
Chapter 2

Python programming for physicists

O
ur first item of business is to learn how to write computer programs in the

Python programming language. Python is easy to learn, simple to use, and

enormously powerful. It has facilities and features for performing tasks of

many kinds. You can do art or engineering in Python, surf the web or calculate your

taxes, write words or write music, make a movie or make the next billion-dollar In-

ternet start-up. We will not a�empt to learn about all of Python’s features, however,

but restrict ourselves to those that are most useful for doing physics calculations. We

will learn about the core structure of the language �rst—how to put together the in-

structions thatmake up a program—butwewill also learn about some of the powerful

features that can make the life of a computational physicist easier, such as features

for doing matrix calculations and features for making graphs and computer graphics.

Some other features of Python that are more specialized, but still occasionally useful

for physicists, will not be covered here, but there is excellent documentation avail-

able on the web, so if there is something you want to do and it is not in this book,

you can probably �nd it online. A good place to start when looking for information

about Python is the o�cial Python website at www.python.org.

2.1 Getting started

A Python program consists of a list of instructions, resembling a mixture of English

words and mathematics and collectively referred to as code. We will see exactly what

form the instructions take in a moment, but �rst we need to know how and where

to enter them into the computer.

When you are programming in Python you typically work in a development en-

vironment, which takes the form of a window or windows on your computer that

show the program you are working on and allow you to enter or edit lines of code

and run your program. �ere are several di�erent development environments avail-

able for use with Python. Here we describe two of the most common ones, the basic

environment called IDLE and the more sophisticated Jupyter. (If you already know

you want to use Jupyter, you can skip the next section on IDLE and go straight to

8

2.1 | Getting started

Section 2.1.2 on page 11.)

IDLE and Jupyter are by nomeans the only development environments for Python.

If you are comfortable with computers and enjoy trying things out, there are a wide

range of others, mostly available for free, with names like PyCharm, Spyder, PyDev,

Wing, and more. You can also use general-purpose coding environments like Visual

Studio to write Python programs. Feel free to experiment and see what works for

you. Either IDLE or Jupyter can do everything we will need for the material in this

book, but nothing in the book will depend on what development environment you

use. As far as the programming and the physics go, they are all equivalent.

2.1.1 IDLE

IDLE1 is a simple development environment that comes with the Python language. If

you have Python installed on your computer then you probably have IDLE installed

as well. If not, it is available as a free download from the web. How you start IDLE

depends on what kind of computer you have, but most commonly you click on an

icon on the desktop or under the start menu on a PC, or in the dock or the applications

folder on a Mac. If you wish, you can now start IDLE running on your computer and

follow along with the developments in this section step by step.

�e �rst thing that happens when you start IDLE is that a window appears on

the computer screen. �is is the Python shell window. It will have some text in it,

looking something like this:

Python 3.12 (main, Feb 4 2025)

Type "help" for more information.

>>>

�is tells you what version of Python you are running (your version may be di�er-

ent from the one above), along with some other information, followed by the symbol

“>>>”, which is a prompt: it tells you that the computer is ready for you to type

something in. When you see this prompt you can type any command in the Python

language at the keyboard and the computer will carry out that command immedi-

ately. �is can be a useful way to quickly try out individual Python commands but it

is not the main way that we will use Python. Normally, we want to type in an entire

Python program at once, consisting of many commands one a�er another, then run

the whole program together. To do this, go to the top of the window, where you

will see a set of menu headings. Click on the “File” menu and select “NewWindow”.

�is will create a second window on the screen, this one completely empty. �is is

an editor window. It behaves di�erently from the Python shell window. You type a

1IDLE stands for “Integrated Development Environment” (sort of). �e name is also a joke, the Python

language itself being named, allegedly, a�er the in�uential British comedy troupe Monty Python, one of

whose members was the comedian Eric Idle.

9

Chapter 2 | Python programming for physicists

complete program into this window, usually consisting of many lines. You can edit

it, add things, delete things, and so forth, in a manner similar to the way one works

with a word processor. �e menus at the top of the window provide a range of word-

processor style features, such as cut and paste, and when you are �nished writing

your program you can save your work just as you would with a word processor doc-

ument. �en you can run your complete program, the whole thing, by clicking on

the “Run” menu at the top of the editor window and selecting “Run Module” (or you

can press the F5 function key, which is quicker).

To get the hang of how it works, try the following quick exercise. Open up an

editor window if you didn’t already (by selecting “New Window” from the “File”

menu) and type the following two-line program into the window, just as it appears

here:

x = 1

print(x)

(If it is not obvious what this is meant to do, it will be soon.) Now save your program

by selecting “Save” from the “File” menu at the top of the editor window and typing

in a name.2 �e names of all Python programs must end with “.py”, so a suitable

name might be “example.py” or something similar. (If you do not give your program

a name ending in “.py” then the computer will not know it is a Python program and

will not handle it properly when you try to load it again—you will probably �nd that

such a program will not even run at all, so the “.py” is important.)

Once you have saved your program, run it by selecting “Run module” from the

“Run” menu. When you do this the program will start running, and any output it

produces—anything it says or does or prints out—will appear in the Python shell

window (the other window, the one that appeared �rst). In this case you should see

something like this in the Python shell window:

1

>>>

�e only result of this small program is that the computer prints out the number

“1” on the screen. (It’s the value of the variable x in the program—see Section 2.2.1

below.) �e number is followed by a prompt “>>>” again, which tells you that the

computer is done running your program and is ready to do something else.

It is always a good idea to save your programs, as here, when they are �nished

2Note that you can have several windows open at once, including the Python shell window and one

or more editor windows, and that each window has its own “File” menu with its own “Save” item. When

you click on one of these to save, IDLE saves the contents of the corresponding window and that window

only. �us if you want to save a program you must be careful to use the “File” menu for the window

containing the program, rather than for any other window. If you click on the menu for the shell window,

for instance, IDLE will save the contents of the shell window, not your program, which is probably not

what you wanted.

10

2.1 | Getting started

and ready to run. If you forget to do it, IDLE will ask you if you want to save before

it runs your program.

2.1.2 Jupyter

Jupyter is a more advanced development environment for Python programming that

allows you not only to enter and run Python code but also to save the output from

the code, and to interleave the code with text and graphics, providing commentary,

analysis, or documentation. Figure 2.1 shows a screenshot of a Jupyter session, called

a notebook, with the code of a program, its output, and some text all visible.

Jupyter is free and once installed it runs in your web browser, appearing in a

standard window or tab within the browser. �ere is also a free web version of

Jupyter, created byGoogle and calledColab, which provides all the bene�ts of Jupyter

without requiring you to install anything at all—you just open the web page and start

programming. You can �nd Colab at https://colab.research.google.com.

If you wish, you can start Jupyter running on your computer now and follow

along with the developments in this section step by step.

When you �rst start up Jupyter, you will see a �le browser window with a list of

Figure 2.1: A Jupyter notebook running in a browser window. Jupyter notebooks allow

you to mix text, code, and program output, as seen here, as well as graphics and images, to

make a document that combines programs, documentation, results, and notes in a single place.

11

Chapter 2 | Python programming for physicists

the �les in your current folder. Over to the right you will see a menu bu�on labeled

with the word “New,” and if you click there it will give you the option to start a new

Python notebook (probably labeled “Python 3” if you are using the common version 3

of the Python language). Once you start a notebook you will see a new page with a

box that looks like this:

�is is a Jupyter cell. You can click on it and type in Python code. For example, try

clicking on the cell and entering the following short program, exactly as it appears

here:

Once you have typed in the program, you can run it by clicking the “Run” bu�on

at the top of the screen (or by pressing Shi�-Enter, which is o�en quicker). When

you do this the program will start running and any output it produces—anything it

says or does or prints out—will appear immediately below it. In this case you will

see something like this:

�e only result of this small program is that the computer has printed out the number

“1.” (It’s the value of the variable x in the program.) Now you can go back and make

additions or changes to the program and run it again if you wish, editing it as many

times as you like until it gives the results you want. When you are �nished, or at any

point along the way, you can save your entire Jupyter notebook by clicking “Save”

under the “File” menu.

As mentioned above, Jupyter also allows you to add text to your notebook, doc-

umenting or commenting on your code. To do this, go to the pull-down menu that

says “Code” and change it to “Markdown”. �is will change the current cell to a text

cell, into which you can now type ordinary text—anything you like:

When you “run” the cell, the text will be added to your document, so the complete

notebook now looks like this:

12

2.1 | Getting started

Text entered in this way has no e�ect on your code—its only purpose is to provide

notes and context for human readers. A text cell can also contain HTML markup

language, which allows you to specify emphasis, colors, fonts, and other stylistic

features, and mathematics, which is wri�en using LaTeX mathematical notation.3

Jupyter allows you to have multiple cells containing code or text in the same

notebook, a collection of programs together in one document. For instance, if you

were working through the examples and exercises in this chapter you might want to

put all your code and results in one document. �e code in each code cell can be run

individually by clicking on the cell and then clicking “Run.”

A word of caution is in order here, however: the portions of code in di�erent

cells of a Jupyter notebook are not completely separate programs. Although each

cell can be run on its own, it shares variables and functions previously de�ned in

other cells. (If you don’t know what variables and functions are we will learn about

them shortly.) �us, for example, if you execute a line “x = 1” that creates a vari-

able x in one cell, then all other cells will henceforth also have that variable. �e

line “print(x)” in another cell would print the value “1” even if the variable x is not

de�ned in that cell. �is feature can be convenient when developing linked sets of

programs, allowing one to avoid duplicating code multiple times in di�erent pro-

grams, but it can also produce unexpected results if you are unwary. For example,

you might forget that you de�ned a variable in one cell and use it inadvertently in

another. If you want to avoid this, you can include the special command

%reset

at the start of a code cell, which causes Jupyter to erase all existing variables and

functions and start from scratch whenever you run that cell. It will �rst ask you if

you are certain you want to erase the variables and you have to say yes to proceed,

which you might consider a useful failsafe or an irritating interruption depending

on your point of view. If you want to skip the question you can use the command

%reset -f

which will erase all variables without any cautionary prompt.

3If you are not familiar with HTML or LaTeX notation there are many good introductions available

online.

13

Chapter 2 | Python programming for physicists

Finally, we should mention that some of Python’s graphics features, which we

will use for visualizing results of our calculations, do not work perfectly with Jupyter.

