a graph, the program will go no further until
you close the window containing the graph. Only once you close the window will
the computer proceed with the next line of your program. The function show is said
to be a blocking function—it blocks the progress of the program until the function is
done with its job. We have seen one other example of a blocking function previously,
the function input, which collects input from the user at the keyboard. It too halts
the running of the program until its job is done. (The blocking action of the show

3.1

GRAPHS

91

CHAPTER 3

92

GRAPHICS AND VISUALIZATION

function has little impact in the programs above, since the show statement is the
last line of the program in each case. But in more complex examples there might be
further lines after the show statement and their execution would be delayed until the
graph window was closed.)

A useful trick that we will employ frequently in this book is to build the lists of
x- and y-coordinates for a graph step by step as we go through a calculation. It will
happen often that we do not know all of the x or y values for a graph ahead of time.
We work them out one by one as part of some calculation we are doing. In this case,
a good way to proceed is to start with two empty lists for the x- and y-coordinates
and add points to them one by one, as we calculate the values. Going back to the
sine wave example, for instance, here is an alternative way to make a graph of sin x
that calculates the individual values one by one and adds them to a growing list:

from math import sin
from numpy import linspace
import matplotlib.pyplot as plt

xpoints = []

ypoints = []

for x in linspace(0,10,100):
xpoints.append(x)
ypoints.append(sin(x))

plt.plot(xpoints,ypoints)
plt.show()

If you run it, you will find that this program produces a picture of a sine wave iden-
tical to the one in Fig. 3.2. Notice how we created the two empty lists and then
appended values to the end of each of them, one by one, using a for loop. We will
use this technique often. (See Section 2.4.1 for a discussion of the append function.)

The graphs we have seen so far are very simple, but there are many extra features
we can add to them, some of which are illustrated in Fig. 3.4. For instance, in the
previous graphs the computer chose the range of x and y values for the two axes.
Normally the computer makes good choices, but occasionally you might like to make
different ones. In our picture of a sine wave, Fig. 3.2, for instance, you might decide
that the graph would be clearer if there were a little more space at the top and bottom
of the curve. You can override the computer’s choice of x- and y-axis limits with the
functions x1im and ylim. These functions take two arguments each, for the lower
and upper limits of the range of the respective axes. Thus, for instance, we might
modify our sine wave program as follows:

import matplotlib.pyplot as plt
from numpy import linspace,sin

x = linspace(0,10,100)
y = sin(x)
plt.plot(x,y)
plt.ylim(-1.2,1.2)
plt.show()

The resulting graph is shown in Fig. 3.4a and, as we can see, it now has a little extra
space above and below the curve because the y-axis has been modified to run from
—1.2 to +1.2. Note that the ylim statement has to come after the plot statement but
before the show statement—the plot statement has to create the graph first before
you can modify its axes.

It is good practice to label the axes of your graphs, so that you and anyone else
knows what they represent. You can add labels to the x- and y-axes with the functions
xlabel and ylabel, which take a string argument—a string of letters or numbers in
quotation marks. Thus we could modify our program as follows:

plt.plot(x,y)
plt.ylim(-1.2,1.2)
plt.xlabel("x axis")
plt.ylabel("y = sin x")
plt.show()

which produces the graph shown in Fig. 3.4b.

You can also vary the style in which the computer draws the curve on the graph.
To do this a third argument is added to the plot function, which takes the form of a
(slightly cryptic) string of characters, like this:

plt.plot(x,y, "ko-")

The first letter of the string tells the computer with what color to draw the curve.
Allowed letters are r, g, b, c, m, y, k, and w, for red, green, blue, cyan, magenta,
yellow, black, and white. The second letter specifies a symbol or marker to be placed
at each data point along the curve. Possible symbols include s, o, x, *, and . for
squares, circles, crosses, stars, and dots, respectively. The set of allowed symbols is
quite large—see the online documentation at matplotlib.org for a full list. The third
part of the string specifies the style of the line. Allowed styles include “-” for a solid
line, “~-" for a dashed line, and “:” for a dotted line. Any part of the string can be
omitted. If the color is omitted the plot will use the default color, which is blue. If the
symbol specifier is omitted, there will be no symbols at all. If the line style is omitted
there will be no line. And if both symbol and line style are omitted then a solid line
is used with no symbols.

Thus in the example above, the string "ko-" produces a graph in black with cir-
cular data points connected by solid lines. The result is shown in Fig. 3.4c. Con-
would produce a graph in red with squares connected by dashed

"

versely, "rs--

3.1

GRAPHS

93

CHAPTER 3 | GRAPHICS AND VISUALIZATION

1.0 1.0

0.5 0.5
x
£

0.0 ‘I’l‘ 0.0
>

-0.5 -0.5

-1.0 -1.0

0 2 4 6 8 10 0 2 4 6 8 10
x axis
(@) (b)
1.0 1.0
0.5 0.5

sin x

y =sinx or y = cos X
o
o

0.0
I
>
-0.5 -0.5
-1.0 -1.0
0 2 4 6 8 10 0 2 4 6 8 10
X axis X axis

Figure 3.4: Graph styles. Several different versions of the same sine wave plot. (a) A basic graph, but with a little extra
space added above and below the curve to make it clearer. (b) A graph with labeled axes. (c) A graph with the data points
marked by circular dots. (d) Sine and cosine curves on the same graph.

lines, "g*" would produce green stars with no lines, and "m" on its own would pro-
duce a solid magenta line with no symbols.

Finally, we will often need to plot more than one curve or set of points on the
same graph. This can be achieved by using the plot function repeatedly. For instance,
here is a complete program that plots both the sine function and the cosine function
on the same graph, one as a solid curve, the other as a dashed curve:

import matplotlib.pyplot as plt
from numpy import linspace,sin,cos

94

x = linspace(0,10,100)

y1 = sin(x)

y2 = cos(x)

plt.plot(x,yl1,"k-")
plt.plot(x,y2,"k--")
plt.ylim(-1.2,1.2)

plt.xlabel("x axis")

plt.ylabel("y = sin x or y = cos x")
plt.show()

The result is shown in Fig. 3.4d.

This last example emphasizes the benefit of importing the entire pyplot module
under the name plt. As we use more and more functions from the module to tune
how our plot appears, it would become tedious to import each one individually. By
importing the entire module at once we avoid this.

There are many other variations and styles available in pyplot. You can add
legends and annotations to your graphs. You can change the color, size, or typeface
used in the labels. You can change the color or style of the axes, or add a background
color to the graph. These and many other possibilities are described in the online
documentation at matplotlib.org.