In particular, for programs using the turtle and qdraw graphics packages, graphics

will appear when the program is �rst run but will fail to appear if the program is run

a second time. �is is a known issue with Jupyter which, at the time of writing, has

unfortunately not been �xed. A simple workaround is to restart the Python “kernel”

before running the program a second time, which can be done by clicking on the

“Kernel” menu at the top of the Jupyter window.

2.2 Basic programming

A program is a list of instructions, or statements, which under normal circumstances

the computer carries out, or executes, in the order they appear in the program. In-

dividual statements do things like performing arithmetic, asking for input from the

user of the program, or printing out results. �e following sections introduce the

various types of statements in the Python language one by one.

2.2.1 Variables and assignments

�antities of interest in a program—which in physics usually means numbers, or

sets of numbers like vectors or matrices—are represented by variables, which play

roughly the same role as they do in ordinary algebra. Our �rst example of a program

statement in Python is this:

x = 1

�is is an assignment statement. It tells the computer that there is a variable called x

and we are assigning it the value 1. You can think of the variable as a box that stores

a value for you, and you can come back and retrieve that value at any later time, or

change it to a di�erent value. We will use variables extensively in our computer pro-

grams to represent physical quantities like positions, velocities, forces, �elds, volt-

ages, probabilities, and wavefunctions.

In normal algebra variable names are usually just a single le�er like x, but in

Python (and most other programming languages) they don’t have to be—they can

be two, three, or more le�ers, or entire words. Variable names in Python can be as

long as you like and can contain both le�ers and numbers, as well as the underscore

symbol “_”, but they cannot start with a number, or contain any other symbols, or

spaces. �us x and Physics_101 are �ne names for variables, but 4Score&7Years

is not (because it starts with a number, and also because it contains an &). Upper-

and lower-case le�ers are distinct from one another, meaning that x and X are two

di�erent variables which can have di�erent values.4

4Also variables cannot have names that are “reserved words” in Python. Reserved words are the

14

2.2 | Basic programming

Many of the programs you will write will contain large numbers of variables

representing the values of di�erent things and keeping them straight in your head

can be a challenge. It is a very good idea—one that is guaranteed to save you time

and e�ort in the long run—to give your variables meaningful names that describe

what they represent. If you have a variable that represents the energy of a system,

for instance, you might call it energy. If you have a variable that represents the

velocity of an object you could call it velocity. For more complex concepts, you

can make use of the underscore symbol “_” to create variable names with more than

one word, like maximum_energy or angular_velocity. �ere will also be times when

single-le�er variable names are appropriate. If you need variables to represent the G

and ~ positions of an object, for instance, then by all means call them x and y. And

there is no reason why you cannot call your velocity variable simply v if that seems

natural to you. But whatever you do, choose names that help you remember what

the variables represent.

2.2.2 Variable types

Variables come in several types. Variables of di�erent types store di�erent kinds

of quantities. �e main types we will use for our physics calculations are integer,

�oating-point, and complex variables.

• Integer: Integer variables can take integer values and integer values only,

such as 1, 0, or −286784. Both positive and negative values are allowed, but

not fractional values like 1.5.

• Floating-point: A �oating-point variable, or “�oat” for short, can take real,

or �oating-point, values such as 3.14159, −6.63 × 10−34, or 1.0. Note that a

�oating-point variable can take an integer value like 1.0 (which a�er all is also a

real number), by contrast with integer variables which cannot take noninteger

values.

• Complex: A complex variable can take a complex value, such as 1 + 2j or
−3.5 − 0.4j. Notice that in Python the unit imaginary number is called j, not i.

(Despite this, we will use i in some of the mathematical formulas we derive in

this book, since it is the common notation among physicists. Just remember

that when you translate your formulas into computer programs you must use

j instead.)

You might be asking yourself what these di�erent types mean. What does it mean

that a variable has a particular type? Why do we need di�erent types? Couldn’t all

values, including integers and real numbers, be represented with complex variables,

so that we only need one type of variable? In principle they could, but there are

signi�cant advantages to having the di�erent types. �e values of the variables in

words used in programming statements and include “for”, “if”, and “while”. (We will see the special uses

of each of these words in Python programming later in the chapter.)

15

Chapter 2 | Python programming for physicists

a program are stored by the computer in its memory, and it takes twice as much

memory to store a complex number as it does a �oat, because the computer has to

store both the real and imaginary parts. Even if the imaginary part is zero (so that the

number is actually real), the computer still takes up memory space storing that zero.

�is may not seem like a big issue given the huge amounts of memory computers

have these days, but in many physics programs we need to store enormous numbers

of variables—millions or billions of them—in which case memory space can become

a limiting factor.

Moreover, calculations with complex numbers take longer to complete, because

the computer has to calculate both the real and imaginary parts. Again, even if the

imaginary part is zero, the computer still has to do the calculation, so it takes longer

either way. Many of our physics programs will involve millions or billions of op-

erations. Big physics calculations can take days or weeks to run, so the speed of

individual mathematical operations can have a big e�ect. Of course, if we really

need to work with complex numbers then we will have to use complex variables, but

if our numbers are real then it is be�er to use a �oating-point variable.

Similar considerations apply to �oating-point variables and integers. If the num-

bers we are working with are genuinely noninteger real numbers, then we should

use �oating-point variables to represent them. But if we know that the numbers

are integers then using integer variables is usually faster and takes up less memory

space.

Moreover, integer variables are in some cases actuallymore accurate than �oating-

point variables. As we will see in Section 4.2, �oating-point calculations on comput-

ers are not in�nitely accurate. Just as on a hand-held calculator, computer calcu-

lations are only accurate to a certain number of signi�cant �gures (typically about

16 on modern computers). �at means that the value 1 assigned to a �oating-point

variable may actually be stored on the computer as 0.9999999999999999. In many

cases the di�erence will not ma�er much, but what happens, for instance, if some-

thing special is supposed to take place in your program if, and only if, the number

is less than 1? In that case, the di�erence between 1 and 0.9999999999999999 could

be crucially important. Numerous bugs and problems in computer programs have

arisen because of exactly this kind of issue—experiments have failed and spacecra�

have crashed. Luckily there is a simple way to avoid it. If the quantity you’re dealing

with is genuinely an integer, then store it in an integer variable. �at way you know

that 1 means 1. Integer variables are not accurate to just 16 signi�cant �gures: they

are perfectly accurate. �ey represent the exact integer you assign to them, nothing

more and nothing less. If you say “x = 1”, then indeed x is equal to 1.

�is is an important lesson, and one that is o�en missed when people �rst start

programming: if you have an integer quantity, use an integer variable. In quantum

mechanics most quantum numbers are integers. �e number of atoms in a gas is an

integer. So is the number of planets in the solar system or the number of stars in

the galaxy. Coordinates on la�ices in solid-state physics are o�en integers. Dates

16

2.2 | Basic programming

are integers. �e population of the world is an integer. If you were representing

any of these quantities in a program it would in most cases be best to use an integer

variable. More generally, whenever you create a variable to represent a quantity in

one of your programs, think about what type of value that quantity will take and

choose the type of variable to match it.

How do you tell the computer what type you want a variable to be? �e name

of the variable is no help. A variable called x could be an integer or it could be a

complex variable.

�e type of a variable is set by the value that we give it. �us for instance if we

say “x = 1” then x will be an integer variable, because we have given it an integer

value. If we say “x = 1.5” on the other hand then it will be a �oat. If we say

“x = 1+2j” it will be complex.5 Very large �oating-point or complex values can be

speci�ed using scienti�c notation, in the form “x = 1.2e34” (which means 1.2×1034)
or “x = 1e-12 + 2.3e45j” (which means 10−12 + 2.3 × 1045j).

�e type of a variable can change as a Python program runs. For example, sup-

pose we have the following two lines one a�er the other in our program:

x = 1

x = 1.5

If we run this program then a�er the �rst line is executed by the computer xwill be an

integer variable with value 1. But immediately a�er that the computer will execute

the second line and x will become a �oat with value 1.5. Its type has changed from

integer to �oat.6

However, although you can change the types of variables in this way, it doesn’t

mean you should. It is considered poor programming to use the same variable as two

di�erent types in a single program, because it makes the program signi�cantly more

di�cult to follow and increases the chance that you may make a mistake in your

programming. If x is an integer in some parts of the program and a �oat in others

then it becomes di�cult to remember which it is and confusion can ensue. A good

programmer, therefore, will use a given variable to store only one type of quantity in

a given program. If you need a variable to store another type, use a di�erent variable

with a di�erent name. �us, in a well wri�en program, the type of a variable will

be set the �rst time it is given a value and will remain the same for the rest of the

program.

5Notice that when specifying complex values we say 1+2j, not 1+2*j. �e la�er means “one plus two

times the variable 9”, not the complex number 1 + 2i.
6If you have previously programmed in one of the static-typed languages, such as C, C++, Fortran,

or Java, then you will be used to creating variables with a declaration such as “int i” which means “I’m

going to be using an integer variable called i.” In such languages the types of variables are �xed once they

are declared and cannot change. �ere is no equivalent declaration in Python. Variables in Python are

created when you �rst use them, with types which are deduced from the values they are given and which

may change when they are given new values.

17

Chapter 2 | Python programming for physicists

�is doesn’t quite tell the whole story, however, because as we’ve said a �oating-

point variable can also take an integer value. �ere will be times when we wish to

give a variable an integer value, like 1, but nonetheless have that variable be a �oat.

�ere is no contradiction in this, but how dowe tell the computer that this is what we

want? If we simply say “x = 1” then, as we have seen, x will be an integer variable.

�ere are two simple ways to do what we want here. �e �rst is to specify a

value that has an explicit decimal point in it, as in “x = 1.0”. �e decimal point is

a signal to the computer that this is a �oating-point value (even though, mathemati-

cally speaking, 1 is of course an integer) and the computer knows in this situation to

make the variable x a �oat. �us “x = 1.0” speci�es a �oating-point variable called x

with the value 1.

An alternative way to achieve the same thing is to write “x = float(1)”, which

tells the computer to take the value 1 and convert it into a �oating-point value before

assigning it to the variable x. �is makes x a �oat.

A similar issue can arise with complex variables. �ere will be times when we

want to create a variable of complex type, but we want to give it a purely real value.

If we just say “x = 1.5” then x will be a real, �oating-point variable, which is not

what we want. So instead we say “x = 1.5 + 0j”, which tells the computer that

we intend x to be complex. Alternatively, we can write “x = complex(1.5)”, which

achieves the same thing.

�ere is one further type of variable, the string, which is o�en used in Python

programming in general, but which comes up only rarely in physics programming,

which is why we have not mentioned it so far. A string variable stores text in the

form of strings of le�ers, punctuation, symbols, digits, and so forth. To indicate a

string value one uses quotation marks, like this:7

x = "This is a string"

�is statement would create a variable x of string type with the value “This is a

string”. Any character can appear in a string, including numerical digits. �us one

is allowed to say, for example, x = "1.234", which creates a string variable x with

the value “1.234”. It is crucial to understand that this is not the same as a �oating-

point variable with the value 1.234. A �oating-point variable contains a number, the

computer knows it’s a number, and, as wewill shortly see, one can do arithmetic with

that number or use it as the starting point for some more complicated mathematical

calculation. A string variable with the value “1.234” does not represent a number.

�e value “1.234” is, as far as the computer is concerned, just a string of symbols in

a row. �e symbols happen to be digits in this case (and a decimal point) but they

could just as easily be le�ers or spaces or punctuation. If you try to do arithmetic

7In Python you can use either single or double quotes to indicate a string value: ’string’ or "string".

We use double quotes for compatibility with other programming languages, where this is the common

standard, but you will see single quotes used in many places also.

18

2.2 | Basic programming

with a string variable, even one that appears to contain a number, the computer will

most likely either complain or give you something entirely unexpected. We will not

have much need for string variables in this book and they will as a result appear

only rather rarely. One place they do appear, however, is in the following section on

output and input.

In all of the programming we have seen so far you are free to put spaces between

parts of a Python statement. For example, “x=1” and “x = 1” do exactly the same

thing—the spaces have no e�ect. Spaces do, however, much improve the readability

of a program. When we start writing more complicated statements in the following

sections, we will �nd it very helpful to add some spaces here and there. �ere are

a few places where one cannot add extra spaces, the most important being at the

beginning of a line, before the start of a statement. As we will see in Section 2.3.1,

inserting extra spaces at the beginning of a line does have an e�ect on the way a

program works, so, unless you know what you are doing, you should avoid pu�ing

spaces at the beginning of lines.

You can also include blank lines between statements in a program, at any point

and as many as you like. �is can be useful for separating logically distinct parts of a

program from one another, again making the program easier to understand. We will

use this trick many times in the programs in this book to improve their readability.

2.2.3 Output and input statements

We have so far seen one example of a program statement, the assignment statement,

as in “x = 1”. �e next types of statements we will examine are statements for

output and input of data in Python programs. We have already seen an example of a

basic output statement, the “print” statement. In Section 2.1 we gave this very short

example program:

x = 1

print(x)

�e�rst line of this programwe understand: it creates an integer variable called x and

gives it the value 1. �e second statement tells the computer to “print” the value of x

on the screen of the computer. Note that it is the value of the variable x that is printed,

not the le�er “x”. �e value of the variable in this case is 1, so this short program

will result in the computer printing a “1” on the screen, as we saw on page 10.

�e print statement always prints the current value of the variable at the moment

the statement is executed. �us consider this program:

x = 1

print(x)

x = 2

print(x)

19

Chapter 2 | Python programming for physicists

First the variable x is set to 1 and its value is printed out, resulting in a 1 on the screen

as before. �en the value of x is changed to 2 and the value is printed again, which

produces a 2 on the screen. Overall we get this:

1

2

�us the two print statements, although they look identical, produce di�erent results

in this case. Note also that each print statement starts its printing on a new line on

the screen.

�e print statement can be used to print out more than one thing on a line. Con-

sider this program:

x = 1

y = 2

print(x,y)

which produces this result:

1 2

Note now the two variables in the print statement are separated by a comma. When

their values are printed out, however, they are printed with a space between them

(not a comma).

We can also print out words, like this:

x = 1

y = 2

print("The value of x is",x,"and the value of y is",y)

which produces this on the screen:

The value of x is 1 and the value of y is 2

Adding a few words to your program like this can make its output easier to read

and understand. You can also have print statements that print out only words, as in

print("The results are as follows") or print("End of program").

�e print statement can also print out the values of �oating-point and complex

variables. For instance, we can write

x = 1.5

z = 2+3j

print(x,z)

and we get

1.5 (2+3j)

20

2.2 | Basic programming

In general, a print statement can include any series of items separated by commas,

including variables or text in quotation marks, and the computer will print out the

appropriate things in order, with spaces in between.8 Occasionally you may want

to print things with something other than spaces in between, in which case you can

write the following:

print(x,z,sep="...")

which would print

1.5...(2+3j)

�e code sep="..." tells the computer to use whatever appears between the quo-

tation marks as a separator between values—three dots in this case, but you could

use any le�ers, numbers, or symbols you like. You can also have no separator be-

tween values at all by writing print(x,z,sep="") with nothing between the quota-

tion marks, which in the present case would give

1.5(2+3j)

You can also use the print statement without any items at all between the paren-

theses, as in “print()”. (Note that the parentheses are still required, even though

they empty.) �is statement just prints a blank line, which can sometimes be useful

for making the output of your program more readable. For instance, if you are print-

ing a large number of results at once it can be helpful to break them into blocks with

blank lines.

Input statements are only a li�le more complicated. �e basic form of an input

statement in Python is like this:

x = input("Enter the value of x: ")

When the computer executes this statement it does two things. First, the statement

acts something like a print statement and prints out the quantity, if any, inside the

parentheses.9 So in this case the computer would print the words “Enter the value

8�e print statement di�ers between Python version 3 and earlier versions. In earlier versions there

were no parentheses around the items to be printed—you would just write “print x”. If you are using an

earlier version of Python with this book then you will have to remember to omit the parentheses from

your print statements. Alternatively, if you are using version 2.6 or later (but not version 3) then you

can make the print statement behave as it does in version 3 by including the statement from future

import print function at the start of your program. (Note that there are two underscore symbols before

the word “future” and two a�er it.) See Appendix D for further discussion of the di�erences between

Python versions.

9It doesn’t act exactly like a print statement however, since it can only print a single quantity, such

as a string of text in quotes (as here) or a variable, where the print statement can print many quantities

in a row.

21

Chapter 2 | Python programming for physicists

of x: ”. If there is nothing inside the parentheses, as in “x = input()”, then the

computer prints nothing, but the parentheses are still required nonetheless.

Next the computer will stop andwait for the user to type a value on the keyboard.

It will wait patiently until the user types something and then the value that the user

types is assigned to the variable x. However, there is a catch: the value entered is

always interpreted as a string value, even if you type a number.10 (We encountered

strings previously in Section 2.2.2.) �us consider this simple two-line program:

x = input("Enter the value of x: ")

print("The value of x is",x)

�is does nothing more than collect a value from the user then print it out again. If

we run this program it might look something like the following:

Enter the value of x: 1.5

The value of x is 1.5

�is looks reasonable. But we could also do the following:

Enter the value of x: Hello

The value of x is Hello

As you can see “value” is interpreted rather loosely. As far as the computer is con-

cerned, anything you type in is a string, so it doesn’t care whether you enter digits,

le�ers, a complete word, or several words. Anything is �ne.

For physics calculations, however, we usually want to enter numbers, and have

them interpreted correctly as numbers, not strings. Luckily it is straightforward to

convert a string into a number. �e following will do it:

temp = input("Enter the value of x: ")

x = float(temp)

print("The value of x is",x)

�is program receives a string input from the user and assigns it to the tempo-

rary variable temp, which will be a string-type variable. �en the statement “x =

float(temp)” converts the string value to a �oating-point value, which is then as-

10Input statements are another thing that changed between versions 2 and 3 of Python. In version 2

and earlier, the value generated by an input statement would have the same type as whatever the user

entered. If the user entered an integer, the input statement would give an integer value. If the user entered

a �oat it would give a �oat, and so forth. However, this was considered confusing, because it meant that

if you then assigned that value to a variable (as in the program above) there would be no way to know in

advance what the type of the variable would be—the type would depend on what the user entered at the

keyboard. So in version 3 of Python the behavior was changed to its present form in which the input is

always interpreted as a string. If you are using a version of Python earlier than version 3 and you want

to reproduce the behavior of version 3 then you can write “x = raw input()”. �e function raw input in

earlier versions is the equivalent of input in version 3.

22

2.2 | Basic programming

signed to the variable x, and this is the value that is printed out. One can also

convert string values to integers or complex numbers with statements of the form

“x = int(temp)” or “x = complex(temp)”.

In fact, one does not have to use a temporary variable. �e code above can be

expressed more succinctly like this:

x = float(input("Enter the value of x: "))

print("The value of x is",x)

which takes the string value given by input, converts it to a �oat, and assigns it

directly to the variable x. We will use this trick many times in this book.

In order for the program above to work, the value the user types must be one that

makes sense as a �oating-point value, otherwise the computer will complain. �us,

for instance, the following is �ne:

Enter the value of x: 1.5

The value of x is 1.5

But suppose we do this:

Enter the value of x: Hello

ValueError: invalid literal for float(): Hello

�is is our �rst example of an error message. �e computer, in opaque technical

language, is complaining that we have given it an incorrect value.

It is normal to make a few mistakes when writing or using computer programs,

and you will soon become accustomed to the occasional error message (if you are

not already). Working out what these messages mean is one of the tricks of the

trade—they are o�en not entirely transparent.

2.2.4 Arithmetic

So far our programs have done very li�le, certainly nothing that would be of much

use for physics. But we can make themmuch more useful by adding some arithmetic

into the mix.

In most places where you can use a single variable in Python you can also use

a mathematical expression, like “x+y”. �us you can write “print(x)” but you can

also write “print(x+y)” and the computer will calculate the sum of x and y for you

and print out the result. �e basic mathematical operations—addition, subtraction,

etc.—are wri�en as follows:

x+y addition

x-y subtraction

x*y multiplication

x/y division

x**y raising G to the power of ~

23

Chapter 2 | Python programming for physicists

Notice that we use the asterisk symbol ”*” for multiplication and the slash sym-

bol ”/” for division, because there is no × or ÷ symbol on a standard computer key-

board.

Twomore obscure, but still useful operations, are integer division and themodulo

operation:

x//y the integer part of x divided by y, meaning x is divided by y and the re-

sult is rounded down to the nearest integer. For instance, 14//3 gives 4

and -14//3 gives −5.
x%y x modulo y, which means the remainder a�er x is divided by y. For

instance, 14%3 gives 2, because 14 divided by 3 gives 4-remainder-2.