Exercise 3.1: Plotting experimental data

In the online resources you will find a file called sunspots. txt, which contains the observed
number of sunspots on the Sun for each month since January 1749. The file contains two
columns of numbers, the first being the month and the second being the sunspot number.

a) Write a program that reads the data and makes a graph of sunspots as a function of
time.

b) Modify your program to display only the first 1000 data points on the graph.

¢) Modify your program further to calculate and plot the running average of the data,
defined by
1 r
Y, =
k or+1 mZ Yk+m

=—r

where r = 5 in this case (and the y; are the sunspot numbers). Have the program plot
both the original data and the running average on the same graph, again over the range
covered by the first 1000 data points.

Exercise 3.2: Curve plotting

Although the plot function is designed primarily for plotting standard xy graphs, it can be
adapted for other kinds of plotting as well.

3.1

GRAPHS

95

CHAPTER 3

GRAPHICS AND VISUALIZATION

a) Make a plot of the so-called deltoid curve, which is defined parametrically by the equa-
tions
x = 2cos 6 + cos 20, y = 2sin 6§ — sin 20,
where 0 < 6 < 2. Take a set of values of 6 between zero and 2 and calculate x and y
for each from the equations above, then plot y as a function of x.
b) Taking this approach a step further, one can make a polar plot r = f(68) for some
function f by calculating r for a range of values of 6 and then converting r and 6 to
Cartesian coordinates using the standard equations x = rcos 6, y = rsinf. Use this

method to make a plot of the Galilean spiral r = 62 for 0 < 6 < 107.

¢) Using the same method, make a polar plot of “Fey’s function”

0
r=e% _2cos40 +sin® —

in the range 0 < 0 < 247,

3.2 SCATTER PLOTS

On an ordinary graph, such as those of the previous section, there is one independent
variable, usually placed on the horizontal axis, and one dependent variable, on the
vertical axis. The graph is a visual representation of the variation of the dependent
variable as a function of the independent one—voltage as a function of time, say,
or temperature as a function of position. In other cases, however, we measure or
calculate two dependent variables. A classic example in physics is the temperature
and brightness—also called the magnitude—of stars. Typically we might measure
temperature and magnitude for each star in a given set and we would like some way
to visualize how the two quantities are related. A standard approach is to use a scatter
plot, a graph in which the two quantities are placed along the axes and we make a
dot on the plot for each pair of measurements, i.e., for each star in this case.

There are two different ways to make a scatter plot using the

03—
0.2

0.1

pyplot module. One of them we have already seen: we can make
an ordinary graph, but with dots rather than lines to represent the
data points. Assuming we have imported pyplot under the name
plt as before, we could use a statement of the form

plt.plot(x,y,"ko")

to place a black circle at each point. A slight variant of the same

|

idea is this:

plt.plot(x,y,"k.")

A small scatter plot.

96

0.2 0.3

which will produce smaller dots.
Alternatively, pyplot provides the function scatter, which is
designed specifically for making scatter plots. It works in a similar

3.2

fashion to the plot function: you give it two lists or arrays, one containing the x-
coordinates of the points and the other containing the y-coordinates, and it creates
the corresponding scatter plot. We just write

plt.scatter(x,y)

You do not have to give a third argument telling scatter to plot the data as dots—all
scatter plots use dots automatically. As with the plot function, scatter only creates
the scatter plot in the memory of the computer but does not display it on the screen.
To display it you need to use the show function.

As an example, the file stars. txt in the online resources contains a list of the
temperatures and magnitudes of a set of stars, like this:

4849.4 5.97
5337.8 5.54
4576.1 7.72
4792.4 7.18
5141.7 5.92
6202.5 4.13

The first column is the temperature and the second is the magnitude. Here is a Python
program to make a scatter plot of these data:

import matplotlib.pyplot as plt
from numpy import loadtxt

data = loadtxt("stars.txt",float)
x = data[:,0]
y = datal[:,1]

plt.scatter(x,y)
plt.xlabel("Temperature")
plt.ylabel ("Magnitude")
plt.x1im(@,13000)
plt.ylim(-5,20)
plt.show()

If we run this program it produces the plot shown in Fig. 3.5.

Many of the same variants illustrated in Fig. 3.4 for the plot function work for
the scatter function also. In this program we used xlabel and ylabel to label the
temperature and magnitude axes, and x1im and ylim to set the ranges of the axes.
You can also change the size, style, and color of the dots and many other things.
In addition, as with the plot function, you can use scatter two or more times in
succession to plot two or more sets of data on the same graph, or you can use any

SCATTER PLOTS

File: hrdiagram.py

97

CHAPTER 3

98

GRAPHICS AND VISUALIZATION

20
154
°
t)
v 10 °
°
2
c
()]
©
= 5 |
0 2
°
-5 ; ; . . . -
0 2000 4000 6000 8000 10000 12000

Temperature

Figure 3.5: The Hertzsprung—Russell diagram. A scatter plot of the magnitude (i.e., bright-
ness) of stars against their approximate surface temperature (which is estimated from the color
of the light they emit). Each dot on the plot represents one star out of a catalog of 7860 stars
that are close to our solar system.

combination of scatter and plot functions to draw scatter data and graphs on the
same figure. Again, see the online manual at matplotlib.org for more details.

The scatter plot of the magnitudes and temperatures in Fig. 3.5 reveals an inter-
esting pattern in the data: a substantial majority of the points lie along a rough band
running from top left to bottom right of the plot. This is the so-called main sequence
to which most stars belong. Rarer types of stars, such as red giants and white dwarfs,
stand out in the figure as dots that lie off the main sequence. A scatter plot of stellar
magnitude against temperature is called a Hertzsprung—Russell diagram after the as-
tronomers who first drew it. The diagram is one of the fundamental tools of stellar
astrophysics.

In fact, Fig. 3.5 is, in a sense, upside down, because the Hertzsprung—Russell
diagram is, for historical reasons, normally plotted with both the magnitude and
temperature axes decreasing, rather than increasing.> One of the nice things about
pyplot is that it is easy to change this kind of thing with just a small modification

3The magnitude of a star is defined in such a way that it actually increases as the star gets fainter,
so reversing the vertical axis makes sense since it puts the brightest stars at the top. The temperature
axis is commonly plotted not directly in terms of temperature but in terms of the so-called color index,
which is a measure of the color of light a star emits, which is in turn a measure of temperature. Tempera-
ture decreases with increasing color index, which is why the standard Hertzsprung—Russell diagram has
temperature decreasing along the horizontal axis.