�is also works for non-integers: 1.5%0.4 gives 0.3, because 1.5 is 3 ×
0.4, remainder 0.3. (�ere is, however, nomodulo operation for complex

numbers.) �e modulo operation is particularly useful for telling when

one number is divisible by another—the value of n%m will be zero if n is

divisible by m. �us, for instance, n%2 is zero if n is even (and one if n is

odd).

�ere are also a handful of other mathematical operations available in Python, but

they are more obscure and rarely used.11

An important rule about arithmetic in Python is that the type of result a calcula-

tion gives depends on the type of values that go into it. Consider, for example, this

statement

x = a + b

If a and b are variables of the same type—integer, �oat, complex—then when they

are added together the result will also have the same type and this will be the type

of variable x. So if a is 1.5 and b is 2.4, meaning that they are both �oats, then x will

be a �oat with value 3.9. Note when adding �oats like this that even if the end result

of the calculation is a whole number, the variable x will still be �oating point: if a

is 1.5 and b is 2.5, then the result of adding them together is 4, but x will still be a

�oating-point variable with value 4.0 because a and b are �oating point.

If a and b are of di�erent types, then the end result has the more general of the

two types that went into it. �is means that if you add a �oat and an integer, for

example, the end result will be a �oat. If you add a �oat and a complex number, the

end result will be complex.

�e same rules apply to subtraction, multiplication, integer division, and the

11Such as:

x|y bitwise (binary) OR of two integers
x&y bitwise (binary) AND of two integers
xˆy bitwise (binary) XOR of two integers

x>>y shi� the bits of integer x rightwards y places
x<<y shi� the bits of integer x le�wards y places

24

2.2 | Basic programming

modulo operation: the type of the end result is the same as the starting types, or

the more general type if there are two di�erent starting types. �e division opera-

tion, however—ordinary non-integer division denoted by “/”—is di�erent. It follows

basically the same rules except that it never gives an integer result. Division only

ever gives �oating-point or complex values. �is is necessary because you can di-

vide one integer by another and get a non-integer result (such as 3 ÷ 2 = 1.5 for

example), so it would not make sense to have integer starting values always give an

integer �nal result.12 �us if you divide any combination of integers or �oats by one

another you will always get a �oating-point value. If you start with one or more

complex numbers then you will get a complex value at the end.

You can combine several mathematical operations together to make a more com-

plicated expression, like x+2*y-z/3. When you do this the operations obey rules

similar to those of normal algebra. Multiplications and divisions are performed be-

fore additions and subtractions. If there are several multiplications or divisions in

a row they are carried out in order from le� to right. Powers are calculated before

anything else. �us

x+2*y is equivalent to G + 2~
x-y/2 is equivalent to G − 1

2~

3*x**2 is equivalent to 3G2

x/2*y is equivalent to 1
2G~

You can also use parentheses () in your algebraic expressions, just as you would in

normal algebra, to mark things that should be evaluated as a unit, as in 2*(x+y).

However, only round parentheses () can be used for this purpose, not square brack-

ets [] or braces {}. Parentheses within parentheses are �ne, as in x = 2*(x+3*(y-z)).

You can also add spaces between the parts of a mathematical expression to make

it easier to read. �e spaces do not a�ect the value of the expression. So “x=2*(a+b)”

and “x = 2 * (a + b)” do the same thing. �us the following are allowed

statements in Python

x = a + b/c

x = (a + b)/c

x = a + 2*b - 0.5*(1.618**c + 2/7)

12�is is another respect in which version 3 of Python di�ers from earlier versions. In version 2 and

earlier all operations gave results of the same type that went into them, including division. �is, however,

caused confusion for exactly the reason given here: if you divided 3 by 2, for instance, the result had to

be an integer, so the computer rounded it down from 1.5 to 1. Because of the di�culties this caused, the

language was changed in version 3 to give the current more sensible behavior. You can still get the old

behavior of dividing then rounding down using the integer divide operation //. �us 3//2 gives 1 in all

versions of Python. If you are using Python version 2 (technically, version 2.1 or later) and want the newer

behavior of the divide operation, you can achieve it by including the statement “from future import

division” at the start of your program. �e di�erences between Python versions are discussed in more

detail in Appendix D.

25

Chapter 2 | Python programming for physicists

On the other hand, the following will not work:

2*x = y

You might expect that this would result in the value of x being set to half the value

of y, but it’s not so. In fact, if you write this line in a program the computer will

stop when it gets to it and print the cryptic error message ”SyntaxError: can’t

assign to operator” because it doesn’t know what to do. �e problem is that

Python does not know how to solve equations for you by rearranging them. It only

knows about the simplest forms of equations, such as “x = y/2”. If an equation

needs to be rearranged to give the value of x then you have to do the rearranging

for yourself. Python will do basic sums for you, but its knowledge of math is very

limited.

To be more precise, statements like “x = a + b/c” in Python are not technically

equations at all, in the mathematical sense. �ey are assignments. When it sees a

statement like this, what your computer actually does is very simple-minded. It �rst

examines the right-hand side of the equals sign and evaluates whatever expression

it �nds there, using the current values of any variables involved. When it is �nished

working out the value of the whole expression, and only then, it takes that value

and assigns it to the variable on the le� of the equals sign. In practice, this means

that assignment statements in Python sometimes behave like ordinary equations, but

sometimes they don’t. A simple statement like “x = 1” does exactly what you would

think, but what about this statement:

x = x + 1

�is does not make sense, under any circumstances, as a mathematical equation.

�ere is no way that G can ever be equal to G + 1. It would imply that 0 = 1. But this

statementmakes perfect sense in Python. Suppose the value of x is currently 1. When

the statement above is executed by the computer it �rst evaluates the expression on

the right-hand side, which is x + 1 and therefore has the value 1 + 1 = 2. �en it

assigns this value to the variable on the le�-hand side, which just happens in this

case to be the same variable x. So x now gets a new value 2. In fact, no ma�er what

value of x we start with, this statement will always end up giving x a new value that

is 1 greater. So this statement has the simple (but potentially very useful) e�ect of

increasing the value of x by one.

�us consider the following lines:

x = 3

print(x)

x = x**2 - 2

print(x)

Whatwill happenwhen the computer executes these lines? �e �rst two are straight-

forward enough: the variable x gets the value 3 and then the 3 gets printed out. But

26

2.2 | Basic programming

then what? �e third line says “x = x**2 - 2” which in normal mathematical no-

tation would be G = G2 − 2, which is a quadratic equation with solutions G = 2

and G = −1. However, the computer will not set x equal to either of these values. In-

stead it will evaluate the right-hand side of the equals sign and get G2−2 = 32−2 = 7

and then set x to this new value. �en the last line of the program will print out “7”.

�us the computer does not necessarily do what one might think it would, based

on one’s experience with normal mathematics. �e computer will not solve equa-

tions for G or any other variable. It will not do your algebra for you—it’s not that

smart.

Another set of useful tricks are the Python modi�ers, which allow you to make

changes to a variable as follows:

x += 1 add 1 to x (i.e., make x bigger by 1)

x -= 4 subtract 4 from x

x *= -2.6 multiply x by −2.6
x /= 5*y divide x by 5 times y

x //= 3.4 divide x by 3.4 and round down to an integer

As we have seen, you can achieve the same result as these modi�ers with statements

like “x = x + 1”, but the modi�ers are more succinct. Some people also prefer them

precisely because “x = x + 1” looks like bad algebra and can be confusing.

Finally in this section, a nice feature of Python, not available in most other com-

puter languages, is the ability to assign the values of two variables with a single

statement. For instance, we can write

x,y = 1,2.5

which is equivalent to the two statements

x = 1

y = 2.5

One can assign three or more variables in the same way, listing them and their as-

signed values with commas in between.

A more sophisticated example is

x,y = 2*z+1,(x+y)/3

An important point to appreciate is that, like all other assignment statements, this

one evaluates the whole of the right-hand side of the equals sign before assigning

values to the variables on the le�. �us in this example the computer will calculate

both of the values 2*z+1 and (x+y)/3 from the current x, y, and z, before assigning

those values to x and y.

One purpose for which this type of multiple assignment is commonly used is to

interchange the values of two variables. If we want to swap the values of x and y we

can write:

27

Chapter 2 | Python programming for physicists

x,y = y,x

and the two will be exchanged. In most other computer languages such swaps are

more complicated, requiring the use of an additional temporary variable.

Example 2.1: A ball dropped from a tower

Let us use what we have learned to solve a �rst physics problem. �is is a very simple

problem, one we could easily do on paper, but we will move onto more complex ones

shortly.

�e problem is as follows. A ball is dropped from the top of a tower of height ℎ.

It has initial velocity zero and accelerates downward under gravity. �e challenge is

to write a program that asks the user to enter the height in meters of the tower and a

time interval C in seconds, then prints on the screen the height of the ball above the

ground at time C a�er it is dropped, ignoring air resistance.

�e steps involved are the following. First, we use input statements to get the

values of ℎ and C from the user. Second, we calculate how far the ball falls in the

given time, using the standard kinematic formula B = 1
26C

2, where 6 = 9.81ms−2 is
the acceleration due to gravity. �ird, we print the height above the ground at time C ,

which is equal to the total height of the tower minus this value, or ℎ − B .
Here is what the program looks like, all four lines of it:13

File: dropped.py h = float(input("Enter the height of the tower: "))

t = float(input("Enter the time interval: "))

s = 9.81*t**2/2

print("The height of the ball is",h-s,"meters")

Let us use this program to calculate the height of a ball dropped from a 100m high

tower a�er 1 second and a�er 5 seconds. Running the program twice in succession

we �nd the following:

Enter the height of the tower: 100

Enter the time interval: 1

The height of the ball is 95.095 meters

Enter the height of the tower: 100

Enter the time interval: 5

The height of the ball is -22.625 meters

13Many of the example programs in this book are also available online for you to download. �e

programs, along with various other useful resources, are packaged together in a single zip �le which can

be downloaded from https://www.umich.edu/˜mejn/cpresources.zip. �roughout the book, a name

printed in the margin next to a program, such as “dropped.py” above, indicates that the complete program

can be found, under that name, in these online resources. Any mention of programs or data in the “online

resources” also refers to the same download.

28

2.2 | Basic programming

Note that the result is negative in the second case, which means that the ball would

have fallen below ground level if that were possible, although in practice the ball

would hit the ground �rst. �us a negative value indicates that the ball hits the

ground before time C .