3.3 | DENSITY PLOTS

of the Python program. All we need to do in this case is change the x1im and ylim
statements so that the start and end points of each axis are reversed, thus:

plt.x1im(13000,0)
plt.ylim(20,-5)

Then the figure will be magically turned around.

3.3 DENSITY PLOTS

There are many situations in physics when we are working with two-dimensional
grids of data. A condensed matter physicist might measure variations in charge or
temperature or atomic deposition on a solid surface, a fluid dynamicist might mea-
sure the heights of waves in a ripple tank, a particle physicist might measure the dis-
tribution of particles incident on an imaging detector, and so on. Two-dimensional
data are harder to visualize on a computer screen than the one-dimensional lists of
values that go into an ordinary graph. One tool that is helpful in many cases is the
density plot, also sometimes called a heat map, a two-dimensional plot where color
or brightness is used to indicate data values. Figure 3.6 shows an example.

In Python density plots are produced by the function
imshow from pyplot. Here is the program that produced 0
Fig. 3.6: '

import matplotlib.pyplot as plt
from numpy import loadtxt

data = loadtxt("circular.txt",float)
plt.imshow(data)
plt.show()

The file circular. txt contains a simple array of values, like
this:

0.0050 0.0233 0.0515 0.0795 0.1075 ...
0.0233 0.0516 0.0798 0.1078 0.1358 ...
0.0515 0.0798 0.1080 0.1360 0.1639 ...
0.0795 0.1078 0.1360 0.1640 0.1918 ...
0.1075 0.1358 0.1639 0.1918 0.2195 ... Figure 3.6: A example of a density plot

The program reads the values in the file and puts them in the two-dimensional array
data using the loadtxt function, then creates the density plot with the imshow func-
tion and displays it with show. The computer automatically adjusts the color-scale so
that the picture uses the full range of available shades.

99

CHAPTER 3

100

GRAPHICS AND VISUALIZATION

The computer also adds numbered axes along the sides of the figure, which mea-
sure the rows and columns of the array, although it is possible to change the cali-
bration of the axes to use different units. We will see how to do this in a moment.
The image produced is a direct picture of the array, laid out in the usual fashion for
matrices, row by row, starting at the top and working downwards. Thus the top left
corner in Fig. 3.6 represents the value stored in the array element data[,@], fol-
lowed to the right by datale, 1], datal[@, 2], and so on. Immediately below those,
the next row is data[1,0], data[1,1], data[1, 2], and so on.

The numerical labels on the axes reflect the array indices, meaning that the origin
of the figure is at the top left and the vertical axis increases downward. While this is
natural from the point of view of matrices, it is a little odd for a graph. Most of us are
accustomed to graphs whose vertical axes increase upwards. What’s more, the array
elements datali, j] are written (as is the standard with matrices) with the row index
first—i.e., the vertical index—and the column, or horizontal, index second. This is the
opposite of the convention used with graphs where coordinates are normally in x, y
order—i.e., horizontal first, then vertical. There is nothing much we can do about
these conventions: they are the ones that mathematicians settled upon centuries ago
and itis too late to change them now. But the conflict between them can be confusing,
so take this opportunity to make a mental note.

In fact, Python provides a way to deal with the first problem, of the origin in
a density plot being at the top. You can include an additional argument with the
imshow function thus:

plt.imshow(data,origin="1ower")

which flips the density plot top-to-bottom, putting the array element data[e,0] in
the lower left corner, as is conventional, and changing the labeling of the vertical
axis accordingly, so that it increases in the upward direction. The resulting plot is
shown in Fig. 3.7a. We will use this trick for most of the density plots in this book.
Note, however, that this does not fix our other problem: the indices i and j for the
element datal1i, j] still correspond to vertical and horizontal positions respectively,
not the reverse. That is, the index i corresponds to the y-coordinate and the index j
corresponds to the x-coordinate. You need to keep this in mind when making density
plots—it is easy to get the axes swapped by mistake.

The black-and-white visuals in this book do not really do justice to the density
plot in Fig. 3.7a. The original is in bright colors, ranging through the spectrum from
dark blue for the lowest values to yellow for the highest. If you wish, you can run the
program yourself to see the density plot in its full glory—both the program, which
is called circular.py, and the data file circular.txt can be found in the online
resources. This color scheme is the default choice for density maps in Python, but it
is not always the best. In fact, for most purposes, a simple gray-scale from black to
white is easier to read. Luckily, it is simple to change the color scheme. To change

3.3 | DENSITY PLOTS

100

0
0 100 200 300 400

(b)

5

(© (d

Figure 3.7: Density plots. Four different versions of the same density plot. (a) A plot with the vertical axis flipped so that
the numbers increase up the page rather than down. (b) The same plot, but using the gray color scheme, which runs from
black for the lowest values to white for the highest. (c) A plot with the calibration of the axes changed. Because the range
chosen is different for the horizontal and vertical axes, the computer has altered the shape of the figure to keep distances
equal in all directions. (d) The same plot as in (c) but with the horizontal range reduced so that only the middle portion of
the data is shown.

101

CHAPTER 3

102

GRAPHICS AND VISUALIZATION

to gray-scale, for instance, you use the function gray, which takes no arguments:*

import matplotlib.pyplot as plt
from numpy import loadtxt

data = loadtxt("circular.txt",float)
plt.imshow(data,origin="1ower")

plt.gray()
plt.show()

Figure 3.7b shows the result. In black-and-white it looks pretty similar to the color
version in panel (a), but on the screen it looks entirely different. Try it if you like.

All of the density plots in this book use the gray scale (except Figs. 3.6 and 3.7a).
It may not be flashy, but it is informative, easy to read, and suitable for printing on
black-and-white printers or for publications that are in black-and-white only (like
this book and many scientific journals). However, pyplot provides many other color
schemes, which you may find useful occasionally. A complete list, with illustrations,
is given in the online documentation at matplotlib.org, but here are a few that
might find use in physics:

viridis The default blue and yellow color scheme

jet A “heat map” color scheme that goes from blue to red

gray Gray-scale running from black to white

hot An alternative heat map that goes black-red-yellow-white
spectral A spectrum with 7 clearly defined colors, plus black and white
bone An alternative gray-scale with a hint of blue

hsv A rainbow scheme that starts and ends with red

Each of these has a corresponding function, viridis(), jet(), and so forth, that se-
lects the relevant color scheme for use in future plots. Many more color schemes are
given in pyplot and one can also define one’s own schemes, although the definitions
involve some slightly tricky programming. Example code is given in Appendix C
and in the online resources to define three additional schemes that can be useful for
physics:®

redblue Runs from red to blue via black
redwhiteblue Runs from red to blue via white
inversegray Runs from white to black, the opposite of gray

4The function gray works slightly differently from other functions we have seen that modify plots,
such as xlabel or ylim. Those functions modified only the current plot, whereas gray (and the other color
scheme functions in pyplot) changes the color scheme for all subsequent density plots. If you write a
program that makes more than one plot, you only need to call gray once.

>To use these color schemes copy the file colormaps.py from the online resources into the folder
containing your program and then in your program say, for example, “from colormaps import redblue”.
Then the statement “redblue()” will switch to the redblue color map.

3.3

There is also a function colorbar() in the pyplot module that instructs Python to
add a bar to the side of your figure showing the range of colors used in the plot,
along with a numerical scale indicating which values correspond to which colors,
something that can be helpful when you want to make a more precise quantitative
reading of a density plot.

As with graphs and scatter plots, you can modify the appearance of density plots
in various ways. The functions xlabel and ylabel work as before, adding labels
to the two axes. You can also change the scale marked on the axes. By default,
the scale corresponds to the elements of the array holding the data, but you might
want to calibrate your plot with a different scale. You can do this by adding an extra
parameter to imshow, like this:

plt.imshow(data,origin="lower",extent=[0,10,0,5])

which results in a modified plot as shown in Fig. 3.7c. The argument consists of
“extent=" followed by a list of four values, which give, in order, the beginning and
end of the horizontal scale and the beginning and end of the vertical scale. The
computer will use these numbers to mark the axes, but the actual content displayed
in the body of the density plot remains unchanged—the extent argument affects only
how the plot is labeled. This trick can be very useful if you want to calibrate your
plot in “real” units. If the plot is a picture of the surface of the Earth, for instance,
you might want axes marked in units of latitude and longitude; if it is a picture of a
surface at the atomic scale you might want axes marked in nanometers.

Note also that in Fig. 3.7c the computer has changed the shape of the plot—its
aspect ratio—to accommodate the fact that the horizontal and vertical axes have dif-
ferent ranges. The imshow function attempts to make unit distances equal along the
horizontal and vertical directions where possible. Sometimes, however, this is not
what we want, in which case we can tell the computer to use a different aspect ratio.
For instance, if we wanted the present figure to remain square we would say:

plt.imshow(data,origin="1lower",extent=[0,10,0,5],aspect=2.0)

This tells the computer to use unit distances twice as large along the vertical axis as
along the horizontal one, which will make the plot square once more. You can also
specify the special value aspect="auto", which instructs the computer to choose the
aspect ratio automatically to match the shape of the window on the screen. You
can change the shape of the window after making the plot by dragging the window
corners with your mouse, and the aspect ratio will change with it, which allows you
to manually adjust the aspect ratio to get whatever result you want.

Note that we are free to use any or all of the origin, extent, and aspect ar-
guments together in the same function. We don’t have to use them all if we don’t
want to—any selection is allowed—and they can come in any order. We can also limit
our density plot to just a portion of the data using the functions x1im and ylim, as
with graphs and scatter plots. These functions work with the scales specified by the

DENSITY PLOTS

103

CHAPTER 3

104

GRAPHICS AND VISUALIZATION

extent argument, if there is one, or with the row and column indices otherwise. So,
for instance, we could say plt.x1im(2,8) to reduce the density plot of Fig. 3.7b to
just the middle portion of the horizontal scale, from 2 to 8. Figure 3.7d shows the re-
sult. Note that, unlike the extent argument, x1im and ylim do change which data are
displayed in the body of the density plot—the extent argument makes purely cos-
metic changes to the labeling of the axes, but x1im and ylim actually change which
data appear.

Finally, you can use the functions plot and scatter to superimpose graphs or
scatter plots of data on the same axes as a density plot. You can use any combination
of imshow, plot, and scatter in sequence, followed by show, to create a single graph
with density data, curves, or scatter data, all on the same set of axes.

EXAMPLE 3.1: WAVE INTERFERENCE

Suppose we drop a pebble into a pond and ripples radiate out from the spot where
it fell. We could create a simple representation of the physics with a sine wave,
spreading out in a uniform circle, to represent the height of the waves at some later
time. If the center of the circle is at x;, y; then the distance r; to the center from a
point x, y is

r=Vx-x)2+(y-y)? (3.1)

and the sine wave for the height is

&i(x,y) = & sinkry, (3.2)

where & is the amplitude and k is the wavevector, related to the wavelength A by
k=2r/A

Now suppose we drop another pebble in the pond, creating another set of circular
waves with the same wavelength and amplitude but centered on a different point

X2, Y2:

&E(x,y) = & sinkry with ry=(x —x2)2 + (y — y2)2. (3.3)

Then, assuming the waves add linearly (which is a reasonable assumption for water
waves, provided they are not too big), the total height of the surface at point x, y is

E(x,y) = & sinkry + & sinkr,. (3.4)

Suppose the wavelength of the waves is A = 5cm, the amplitude is 1cm, and the
centers of the circles are 20 cm apart. Here is a program to make an image of the
height over a 1 meter square region of the pond. To make the image we create an
array of values representing the height ¢ at a grid of points and then use that array
to make a density plot. In this example we use a grid of 500 X 500 points to cover the
1 m square, which means the grid points have a separation of 100/500 = 0.2 cm.

3.3

from math import sqgrt,sin,pi
from numpy import empty
import matplotlib.pyplot as plt

wavelength = 5.0
k = 2xpi/wavelength

xi0 = 1.0

separation = 20.0 # Separation of centers in cm

side = 100.0 # Side of the square in cm

points = 500 # Number of grid points along each side
spacing = side/points # Spacing of points in cm

Calculate the positions of the centers of the circles
x1 = side/2 + separation/2

y1 = side/2
x2 = side/2 - separation/2
y2 = side/2

Make an array to store the heights
xi = empty([points,points],float)

Calculate the values in the array
for i in range(points):
y = spacing*i
for j in range(points):
X = spacingxj
ri sqQrt((x=x1)**2+(y-y1)**2)
r2 = sqrt((x-x2)**2+(y-y2)**x2)
xili,j] = xi@*sin(k*r1) + xi@*sin(k*r2)

Make the plot

plt.imshow(xi,origin="1lower", extent=[0,side,0,side])
plt.gray()

plt.show()

This is the longest and most involved program we have seen so far, so it may
be worth taking a moment to make sure you understand how it works. Note in
particular how the height is calculated and stored in the array xi. The variables i
and j go through the rows and columns of the array respectively, and from these we
calculate the values of the coordinates x and y. Since, as discussed earlier, the rows
correspond to the vertical axis and the columns to the horizontal axis, the value of x
is calculated from j and the value of y is calculated from i. Other than this subtlety,

| DENSITY PLOTS

File: ripples.py

105

CHAPTER 3

106

GRAPHICS AND VISUALIZATION

0 20 40 60 80 1

00

Figure 3.8: Interference pattern. This plot, produced by the program given in the text,
shows the superposition of two circular sets of sine waves, creating an interference pattern
with fringes that appear as the gray bars radiating out from the center of the picture.

the program is a fairly straightforward translation of Egs. (3.1) to (3.4).6

If we run the program above, it produces the picture in Fig. 3.8, showing clearly
the interference of the two sets of waves. Interference fringes are visible as the gray
bands radiating from the center.