Before we leave this example, here is a suggestion for a possible improvement

to the program. At present we perform the calculation of the distance traveled with

the single line “s = 9.81*t**2/2”, which includes the constant 9.81 representing the

acceleration due to gravity. When we do physics calculations on paper, however, we

normally do not write out the values of constants in full like this. Normally wewould

write B = 1
26C

2, with the understanding that 6 represents the acceleration. We do this

primarily because it is easier to read and understand. A single symbol 6 is easier

to read than a row of digits, and moreover the use of the standard le�er 6 reminds

us that the quantity we are talking about is the gravitational acceleration, rather

than some other constant that happens to have value 9.81. Especially in the case

of constants that have many digits, such as c = 3.14159265 . . ., the use of symbols

rather than digits makes life a lot easier.

�e same is also true of computer programs. You can make your programs easier

to read and understand by using symbols for constants instead of writing the values

out in full. �is is easy to do—just create a variable to represent the constant, like

this:

g = 9.81

s = g*t**2/2

You only have to create the variable g once in your program (usually somewhere

near the beginning) and then you can use it as many times as you like therea�er.14

Doing this also has the advantage of decreasing the chances that you will make a

typographical error in the value of a constant. If you have to type out many digits

every time you need a particular constant, odds are you are going to make a mistake

at some point. If you have a variable representing the constant then you know the

value will be right every time you use it, as long as you typed it correctly when you

�rst created the variable.15

Using variables to represent constants in this way is one example of a program-

ming trick that improves your programs even though it does not change the way

they actually work. Instead it improves readability and reliability, which can be al-

14In some computer languages, such as C, there are separate entities called “variables” and “constants,”

a constant being like a variable except that its value can be set only once in a program and is �xed there-

a�er. �ere is no such thing in Python, however; there are only variables.

15�ere exists a Python module called scipy.constants, part of the larger scipy package, that de�nes

values for a wide range of physical constants, so that you don’t have to. It includes the acceleration due to

gravity 6, as well as the electronic charge, Planck’s constant, the speed of light, and many more. We will

not use this package in our programs in this book, but it may be worth a look if you use such constants

o�en. We discuss the use of Python packages in Section 2.2.5.

29

Chapter 2 | Python programming for physicists

most as important as writing a correct program. We will see other examples of such

tricks later.

Exercise 2.1: Another ball dropped from a tower

A ball is again dropped from a tower of height ℎ with initial velocity zero. Write a program

that asks the user to enter the height in meters of the tower and then calculates and prints

the time the ball takes until it hits the ground, ignoring air resistance. Use your program to

calculate the time for a ball dropped from a 100m high tower.

Exercise 2.2: Altitude of a satellite

A satellite is to be launched into a circular orbit around the Earth so that it orbits the planet

once every) seconds.

a) Show that the altitude ℎ above the Earth’s surface that the satellite must have is

ℎ =

(
�") 2

4c2

)1/3
− ',

where � = 6.67 × 10−11m3 kg−1 s−2 is Newton’s gravitational constant, " = 5.97 ×
1024 kg is the mass of the Earth, and ' = 6371 km is its radius.

b) Write a program that asks the user to enter the desired value of) and then calculates

and prints out the correct altitude in meters.

c) Use your program to calculate the altitudes of satellites that orbit the Earth once a day

(so-called geosynchronous orbit), once every 90 minutes, and once every 45 minutes.

What do you conclude from the last of these calculations?

d) Technically a geosynchronous satellite is one that orbits the Earth once per sidereal

day, which is 23.93 hours, not 24 hours. Why is this? And how much di�erence will it

make to the altitude of the satellite?

2.2.5 Functions, packages, and modules

�ere are many operations one might want to perform in a program that are more

complicated than simple arithmetic, such as multiplying matrices, calculating a log-

arithm, or making a graph. Python comes with facilities for doing each of these and

many other common tasks easily and quickly. �ese facilities are divided into pack-

ages—collections of related useful things—and each package has a name by which

you can refer to it. For instance, all of the standard mathematical functions, such

as logarithm and square root, are contained in a package called math. Before you

can use any of these functions you have to tell the computer that you want to. For

example, to tell the computer you want to use the log function, you would add the

following line to your program:

30

2.2 | Basic programming

from math import log

�is tells the computer to “import” the logarithm function from the math package,

which means that it copies the code de�ning the function from where it is stored

(usually on the hard drive of your computer) into the computer’s memory, ready

for use by your program. You need to import each function you use only once per

program: once the function has been imported it continues to be available until the

program ends.16 You must import the function before the �rst time you use it in a

calculation and it is good practice to put the “from” statement at the very start of

the program, which guarantees that it occurs before the �rst use of the function and

also makes it easy to �nd when you are working on your code. As we write more

complicated programs, there will o�en be situations where we need to import many

di�erent functions into a single program with many di�erent from statements, and

keeping those statements together in a tidy block at the start of the code will make

things much easier.

Once you have imported the log function you can then use it in a calculation like

this:

x = log(2.5)

which will calculate the (natural) logarithm of 2.5 and set the variable x equal to the

result. Note that the argument of the logarithm, the number 2.5 in this case, goes in

parentheses. If you omit the parentheses the computer will complain. (Also if you

use the log function without �rst importing it from the math package the computer

will complain.)

�e math package contains a good selection of the most commonly used mathe-

matical functions, including the following:

log natural logarithm

log10 log base 10

exp exponential

sin, cos, tan sine, cosine, tangent (argument in radians)

asin, acos, atan arcsine, arccosine, arctangent (in radians)

sinh, cosh, tanh hyperbolic sine, cosine, tangent

sqrt positive square root

Note that the trigonometric functions work with angles speci�ed in radians, not de-

grees. �e exponential and square root functions may seem redundant, since one

can calculate both exponentials and square roots by taking powers. For instance,

x**0.5 would give the square root of x. Because of the way the computer calculates

powers and roots, however, using the functions above is usually quicker and more

accurate.

16If you are programming in a Jupyter notebook or in Colab, functions need be imported only once

per notebook: functions imported by one code cell are automatically available to all other cells.

31

Chapter 2 | Python programming for physicists

�e math package also contains a number of less common functions, such as the

Gaussian error function and the gamma function, as well as two objects that are not

functions at all but constants, namely 4 and c , which are denoted e and pi. �is

program, for instance, calculates the value of c2:

from math import pi

print(pi**2)

which prints 9.869604401089358 (which is roughly the right answer). Note that there

are no parentheses a�er the “pi” when we use it in the print statement, because it is

not a function. It is just a variable called pi with value 3.14159 . . .

�e functions in the math package do not work with complex numbers and the

computer will give an error message if you try, but there is another package called

cmath that contains versions of most of the same functions that do work with com-

plex numbers, plus a few additional functions that are speci�c to complex arithmetic.

In some cases you may �nd you want to use more than one function from the

same package in a program. You can import two di�erent functions—say the log and

exponential functions—with two statements like this:

from math import log

from math import exp

but a more succinct way to do it is to use a single statement like this:

from math import log,exp

You can import a list as long as you like from a single package in this way:

from math import log,exp,sin,cos,sqrt,pi,e

You can also import all of the functions in a package with a statement of the form

from math import *

�e * here means “everything”. In most cases, however, we advise against using this

import-everything form because it can give rise to some unexpected behaviors (for

instance, if, unbeknownst to you, a package contains a function with the same name

as one of your variables, causing a clash between the two). It is usually be�er to

explicitly import only those functions you actually need to use.17

17A particular problem occurs when an imported package contains a function with the same name

as a previously existing function. In such a case the newly imported one will supersede the previous

one, which may not always be what you want. For instance, the packages math and cmath contain many

functions with the same names, such as sqrt. But the sqrt function in cmathworks with complex numbers

and the one in math does not. If one did “from cmath import *” followed by “from math import *”, one

would end up with the version of sqrt that works only with real numbers. And if one then a�empted to

calculate the square root of a complex number, one would get an error message.

32

2.2 | Basic programming

�ere is, however, another way to import the entire contents of a package in

Python which avoids these pitfalls and can sometimes be useful. �e statement

import math

imports the entire math package in one step. Subsequently, if we want to use, say,

the logarithm function, we write

x = math.log(2.5)

Note how we now specify the name of the imported package “math”, followed by a

period, followed by the function name. If we wanted to take a square root we would

say

x = math.sqrt(2.5)

and so forth. �us this form simpli�es the importing of functions from packages, at

the expense of making the use of those functions a bit more complicated. In some

cases this is a worthwhile tradeo�, and we will use it occasionally in this book.

A variant of the same trick, which can simplify life sometimes, is the statement

import math as mt

�is de�nes “mt” as an alias for the math package, so that we can use “mt” anywhere

we would previously have used “math”, as in x = mt.log(2.5) or x = mt.sqrt(2.5).

In this case, doing so would not actually save us much e�ort—we have to type two

le�ers “mt” instead of four—but some packages have much longer names, in which

case this can be a useful trick.

Finally in this section, some large packages are for convenience split into smaller

subpackages, called modules. A module within a larger package is referred to as

packagename.modulename. For example, as we will see shortly, there are a large num-

ber of useful mathematical facilities available in the package called numpy, including

facilities for linear algebra and Fourier transforms, each in their own module within

the larger package. �us the linear algebra module is called numpy.linalg and the

Fourier transform module is called numpy.fft (for “fast Fourier transform”). We im-

port a function from a module thus:

from numpy.linalg import inv

�is would import the inv function, which calculates the inverse of a matrix. Alter-

natively we could import the entire linear algebra module thus:

import numpy.linalg as la

�en we would refer to the matrix inversion function as la.inv.

33

Chapter 2 | Python programming for physicists

Smaller packages, like the math package, have no submodules, in which case one

could, arguably, say that the entire package is also a module, and in such cases the

words package and module are o�en used interchangeably.

Example 2.2: Converting polar coordinates

Suppose the position of a point in two-dimensional space is given to us in polar

coordinates A, \ and we want to convert it to Cartesian coordinates G,~. How would

we write a program to do this? �e appropriate steps are:

1. Get the user to enter the values of A and \ .

2. Convert those values to Cartesian coordinates using the standard formulas

G = A cos\, ~ = A sin\ .

3. Print out the results.

Since the formulas involve the mathematical functions sin and cos, we are going to

have to import those functions from the math package. Also, the sine and cosine

functions in Python (and in most other computer languages) take arguments in radi-

ans. If we want to be able to enter the angle \ in degrees then we are going to have to

convert from degrees to radians, which means multiplying by c and dividing by 180.