Exercise 3.3: There is a file in the online resources called stm. txt, which contains a grid
of values from scanning tunneling microscope measurements of the (111) surface of silicon.
A scanning tunneling microscope is a device that measures the shape of a surface at the atomic
level by tracking a sharp tip over the surface and measuring quantum tunneling current as a
function of position. The end result is a grid of values that represent the height of the surface
and the file stm. txt contains just such a grid of values. Write a program that reads the data
contained in the file and makes a density plot of the values. Use the various options and

®One other small detail is worth mentioning. We called the variable for the wavelength “wavelength”.
You might be tempted to call it “lambda” but if you did you would get an error message and the program
would not run. The word lambda has a special meaning in the Python language and cannot be used as
a variable name, just as words like “for” and “if” cannot be used as variable names. (See footnote 4 on
page 15.) The names of other Greek letters—alpha, beta, gamma, and so on—are allowed as variable names.

variants you have learned about to make a picture that shows the structure of the silicon
surface clearly.

3.4 DRAWING

One of the flashiest applications of computers today is computer animation. In
any given week millions of people flock to cinemas worldwide to watch the latest
computer-animated movie from the big animation studios. Graphics and animation
find a more humble, but very useful, application in computational physics as a tool
for visualizing the behavior of physical systems.

There are a number of different packages available for making general drawings
and animations in Python, some of them very complex. In this book we will use the
package qdraw, a simpler package intended specifically for the sort of scientific dia-
grams and animations we will be making.” The package works by creating specified
objects on the screen, such as circles, squares, lines, and so forth, and then optionally
changing their position or orientation to make them move around. Here is a short
first program using the package:

from qdraw import window,circle, show
window(xlim=[-1,1]1,ylim=[-1,11)
circle(pos=[0,0],size=1)

show()

When we run this program a window appears on the screen with a circle in it, as
shown in Fig. 3.9. The program has done a number of things. First, the window func-
tion creates the window on your screen and also specifies the axes of the window.
The x1im and ylim arguments give the beginning and end of the horizontal and ver-
tical scales respectively, so in this case both axes run from —1 to +1. We use these
coordinates to place and move objects in the window.

Next, the circle function creates a circle with a given position and size. The
pos argument gives the position of the center of the circle—right at the origin in this
case—and the size argument gives the diameter of the circle. The arguments of the
window and circle functions in our example are all integers, but this is not required.
They can also be floating-point numbers.

The circle function only creates the circle in the memory of the computer, in a
manner similar to the plot function in pyplot. The circle does not actually appear
until we call the show function in the last line of the program. This function serves
a purpose similar to the show function in pyplot. It draws the circle on the screen
and then “blocks” the program so that you can see the results: the program pauses
at the show function until you close the graphics window, then continues, although

"The qdraw package was written by the author of this book, but employs Python’s native “turtle”
graphics engine, a standard part of the Python language.

3.4

DraAwWING

107

CHAPTER 3

108

GRAPHICS AND VISUALIZATION

Python Graphics

Figure 3.9: The circle drawn by the qdraw example in the text.

in most cases the show function will be the last line of the program anyway, so the
program just finishes once the window is closed. In this simple program, it may seem
pointless to have separate circle and show functions, but, like the corresponding
construction in pyplot, the show function is useful for assembling more complex
diagrams. It allows you to place many objects one after another and then visualize
them all by calling the show function once.

Both the window and circle functions can have additional arguments that specify
various details. For the window function we have:®

width Specifies the width of the window in pixels
height Specifies the height of the window in pixels
bgcolor Specifies the background color of the window

For the circle function we have:

81t is possible to specify values for width and height that impose a different aspect ratio on the
window than the one implied by x1im and ylim, effectively forcing the pixels in the window to be non-
square. Python does not handle this situation well, producing distorted or glitchy images. To avoid this,
you should specify at most three out of width, height, x1im, and ylim. If you specify less than three, the
computer will use sensible defaults for the others. If you specify all four, it will ignore the height and
behave as if only the other three were given. In most cases, giving x1im and ylim only will give good
results.

3.4 | DrawING

color Specifies the color of the circle
olcolor Specifies the color of the outline of the circle
olwidth Specifies the width of the outline in pixels

Documentation for these functions and others in the qdraw package is given in Ap-
pendix B on page 568.

Colors in qdraw can be given as strings surrounded by quotation marks and spec-
ified in various ways. You can use single letters as in pyplot: r, g, b, c, m, y, k, and w
for red, green, blue, cyan, magenta, yellow, black, and white, respectively. You can
also use complete words, like "black" or "orange". Or, if you are an expert, you can
use full RGB colors specified either as hexadecimal strings of the form "#12ab34"
or as trios of real numbers [0.22,0.75,0.31] with each number between zero and
one. Finally, colors can be specified as a single real number between zero and one
that gets converted into a color using one of the matplotlib color schemes, such as
the default blue-yellow “viridis” color scheme or the gray-scale color scheme—see
Section 3.3. The color scheme and the range of numbers used in the mapping can be
specified using the function setcmap—see Appendix B again.

The gdraw package also includes squares, rectangles, ellipses, and arbitrary poly-
gons with any shape or size. Here are the functions that create each of these objects:

square(size=s,pos=[x,y])
rectangle(left=1,right=r,bottom=b, top=t,pos=[x,y])
ellipse(width=w,height=h,pos=[x,y])
polygon([[x1,y1]1,[x2,y21,...]1,pos=[x,y]l)

For a detailed explanation of the meaning of all the parameters and full documenta-
tion take a look at Appendix B. In addition to the parameters above, ones like color
and olcolor can also be used to give the objects a different appearance.

By placing many objects on the screen in different positions and orientations,
one can build up complex diagrams. Note that when we place multiple objects, the
later ones are drawn on top of the earlier ones and may partially hide them from
sight. When all the objects are in black, which is the default, this has no effect, since
they all blend together anyway, but it can be noticeable if they have different colors.