�us our program might look something like this:

File: polar.py from math import sin,cos,pi

r = float(input("Enter r: "))

d = float(input("Enter theta in degrees: "))

theta = d*pi/180

x = r*cos(theta)

y = r*sin(theta)

print("x =",x," y =",y)

Take a moment to read through this complete program and make sure you under-

stand what each line is doing. If we run the program, it will do something like the

following:

Enter r: 2

Enter theta in degrees: 60

x = 1.0 y = 1.73205080757

Try it for yourself.

34

2.2 | Basic programming

2.2.6 Other packages

�ere are an extraordinary number of packages available in Python for performing

almost any computational task imaginable. �ere are packages for making graphics

and playing sounds, packages for data handling and statistics, packages for linear

algebra and calculus and trigonometry. Here are a few packages that are useful for

computational physics:

math Basic mathematical functions for real numbers

cmath Basic mathematical functions for complex numbers

numpy Arrays, vectors, and matrices

scipy Basic scienti�c tools, like special functions and statistics

matplotlib Graph drawing

collections Data structures, such as queues and default-dictionaries

csv Reading and writing data �les in the common CSV format

pandas Spreadsheet-style data processing

We will not go into these packages in detail here, but we will introduce them as

needed in the following chapters.

2.2.7 Built-in functions

�ere are a small number of functions in Python, called built-in functions, which do

not come from any package. �ese functions are always available to you in every

program; you do not have to import them. We have in fact seen several examples of

built-in functions already. For instance, we saw the float function, which takes a

number and converts it to �oating point (if it is not �oating point already):

x = float(1)

�ere are similar functions int and complex that convert to integers and complex

numbers. Another example of a built-in function, one we have not seen previously,

is the abs function, which returns the absolute value of a number, or the modulus

in the case of a complex number. �us, abs(-2) returns the integer value 2 and

abs(3+4j) returns the �oating-point value 5.0.

Earlier we also used the built-in functions input and print, which are not mathe-

matical functions in the usual sense of taking a number as argument and performing

a calculation on it, but as far as the computer is concerned they are still functions.

Consider, for instance, the statement

x = input("Enter the value of x: ")

Here the input function takes as argument the string “Enter the value of x: ”,

prints it out, waits for the user to type something in response, then sets x equal to

that something.

�e print function is slightly di�erent. When we say

35

Chapter 2 | Python programming for physicists

print(x)

print is a function, but it is not here generating a value the way the log or input

functions do. It does something with its argument x, namely printing it out on the

screen, but it does not generate a value. �is di�ers from the functions we are used

to in mathematics, which always generate a value, but it is nonetheless allowed in

Python. Sometimes you just want a function to do something but it doesn’t need to

generate a value.

Exercise 2.3: Write a program to perform the inverse operation to that of Example 2.2. �at

is, ask the user for the Cartesian coordinates G,~ of a point in two-dimensional space, then

calculate and print the corresponding polar coordinates, with the angle \ in degrees.

Exercise 2.4: A spaceship travels from Earth in a straight line at relativistic speed E to another

planet G light years away. Write a program to ask the user for the value of G and the speed E

as a fraction of the speed of light 2 , then print out the time in years that the spaceship takes

to reach its destination (a) in the rest frame of an observer on Earth and (b) as perceived by a

passenger on board the ship. Use your program to calculate the answers for a planet 10 light

years away with E = 0.992 .

Exercise 2.5: �antum potential step

A well-known quantum mechanics problem involves a particle of mass< that encounters a

one-dimensional potential step, like this:

0

E

V

TR

Incoming

�e particle with initial kinetic energy � and wavevector :1 =
√
2<�/ℏ enters from the le�

and encounters a sudden jump in potential energy of height+ at position G = 0. By solving the

Schrödinger equation, one can show that when � > + the particle may either (a) pass the step,

in which case it has a lower kinetic energy of � −+ on the other side and a correspondingly

smaller wavevector of :2 =
√
2<(� −+)/ℏ, or (b) it may be re�ected, keeping all of its kinetic

energy and an unchanged wavevector but moving in the opposite direction. �e probabilities

) and ' for transmission and re�ection are given by

) =
4:1:2

(:1 + :2)2
, ' =

(
:1 − :2
:1 + :2

)2
.

36

2.2 | Basic programming

Suppose we have a particle with mass equal to the electron mass< = 9.11× 10−31 kg and
energy 10 eV encountering a potential step of height 9 eV. Write a Python program to compute

and print out the transmission and re�ection probabilities using the formulas above.

Exercise 2.6: Planetary orbits

�e orbit in space of one body around another, such as a planet around the Sun, need not

be circular. In general it takes the form of an ellipse, with the body sometimes closer in and

sometimes further out. If you are given the distance ℓ1 of closest approach that a planet makes

to the Sun, also called its perihelion, and its linear velocity E1 at perihelion, then any other

property of the orbit can be calculated as follows.

a) Kepler’s second law tells us that the distance ℓ2 and velocity E2 of the planet at its most

distant point, or aphelion, satisfy ℓ2E2 = ℓ1E1. At the same time the total energy, kinetic

plus gravitational, of a planet with velocity E and distance A from the Sun is given by

� =
1
2<E

2 −�<"
A
,

where < is the planet’s mass, " = 1.9891 × 1030 kg is the mass of the Sun, and � =

6.6738×10−11m3 kg−1 s−2 is Newton’s gravitational constant. Given that energy must

be conserved, show that E2 is the smaller root of the quadratic equation

E22 −
2�"

E1ℓ1
E2 −

[
E21 −

2�"

ℓ1

]
= 0.

Once we have E2 we can calculate ℓ2 using the relation ℓ2 = ℓ1E1/E2.
b) Given the values of E1, ℓ1, and ℓ2, other parameters of the orbit are given by simple

formulas that can be derived from Kepler’s laws and the fact that the orbit is an ellipse:

Semi-major axis: 0 =
1
2 (ℓ1 + ℓ2),

Semi-minor axis: 1 =
√
ℓ1ℓ2 ,

Orbital period:) =
2c01

ℓ1E1
,

Orbital eccentricity: 4 =
ℓ2 − ℓ1
ℓ2 + ℓ1

.

Write a program that asks the user to enter the distance to the Sun and velocity at

perihelion, then calculates and prints the quantities ℓ2, E2,) , and 4 .

c) Test your program by having it calculate the properties of the orbits of the Earth (for

which ℓ1 = 1.4710 × 1011m and E1 = 3.0287 × 104ms−1) and Halley’s comet (ℓ1 =

8.7830×1010m and E1 = 5.4529×104ms−1). Among other things, you should �nd that

the orbital period of the Earth is one year and that of Halley’s comet is about 76 years.

2.2.8 Comment statements

�is is a good time to mention another important feature of Python (and every other

computer language), namely comments. In Python any program line that starts with

a hash mark “#” is ignored completely by the computer. You can type anything you

like on the line following a hash mark and it will have no e�ect:

37

Chapter 2 | Python programming for physicists

Hello! Hi there! This line does nothing at all.

Such lines are called comments. Comments make no di�erence whatsoever to the

way a program runs, but they can be very useful nonetheless. You can use comment

lines to leave reminders for yourself in your programs, saying what particular parts

of the program do, what quantities are represented by which variables, changes that

you mean to make later to the program, things you are not sure about, and so forth.

Here, for instance, is a version of the polar coordinates program from Example 2.2,

with comments added to explain what is happening:

File: polar.py from math import sin,cos,pi

Ask the user for the values of the radius and angle

r = float(input("Enter r: "))

d = float(input("Enter theta in degrees: "))

Convert the angle to radians

theta = d*pi/180

Calculate the equivalent Cartesian coordinates

x = r*cos(theta)

y = r*sin(theta)

Print out the results

print("x =",x," y =",y)

�is version of the programwill perform identically to the original version on page 34,

but it is easier to read and understand.

Comments may seem unnecessary for short programs like this one, but when

you move on to creating larger programs that perform complex physics calculations

you will �nd them very useful for reminding yourself of how things work. When

you are writing a program you may think you remember how everything works and

there is no need to add comments, but when you return to the same program again

a week later a�er spending the intervening time on something else you will �nd it’s

a di�erent story—you can’t remember how anything works or why you did things

this way or that, and you will be very glad if you sca�ered a few helpful pointers in

comment lines around the program.

Comments become even more important if someone else other than you needs

to understand a program you have wri�en, for instance if you are working as part

of a team that is developing a large program together. Understanding how other

people’s programs work can be tough at the best of times, and you will make your

collaborators’ lives a lot easier if you include some explanatory comments as you go

along.

Comments do not have to start at the beginning of a line. Python ignores any

38

2.3 | Controlling programs with “if” and “while”

portion of a line that follows a hash mark, whether the hash mark is at the beginning

or not. �us you can write things like this:

theta = d*pi/180 # Convert the angle to radians

and the computer will perform the calculation \ = 3c/180 at the beginning of the

line but completely ignore the hash mark and the text at the end. �is is a useful

trick when you intend that a comment should refer to a speci�c single line of code

only.

2.3 Controlling programs with “if” and “while”

�e programs we have seen so far are all very linear. �eymarch from one statement

to the next, from beginning to end of the program, then they stop. An important

feature of computers is their ability to break this linear �ow, to jump around the

program, execute some lines but not others, or make decisions about what to do next

based on given criteria. In this section we will see how this is done in the Python

language.

2.3.1 The if statement

It will happen o�en in our computer programs that we want to do something only

if a certain condition is met—only if = = 0 perhaps, or if G >
1
2 . We can do this using

an if statement. Consider the following example:

x = int(input("Enter a whole number no greater than ten: "))

if x>10:

print("You entered a number greater than ten")

print("Let me fix that for you")

x = 10

print("Your number is",x)

If we run this program and type in “5”, we get:

Enter a whole number no greater than ten: 5

Your number is 5

But if we break the rules and enter 11, we get:

Enter a whole number no greater than ten: 11

You entered a number greater than ten

Let me fix that for you

Your number is 10

�is behavior is achieved using an if statement—the second line in the program

above—which tests the value of the variable x to see if it is greater than ten. Note

39

Chapter 2 | Python programming for physicists

the structure of the if statement: there is the “if” part itself, which consists of the

word if followed by the condition you are checking. In this case the condition is

that G > 10. �e condition is followed by a colon, and following that are one or more

lines that tell the computer what to do if the condition is satis�ed. In our program

there are three of these lines, the �rst two printing out messages and the third �xing

the value of x. Note that these three lines are indented—they start with a few spaces

so that the text is shi�ed over a bit from the le�-hand edge. �is is how we tell the

program which instructions are “part of the if.” �e indented instructions will be

executed only if the condition in the if statement is met, i.e., only if G > 10 in this

case. Whether or not the condition is met, the computer then moves on to the next

line of the program, which prints the value of x.