EXAMPLE 3.2: PICTURING AN ATOMIC LATTICE

Suppose we have a solid composed of atoms arranged on a simple square lattice. We
can visualize the arrangement of the atoms using the qdraw package by creating a
picture with many circles at integer positions (i, j) with i, j = =L ... L, thus:

from qdraw import window,circle, show File: lattice.py

|
[
w

109

CHAPTER 3 | GRAPHICS AND VISUALIZATION

Figure 3.10: Visualization of atoms on a square lattice. A simple drawing of atoms on a
square lattice, generated using the program in the text.

window(xlim=[-L,L],ylim=[-L,L])
for i in range(-L,L+1):
for j in range(-L,L+1):
circle(pos=[i,jl,size=s)
show()

Observe how this program uses two nested for loops to run through all combinations
of the values of i and j. When we run this program it produces the picture shown
in Fig. 3.10. Download the program and try it if you like. You can also change the
value of L to make a bigger lattice or s to alter the sizes of the atoms.

Of course real atomic lattices are (mostly) three-dimensional, whereas our simple
picture here is two-dimensional. Nonetheless such visualizations can be helpful. See
Exercise 3.4 below for some examples.

Exercise 3.4: Using the program from Example 3.2 above as a starting point, or starting from
scratch if you prefer, create the following visualizations.

a) A sodium chloride crystal has sodium and chlorine atoms arranged on a square lattice,
but the atoms alternate between sodium and chlorine in checkerboard fashion, so that
each sodium is surrounded by chlorines and each chlorine is surrounded by sodiums.
Create a visualization of (a two-dimensional) sodium chloride lattice using two different
colors to represent the two types of atoms.

110

b) The face-centered cubic (fcc) lattice is the most common lattice in naturally occurring
crystals. It consists of a square lattice with an additional atom at the center of each
square. Create a two-dimensional visualization of an fcc lattice with a single species of
atom (such as occurs in metallic nickel, for instance).

3.5 ANIMATION

It is possible to change the properties of a circle or other shape after it is first created,
including its position, size, and color. By doing so repeatedly, we can make the object
appear to move on the screen and hence create an animation of a moving system. We
will use this approach extensively in this book to visualize the workings of physical
systems, such as the swing of a pendulum or the motions of the planets.

Consider a circle again. In order to change the properties of a circle on the screen
after it is created, we use a slightly different form of the circle function, like this:

c = circle(size=1,pos=[0,0])

This form, in addition to placing a circle on the screen, creates a variable c in a manner
similar to the way functions like zeros or empty create arrays (see Section 2.4.2). The
new variable c is a variable of type “circle,” in the same way that other variables are
of type int or float.’ This is a special variable type used only in the qdraw package
to store the properties of circles and we can change those properties by performing
operations on the variable. Thus, for example, we can say

from qdraw import window,circle,draw

window(xlim=[-1,1],ylim=[-1,1])
c = circle(size=1,pos=[0,0])
c.setpos(0.5,0.5)

draw()

The statement c.setpos(@.5,0.5) moves the center of the circle to new coordinates
(0.5,0.5), but the change only occurs in the memory of the computer and not (yet)
on the screen. That is what the draw statement is for: it tells the computer to draw
all objects with their current positions. If the position of an object has changed, as
here, this means the object will move on the screen. If we have multiple objects on
the screen at once we can change all of their positions and then do draw() once and
they will all move simultaneously.

The draw function is similar to the show function, but with a crucial difference: it
is not a blocking function. It updates the drawing on the screen and then the program

Technically, it is a Python Turtle object. See Appendix B and the documentation for the turtle
package at https://docs.python.org/3/library/turtle.html if you want to learn more.

3.5

ANIMATION

111

CHAPTER 3

File: revolve.py

112

GRAPHICS AND VISUALIZATION

continues. This allows us to make a series of changes to the position of an object or
objects, each followed by draw(), and create an animation.

To illustrate this approach let us make a simple animation of a circle which is itself
looping around in a larger circle. The steps involved in doing this are: (1) create the
circle, (2) go round a for loop and calculate the position of the circle at each step, then
(3) update the position and call the draw function on each step to move the circle on
the screen. Here is what the code looks like:

from gdraw import window,circle,draw
from math import cos,sin,pi
from numpy import arange

window(xlim=[-1.1,1.1]1,ylim=[-1.1,1.11)
c = circle(size=0.2,pos=[1,0])
for theta in arange(9,10%pi,0.02):

x = cos(theta)

y = sin(theta)

c.setpos(x,y)

draw()

Obviously we cannot illustrate this moving animation on the static page of this
book. You will have to run the program yourself, but if you do you will discover
that, while it does work, it is not very useful because the circle moves so fast you can
barely see it. On any reasonably fast computer the program will make hundreds of
moves per second and the moving circle will just be a blur. To overcome this issue,
the draw function can pause for a moment each time it updates the screen. We can

say

draw(0.01)

and the program will pause for 0.01 seconds each time around the loop, meaning that
the animation will have a framerate of 100 frames per second, more than enough to
ensure a smooth motion of the circle without being too fast. The version of the
program in the online resources includes this modification and produces a good an-
imation of a revolving circle. This simple program could be the basis, for instance,
for an animation of the simultaneous motions of the planets of the solar system.
Exercise 3.7 below invites you to create such an animation.
Another nice touch is to add the line

c.trail(length=30)

immediately after the circle is first created with the circle function. This statement
turns on a “trail,” which is a sort of short streamer that gets dragged behind the circle
as it moves, so that you can see where the circle has been. Give it a try. The length
parameter controls how long the streamer is: the length is specified as an integer n

3.5 | ANIMATION

and the streamer shows the last n movements of the object. If no length parameter is
provided then the trail has no length limit—it records every movement of the object
for as long as the animation lasts. When we look at the more complicated motions
of real physical systems, this feature will be useful for clear visualization of those
motions.

In addition to position there are various other properties of objects that we can
change, such as color, rotation, and whether they are visible at all. For example,
the statement c.setcolor("green") will change the color of our circle to green.
And c.visible(False) will make the circle invisible, though not actually delete it—
it still exists and maintains its position, and it can be made to appear again with
c.visible(True).