In Section 1 we saw that you are free to add spaces between the parts of a Python

statement to make it more readable, as in “x = 1”, and that such spaces will have no

e�ect on the operation of the program. Here we see an exception to that rule: spaces

at the beginning of lines do have an e�ect with an if statement. For this reason

one should be careful about pu�ing spaces at the beginning of lines—they should be

added only when they are needed, as here, and not otherwise.

A question that people sometimes ask is, “How many spaces should I put at the

start of a line when I am indenting it?” �e answer is that you can use any number

you like. Python considers any number of spaces, from one upward, to constitute an

indentation. �e only rule is that once you start the indentation, every line has to

have the same number of spaces. You cannot vary the number from one line to the

next.

Even though you are free to choose the number of spaces you use for an in-

dentation, it has however become standard over the years among most Python pro-

grammers to use four spaces, and this is the number you will see used in almost all

programs, including the programs in this book. In fact, most Python development

environments automatically insert spaces for you when they see an if statement,

and they typically insert four. (Jupyter provides the option to use either two or four

spaces, but the default is four.)

�ere are various di�erent types of conditions one can use in an if statement.

Here are some examples:

if x==1: Check if G = 1. Note the double equals sign.

if x>1: Check if G > 1

if x>=1: Check if G ≥ 1

if x<1: Check if G < 1

if x<=1: Check if G ≤ 1

if x!=1: Check if G ≠ 1

Note particularly the double equals sign in the �rst example. It is one of the most

common programming errors that people make in Python to use a single equals sign

in an if statement instead of a double one. If you do this, youwill get an errormessage

when you try to run your program.

40

2.3 | Controlling programs with “if” and “while”

You can also combine two conditions in a single if statement, like this:

if x>10 or x<1:

print("Your number is either too big or too small.")

You can use “and” in a similar way:

if x<=10 and x>=1:

print("Your number is just right.")

You can combine more than two criteria on a line as well—as many as you like.

Two useful further elaborations of the if statement are else and elif:

if x>10:

print("Your number is greater than ten.")

else:

print("Your number is fine. Nothing to see here.")

�is prints di�erent messages depending onwhether x is greater than 10 or not. Note

that the else line, like the original if, is not indented and has a colon at the end. It

is followed by one or more indented lines, the indentation indicating that the lines

are “inside” the else clause.

An even more elaborate example is the following:

if x>10:

print("Your number is greater than ten.")

elif x>9:

print("Your number is OK, but you're cutting it close.")

else:

print("Your number is fine. Move along.")

�eword elif is short for “else if.” If the �rst criterion is not met it tells the computer

to try a di�erent one. Note that we can use both elif and else one a�er the other,

as here—if neither of the conditions speci�ed in the if and elif clauses is satis�ed

then the computer moves on to the else clause. You can also have more than one

elif, indeed you can have as many as you like, each one testing a di�erent condition

if the previous one was not satis�ed.

2.3.2 The while statement

A useful variation on the if statement is the while statement. It looks and behaves

similarly to the if statement:

41

Chapter 2 | Python programming for physicists

x = int(input("Enter a whole number no greater than ten: "))

while x>10:

print("This is greater than ten. Please try again.")

x = int(input("Enter a whole number no greater than ten: "))

print("Your number is",x)

As with the if statement, the while statement checks if the condition given is met

(in this case if G > 10). If it is, it executes the indented block of code immediately

following; if not, it skips the block. However (and this is the important di�erence), if

the condition is met and the block is executed, the program then loops back from the

end of the block to the beginning and checks the condition again. If the condition is

still true, then the indented lines will be executed again. And it will go on looping

around like this, repeatedly checking the condition and executing the indented code

until the condition is �nally false. (And if it is never false, then the loop goes on

forever.18) �us, if wewere to run the snippet of code above, wewould get something

like this:

Enter a whole number no greater than ten: 11

This is greater than ten. Please try again.

Enter a whole number no greater than ten: 57

This is greater than ten. Please try again.

Enter a whole number no greater than ten: 100

This is greater than ten. Please try again.

Enter a whole number no greater than ten: 5

Your number is 5

�e computer keeps on going around the loop, asking for a number until it gets what

it wants. �is construct—sometimes also called a while loop—is commonly used in

this way to ensure that some condition is met in a program or to keep on performing

an operation until a certain point or situation is reached.

As with the if statement, we can specify two or more criteria in a single while

statement using “and” or “or”. �e while statement can also be followed by an else

statement, which is executed once (and once only) if and when the condition in the

while statement fails. (�is type of else statement is primarily used in combination

with the break statement described in the next section.) �ere is no equivalent of

elif for a while loop, but there are two other useful statements that modify its be-

havior, break and continue.

18If you accidentally create a program with a loop that goes on forever then you will need to know

how to stop the program. In IDLE just closing the window where the program is running does the trick.

In Jupyter you can click on the run bu�on again to stop the program.

42

2.3 | Controlling programs with “if” and “while”

2.3.3 Break and continue

Two useful re�nements of thewhile statement are the break and continue statements.

�e break statement allows us to break out of a loop even if the condition in the while

statement is not met. For instance,

while x>10:

print("This is greater than ten. Please try again.")

x = int(input("Enter a whole number no greater than ten: "))

if x==111:

break

�is loop will continue looping until you enter a number not greater than 10, except

if you enter the number 111, in which case it will give up and proceed with the rest

of the program.

If the while loop is followed by an else statement, the else statement is not exe-

cuted a�er a break. �is allows you to create a program that does di�erent things if

the while loop �nishes normally (and executes the else statement) or via a break (in

which case the else statement is skipped).

�is example also illustrates another new concept: it contains an if statement

inside a while loop. �is is allowed in Python and used o�en. In the programming

jargon we say the if statement is nested inside the while loop. While loops nested

inside if statements are also allowed, or ifs within ifs, or whiles within whiles. And

it doesn’t have to stop at just two levels. Any number of statements within state-

ments is allowed. For some of the more complicated calculations in this book we

will see examples nested four or �ve levels deep. In the example above, note how the

break statement is doubly indented from the le� margin—it is indented by an extra

four spaces, for a total of eight, to indicate that it is part of a statement-within-a-

statement.19

�e continue statement is similar to the break statement, but with one important

di�erence. Saying continue anywhere in a loop will make the program skip the rest

of the indented code in the while loop, but instead of ge�ing on with the rest of the

program as break does, it then goes back to the beginning of the loop, checks the

condition in the while statement again, and goes around the loop again if the con-

dition is met. In other words, the continue statement abandons the current iteration

of the loop and starts a new one, but does not abandon looping altogether.

Example 2.3: Even and odd numbers

Suppose we want to write a program that takes as input a single integer and prints

out the word “even” if the number is even, and “odd” if the number is odd. We can

19We will come across some examples in this book where we have a loop nested inside another loop

and then a break statement inside the inner loop. In that case the break statement breaks out of the inner

loop only, and not the outer one.

43

Chapter 2 | Python programming for physicists

do this by making use of the fact that = modulo 2 is zero if (and only if) = is even.

Recalling that=modulo 2 is wri�en as n%2 in Python, here is how the programwould

go:

n = int(input("Enter an integer: "))

if n%2==0:

print("even")

else:

print("odd")

Now suppose we want a program that asks for two integers, one even and one odd—

in either order—and keeps on asking until it gets what it wants. We could do this

by checking all of the various combinations of even and odd, but a simpler approach

is to notice that if we have one even and one odd number then their sum is odd;

otherwise it is even. �us our program might look like this:

File: evenodd.py print("Enter two integers, one even, one odd")

m = int(input("Enter the first integer: "))

n = int(input("Enter the second integer: "))

while (m+n)%2==0:

print("One must be even and the other odd.")

m = int(input("Enter the first integer: "))

n = int(input("Enter the second integer: "))

print("The numbers you chose are",m,"and",n)

Note how the while loop checks to see if< += is even. If it is, then the numbers you

entered must be wrong—either both are even or both are odd—so the program asks

for another pair, and it keeps on doing this until it gets what it wants.

As before, take a moment to look over this program and make sure you under-

stand what each line does and how the program works.

Example 2.4: The Fibonacci numbers

�e Fibonacci numbers are the sequence of integers in which each is the sum of the

previous two, with the �rst two numbers being 1 and 1. �us the �rst few members

of the sequence are 1, 1, 2, 3, 5, 8, 13, 21. Suppose we want to calculate the Fibonacci

numbers up to 1000. �is would be a laborious task for a human, but it is straight-

forward for a computer program. All the program needs to do is keep a record of the

most recent two numbers in the sequence, add them together to calculate the next

number, then keep on repeating for as long as the numbers are less than 1000. Here

is a program to do it:

f1 = 1

f2 = 1

while f1<=1000:

44

2.3 | Controlling programs with “if” and “while”

print(f1)

fnext = f1 + f2

f1 = f2

f2 = fnext

Observe how the program works. �e variables f1 and f2 store the two most re-

cent numbers of the sequence. If f1 is less than 1000, we print it out, then calculate

the next number by summing f1 and f2 and store the result in the variable fnext.

�en we update the values of f1 and f2 and go around the loop again. �e process

continues until the value of f1 exceeds 1000, then stops.

�is program works �ne, but here is a neater way to solve the same problem

using the “multiple assignment” feature of Python discussed in Section 2.2.4:

File: fibonacci.pyf1,f2 = 1,1

while f1<=1000:

print(f1)

f1,f2 = f2,f1+f2

If we run this program, we get the following:

1

1

2

3

5

8

13

21

34

55

89

144

233

377

610

987

Indeed, the computer will happily print out the Fibonacci numbers up to a billion or

more in just a second or two. Try it if you like.

Exercise 2.7: Catalan numbers

�e Catalan numbers�= are a sequence of integers 1, 1, 2, 5, 14, 42, 132. . . that play important

roles in quantum mechanics and the theory of disordered systems. (�ey were central to

45

Chapter 2 | Python programming for physicists

Eugene Wigner’s proof of the so-called semicircle law.) �ey are given by

�0 = 1, �=+1 =
4= + 2
= + 2 �= .

Write a program that prints in increasing order all Catalan numbers less than or equal to one

billion.

2.4 Lists and arrays

We have seen how to work with integer, real, and complex numbers in Python and

how to use variables to store those numbers. All the variables we have seen so far,

however, represent only a single number—a single integer, real, or complex value.