If we say c.setangle(@.5) the orientation of the object will be rotated to +0.5
radians from its initial position, in a counterclockwise direction. If our object is a
circle this has no visible effect—a circle does not change when we rotate it. But for
other objects it does make a difference. Here is a program, for instance, that produces
an animation of a rotating square:

from qdraw import window,square,draw File: spin.py
from math import pi
from numpy import arange

window(xlim=[-1.1,1.1]1,ylim=[-1.1,1.11)
s = square(size=1)
for theta in arange(0,20*pi,0.02):
s.setangle(theta)
draw(0.01)

There are a number of other features of the qdraw package that we will describe
as the need arises later in the book, but for now this introduction will be enough to
get us started.

Exercise 3.5: Lissajous figures

In the program revolve. py above we calculated the position of the circle as x = cos 8, y = sin 6.
Modify the program so that instead it uses x = cos m0, y = cos nf, where m and n are positive
integers. Also add a trail to the circle using c.trail(). Run the program withm = 1, n = 2
and with m = 2, n = 3 and observe the motion you get. This type of motion is called a Lissajous
figure, after French physicist Jules Lissajous.

Exercise 3.6: Make a program in which there are N circles, equally spaced in a larger circle

and all rotating around it at the same speed. N should be a variable and your program should
be written so that you can change the value of N in only one place and the number of circles

113

CHAPTER 3

114

GRAPHICS AND VISUALIZATION

around the loop will automatically change. Give some thought to how you are going to store
the N circle objects, and what the formulas are for the x and y positions of each circle.

Exercise 3.7: Visualization of the solar system

The innermost six planets of our solar system revolve around the Sun in roughly circular orbits
that all lie approximately in the same (ecliptic) plane. Here are some basic parameters:

Radius of object Radius of orbit Period of orbit

Object (km) (millions of km) (days)
Mercury 2440 57.9 88.0
Venus 6052 108.2 224.7
Earth 6371 149.6 365.3
Mars 3386 227.9 687.0
Jupiter 69173 778.5 4331.6
Saturn 57316 1433.4 10759.2
Sun 695500 - -

Using the qdraw package, create an animation of the solar system that shows the following:

a) The Sun and planets as circles in their appropriate positions and with sizes proportional
to their actual sizes. Because the radii of the planets are tiny compared to the distances
between them, represent the planets by circles with radii c¢; times larger than their
correct proportionate values, so that you can see them clearly. Find a good value for
c1 that makes the planets visible. You will also need to find a good radius for the Sun.
Choose any value that gives a clear visualization. (It doesn’t work to scale the radius
of the Sun by the same factor you use for the planets, because it will come out looking
much too large. So just use whatever works.) For added realism, you may also want to
make your circles different colors. For instance, Earth could be blue and the Sun could
be yellow.

b) The motion of the planets as they move around the Sun (by making the circles move).
In the interests of alleviating boredom, construct your program so that time in your
animation runs a factor of ¢y faster than real time. Find a good value for ¢z that makes
the motion of the orbits easily visible but not unreasonably fast. Make use of the time
delay argument of the draw function to make your animation run smoothly.

Hint: You could define individual circle variables for each planet, but it may be more conve-
nient to store them in an array or a list. You can append circle variables to a list just as you
would any other variable, or you can create an array of type circle with

from gdraw import circle
planet = empty(nplanets,circle)

In other words, circle works as both the name of the function that creates a circle and as the
type of the variable it creates.

CHAPTER SUMMARY

e Graphs can be produced in Python using the matplotlib package, and specifi-
cally the module pyplot.

o This package includes the functions plot for making normal xy graphs, scatter
for making scatter plots, and imshow for making density plots. A fourth function,
show, displays the finished graph on the screen.

o There are variety of other functions that allow you to modify the appearance of
your graphs, including functions for setting the scale on the x and y axes, adding
labels to the axes, and changing the color scheme.

o The package qdraw, specially written for this book, provides a way to make simple
diagrams and animations of physical systems. It provides functions that draw
various objects, such as circles, squares, polygons, and lines, on the screen.

e Once drawn, objects can be moved around with functions that change their loca-
tion or orientation. Moves only become visible once an additional function draw
is called. By a sequence of moves, each followed by draw, one can then animate
the objects on the screen to visualize the behavior of the system.

FURTHER EXERCISES

3.8 Deterministic chaos and the Feigenbaum plot: One of the most famous examples of
the phenomenon of chaos is the logistic map, defined by the equation

x' =rx(1-x).

For a given value of the constant r you take a value of x—say x = %—and you feed it into the
right-hand side of this equation, which gives you a value of x”. Then you take that value and
feed it back in on the right-hand side again, which gives you another value, and so forth. This
is an iterative map. You keep doing the same operation over and over on the values of x, and
one of three things happens:

1. The value settles down to a fixed number and stays there. This is called a fixed point.
For instance, x = 0 is always a fixed point of the logistic map. (You put x = 0 on the
right-hand side and you get x” = 0 on the left.)

2.1t does not settle down to a single value, but it settles down into a periodic pattern,
rotating around a set of values, such as say four values, repeating them in sequence.
This is called a limit cycle.

3. It goes crazy. It generates a seemingly random sequence of numbers that appear to have

no rhyme or reason to them at all. This is deterministic chaos. “Chaos” because it really
does look chaotic, and “deterministic” because even though the values look random,

EXERCISES

115

CHAPTER 3

116

GRAPHICS AND VISUALIZATION

they’re not. They are clearly entirely predictable, because they are given to you by one
simple equation. The behavior is determined, although it may not look like it.

Write a program that calculates and displays the behavior of the logistic map. Here is
what you need to do. For a given value of r, start with x = % and iterate the logistic map
equation a thousand times. That will give it a chance to settle down to a fixed point or limit
cycle if it is going to. Then run for another thousand iterations and plot the points (r, x) on
a graph where the horizontal axis is r and the vertical axis is x. You can either use the plot
function with the options "ko" or "k." to draw a graph with dots, one for each point, or you
can use the scatter function to draw a scatter plot (which always uses dots). Repeat the whole
calculation for values of r from 1 to 4 in steps of 0.01, plotting the dots for all values of r on
the same figure and then finally using the function show once to display the complete figure.

Your program should generate a distinctive plot that looks like a tree bent over on its side.
This famous picture is called the Feigenbaum plot, after its discoverer Mitchell Feigenbaum, or
sometimes the figtree plot, a play on the fact that it looks like a tree and Feigenbaum means

“figtree” in German.'?

Give answers to the following questions:

a) For a given value of r, what would a fixed point look like on the Feigenbaum plot? How
about a limit cycle? And what would chaos look like?

b) Based on your plot, at what value of r does the system move from orderly behavior (fixed
points or limit cycles) to chaotic behavior? This point is sometimes called the “edge of
chaos”

The logistic map is a very simple mathematical system, but deterministic chaos is seen
in many more complex physical systems also, including especially fluid dynamics and the
weather. Because of its apparently random nature, the behavior of chaotic systems is diffi-
cult to predict and strongly affected by small perturbations in initial conditions or parameter
values. You have probably heard of the classic exemplar of chaos in weather systems, the
butterfly effect, which was popularized by physicist Edward Lorenz in 1972 when he gave a
lecture to the American Association for the Advancement of Science entitled, “Does the flap
of a butterfly’s wings in Brazil set off a tornado in Texas?”!!

3.9 Hydrogen wavefunction: In suitable units the (spatial part of the) electronic wave-
function of the 2p atomic level of hydrogen is

Y(xy2) =z(2-r)e™,

1There is another approach for computing the Feigenbaum plot, which is neater and faster, making
use of Python’s ability to perform arithmetic with entire arrays. You could create an array r with one
element containing each distinct value of r you want to investigate: [1.0, 1.01, 1.02, ... 1. Then
create another array x of the same size to hold the corresponding values of x, which should all be initially
set to 0.5. Then an iteration of the logistic map can be performed for all values of r at once with a statement
of the form x = r*x*(1-x). Because of the speed with which Python can perform calculations on arrays,
this method should be significantly faster than the more basic method above.

1 Although arguably the first person to suggest the butterfly effect was not a physicist at all, but the
science fiction writer Ray Bradbury in his famous 1952 short story A Sound of Thunder, in which a time
traveler’s careless destruction of a butterfly during a tourist trip to the Jurassic era changes the course of
history.

where r = \/x2 + y2 + 22,
a) Write a user-defined function to return the value of {/(x, y, z) for arbitrary x, y, z.

b) Use your function to make a density plot of the probability density |1/|? of the electron
in the xz plane, for values of x and z between —2 and 2.

3.10 The Mandelbrot set: The Mandelbrot set, named after its discoverer, French mathe-
matician Benoit Mandelbrot, is a fractal, an infinitely ramified mathematical object that con-
tains structure within structure as deep as we care to look. The definition of the Mandelbrot
set is in terms of complex numbers as follows.
Consider the equation
Z =72+

where z is a complex number and c is a complex constant. For any given value of ¢ this
equation turns an input number z into an output number z’. The definition of the Mandelbrot
set involves the repeated iteration of this equation: we take an initial starting value of z and
feed it into the equation to get a new value z’. Then we take that value and feed it in again to
get another value, and so forth. The Mandelbrot set is the set of points in the complex plane
that satisfies the following definition:

For a given complex value of ¢, start with z = 0 and iterate repeatedly. If the mag-
nitude |z| of the resulting value is ever greater than 2, then the point in the complex
plane at position ¢ is not in the Mandelbrot set, otherwise it is in the set.

In order to use this definition one would, in principle, have to iterate infinitely many times
to prove that a point is in the Mandelbrot set, since a point is in the set only if the iteration
never passes |z| = 2 ever. In practice, however, one usually just performs some large number
of iterations, say 100, and if |z| has not exceeded 2 by that point then we call that good enough.

Write a program to make an image of the Mandelbrot set by performing the iteration
for all values of ¢ = x +iy on an N X N grid spanning the region where -2 < x < 2 and
—2 < y < 2. Make a density plot in which grid points inside the Mandelbrot set are colored
black and those outside are colored white. The Mandelbrot set has a very distinctive shape
that looks something like a beetle with a long snout—you’ll know it when you see it.

Hint: You will probably find it useful to start off with quite a coarse grid, i.e., with a small
value of N—perhaps N = 100—so that your program runs quickly while you are testing it.
Once you are sure it is working correctly, increase the value of N to produce a final high-
quality image of the shape of the set.

If you are feeling enthusiastic, here is another variant of the same exercise that can produce
amazing looking pictures. Instead of coloring points just black or white, color points according
to the number of iterations of the equation before |z| becomes greater than 2 (or the maximum
number of iterations if |z| never becomes greater than 2). If you use one of the more colorful
color schemes Python provides for density plots, such as the viridis or jet schemes, you
can make some spectacular images this way. Another interesting variant is to color according
to the logarithm of the number of iterations, which helps reveal some of the finer structure
outside the set.

3.11 The Spirograph: The Spirograph is a classic mechanical toy, invented in the 1960s,
that makes geometric drawings. A plastic ring about 15 or 20 cm across is pinned to a piece of
paper. The ring has teeth around its inner rim and a small cog wheel rolls around inside this

EXERCISES

117

CHAPTER 3

118

GRAPHICS AND VISUALIZATION

Figure 3.11: The Spirograph. A Spirograph has a toothed wheel that rolls inside a toothed
ring. The wheel has a small hole in it, through which one pokes a pen and the pen traces an
elaborate flower-like pattern on the paper underneath as it moves.

rim, meshing with the teeth and turning as it goes—see Fig. 3.11. The cog wheel has a hole in
it, through which one can stick the tip of a ball-point pen, which draws a trail across the paper
as you push the wheel around in circles. The result is a pleasing flower-like pattern, whose
details can be adjusted by changing the size of the ring or the wheel. In this exercise, you
will write a program to create an animation of the motion of the Spirograph and the pattern
it generates.

Suppose the ring of the Spirograph is centered at the origin and its inner rim has radius Ry,
as shown in Fig. 3.11. If the wheel has radius R,,, then the distance from the origin to the center
of the wheel is R, — R,, and when the wheel has rolled an angle 0 around the rim the position
Xw, Yw Of the center is given by

Xw = (R — Ryy) cos 0, Yw = (R — Ry) sin 6.

The distance traveled by the wheel along the inside of the rim is 6R;, so the angle ¢ turned by
the wheel as it rolls is ¢ = —6R,/R,,, with the minus sign indicating that the wheel turns in
the opposite direction to its movement around the rim. If the distance between the center of
the wheel and the pen hole is R, then the position of the pen hole is given by

Xp = Xw + Rpcos ¢, Yp = Yw + Rpsing.

a) Write a program that makes an animation showing the stationary ring, the wheel mov-
ing around the inner rim of the ring, and pen hole as it moves, using a circle for each
one, with R, = 0.83, R,, = 0.4, and Rp =035 (in arbitrary units).

b) Remove the circles representing the ring and the wheel from your animation, keeping
only the one for the pen hole, and add a trail to represent the line drawn by the pen,
so you can see what pattern it generates. (Hint: If you specify no length parameter for
the trail it will have no length limit and will record the entire path of the pen hole as it
moves.)

c) Vary the values of the three radii R, R,,, and Rp and find at least two more settings that
produce interesting patterns.

EXERCISES

119