But in physics it is common for a variable to represent several numbers at once.

We might use a vector r, for instance, to represent the position of a point in three-

dimensional space, meaning that the single symbol r actually corresponds to three

real numbers (G,~, I). Similarly, a matrix, again usually denoted by just a single

symbol, can represent an entire grid of numbers,<×= of them, where< and = could

be as large as we like. �ere are also many cases where we have a set of numbers

that we would like to treat as a single entity even if they do not form a vector or

matrix. We might, for instance, do an experiment in the lab and make a hundred

measurements of some quantity. Rather than give a di�erent name to each one—0,

1, 2 , and so forth—it makes sense to denote them by 01, 02, 03, and then to consider

them collectively as a set � = {08 }, a single entity made up of a hundred numbers.

Situations like these are so common that Python provides standard features,

called containers, for storing collections of numbers. �ere are several kinds of con-

tainers. In this section we look at the most common types: lists and arrays.

2.4.1 Lists

�e most basic type of container in Python is the list. A list, as the name suggests, is

a list of quantities, one a�er another. In all the examples in this book the quantities

will be numbers of some kind—integers, �oats, and so forth—although any type of

quantity that Python knows about is allowed in a list, such as strings for example.20

�e quantities in a list, which are called its elements, do not all have to be of

the same type. You can have an integer, followed by a �oat, followed by a complex

number if you want. In most of the cases we will deal with, however, the elements

will all be of the same type—all integers, say, or all �oats—because this is what physics

calculations usually demand. �us, for instance, in the example above where we

make a hundred measurements of a quantity in the lab and we want to represent

20If you have programmed in another computer language, then youmay be familiar with arrays, which

are similar to lists but not exactly the same. Python has both lists and arrays and both have their uses in

physics calculations. We study arrays in Section 2.4.2.

46

2.4 | Lists and arrays

them on the computer, we could use a list one hundred elements long and all the

elements would presumably be of the same type (probably �oats) because they all

represent measurements of the same thing.

A list in Python is wri�en like this: [3, 0, 0, -7, 24]. �e elements of the

list are enclosed in square brackets and separated by commas. �e elements of this

particular list are all integers, but they could be anything. Another example of a list

might be [1, 2.5, 3+4.6j]which has three elements of di�erent types, one integer,

one real, and one complex.

A list can be assigned to a variable:

r = [1, 1, 2, 3, 5, 8, 13, 21]

Previously in this chapter all variables have represented just single numbers, but

here we see that a variable can also represent a list of numbers. You can print a list

variable, just as you can any other variable, and the computer will print out the entire

list. If we run this program:

r = [1, 1, 2, 3, 5, 8, 13, 21]

print(r)

we get this:

[1, 1, 2, 3, 5, 8, 13, 21]

�e quantities that make up the elements of a list can be speci�ed using other vari-

ables, like this:

x = 1.0

y = 1.5

z = -2.2

r = [x, y, z]

�is will create a three-element list with the value [1.0, 1.5, -2.2]. It is important

to bear in mind, in this case, what happens when Python encounters an assignment

statement like r = [x, y, z]. Remember that in such situations Python �rst eval-

uates the expression on the right-hand side, which gives [1.0, 1.5, -2.2] in this

case, then assigns that value to the variable on the le�. �us the end result is that r

is equal to [1.0, 1.5, -2.2]. It is a common error to think of r as being equal to

[x, y, z] so that if, say, the value of x is changed later in the program the value of r

will change as well. �is is incorrect. �e value of rwill get set to [1.0, 1.5, -2.2]

and will not change later if x is changed. If you want to change the value of r you

have to explicitly assign a new value to it, with another statement like r = [x, y, z].

�e elements of lists can also be calculated from entire mathematical expressions,

like this:

r = [2*x, x+y, z/sqrt(x**2+y**2)]

47

Chapter 2 | Python programming for physicists

�e computer will evaluate all the expressions on the right-hand side, then create a

list from the values it calculated.

Once we have created a list we probably want to do some calculations with the

elements it contains. �e individual elements in a list r are denoted r[0], r[1], r[2],

and so forth. �at is they are numbered in order, from beginning to end of the list,

the numbers go in square brackets a�er the variable name, and crucially the numbers

start from zero, not one. �is may seem odd—it’s not the way we usually do things

in physics or in everyday life—and it takes a li�le ge�ing used to. However, it turns

out, as we will see, to be more convenient in a lot of situations than starting from

one.

�e individual elements, such as r[0], behave like single variables and you can

use them in the same way you would an ordinary variable. �us, here is a short

program that calculates and prints out the length of a vector in three dimensions:

from math import sqrt

r = [1.0, 1.5, -2.2]

length = sqrt(r[0]**2 + r[1]**2 + r[2]**2)

print(length)

�e �rst line imports the square root function from the math package, which we need

for the calculation. �e second line creates the vector, in the form of a three-element

list. �e third line is the one that does the actual calculation. It takes each of the three

elements of the vector, which are denoted r[0], r[1], and r[2], squares them, and

adds them together. �en it takes the square root of the result, which by Pythagoras’

theorem gives us the length of the vector. �e �nal line prints out the length. If we

run this program it prints

2.8442925306655784

which is the correct answer (to 17 signi�cant �gures).

We can change the values of individual elements of a list at any time, like this:

r = [1.0, 1.5, -2.2]

r[1] = 3.5

print(r)

�e�rst line will create a list with three elements. �e second then changes the value

of element 1, which is the middle of the three elements since they are numbered

starting from zero. So if we run the program it prints out this:

[1.0, 3.5, -2.2]

A powerful and useful feature of Python is its ability to perform operations on

entire lists at once. For instance, it sometimes happens that we want to know the

sum of the values in a list. Python contains a built-in function called sum that can

calculate such sums in a single line, thus:

48

2.4 | Lists and arrays

r = [1.0, 1.5, -2.2]

total = sum(r)

print(total)

�e �rst line here creates a three-element list and the second calculates the sum of

its elements. �e �nal line prints out the result, and if we run the program we get

this:

0.3

Other useful built-in functions include max and min, which give the largest and small-

est values in a list respectively, and len, which calculates the number of elements in

a list. Applied to the list r above, for instance, max(r) would give 1.5 and min(r)

would give −2.2, while len(r) would give 3. �us, for example, one can calculate

the mean of the values in a list like this:

r = [1.0, 1.5, -2.2]

mean = sum(r)/len(r)

print(mean)

�e second line here sums the elements in the list and then divides by the number

of elements to give the mean value. In this case, the calculation would give a mean

of 0.1.

Another feature of lists in Python, one that we will use o�en, is the ability to add

elements to an already existing list. Suppose we have a list called r and we want to

add a new element to the end of the list with value, say, 6.1. We can do this with the

statement

r.append(6.1)

�is slightly odd-looking statement is a li�le di�erent in form from ones we have

seen previously.21 It consists of the name of our list, which is r, followed by a dot

(i.e., a period), then “append(6.1)”. Its e�ect is to add a new element to the end of

the list with the given value, which is 6.1 in this case. �e value can also be speci�ed

using a variable or a mathematical expression, thus:

r = [1.0, 1.5, -2.2]

x = 0.8

r.append(2*x+1)

print(r)

21�is is an example of Python’s object-oriented programming features. �e function append is tech-

nically a “method” that belongs to the list “object” r. �e function does not exist as an entity in its own

right, only as a subpart of the list object. We will not dig into Python’s object-oriented features in this

book, since they are of relatively li�le use for the type of physics programming we will be doing. For

so�ware developers engaged in large-scale commercial or group programming projects, however, they

can be invaluable.

49

Chapter 2 | Python programming for physicists

If we run this program we get

[1.0, 1.5, -2.2, 2.6]

Note how the computer has calculated the value of 2*x+1 to be 2.6, then added that

value to the end of the list.

A particularly useful trick that we will employ frequently in this book is the

following. We create an empty list, a list with no elements in it at all, then add

elements to it one by one as we learn of or calculate their values. A list created

in this way can grow as large as we like (within limitations set by the amount of

memory the computer has to store the list).

To create an empty list we say

r = []

�is creates a list called r with no elements. Even though it has no elements in it,

the list still exists. It’s like an empty set in mathematics—it exists as an object, but it

doesn’t contain anything (yet). Now we can add elements thus:

r.append(1.0)

r.append(1.5)

r.append(-2.2)

print(r)

which produces

[1.0, 1.5, -2.2]

Wewill, for instance, use this technique to make graphs in Section 3.1. Note that you

must create the empty list �rst before adding elements. You cannot add elements to

a list until it has been created—the computer will give an error message if you try.

We can also remove a value from the end of a list by saying r.pop():

r = [1.0, 1.5, -2.2, 2.6]

r.pop()

print(r)

which gives

[1.0, 1.5, -2.2]

And we can remove a value from anywhere in a list by saying r.pop(n), where n is

the number of the element you want to remove.22 Bear in mind that the elements are

22However, removing an element from the middle (or the beginning) of a list is a slow operation

because the computer then has to move all the elements above that down one place to �ll the gap. For a

long list this can take a long time and slow down your program, so you should avoid doing it if possible.

50

2.4 | Lists and arrays

numbered from zero, so if you want to remove the �rst item from a list you would

say r.pop(0).

2.4.2 Arrays

As we have seen, a list in Python is an ordered set of values, such as a set of integers

or a set of �oats. �ere is another object in Python that is somewhat similar: an array.

An array is also an ordered set of values, but there are some important di�erences

between lists and arrays:

1. �e number of elements in an array is �xed. You cannot add elements to an

array once it is created, or remove them.

2. �e elements of an array must all be of the same type, such as all �oats or all

integers. You cannot mix elements of di�erent types in the same array and you

cannot change the type of the elements once an array is created.

Lists, as we have seen, have neither of these restrictions and, on the face of it, these

seem like signi�cant drawbacks of the array. Why would we ever use an array if lists

are more �exible? �e answer is that arrays have several signi�cant advantages over

lists as well:

3. Arrays can be two-dimensional, like matrices in algebra. �at is, rather than

just a one-dimensional row of elements, we can have a grid of them. Indeed,

arrays can in principle have any number of dimensions, including three or

more, although we will not use dimensions above two in this book. Lists, by

contrast, are always just one-dimensional.

4. Arrays behave roughly like vectors or matrices: you can do arithmetic with

them, such as adding them together, and you will get the result you expect.

�is is not true with lists. If you try to do arithmetic with a list you will either

get an error message, or you will not get the result you expect.

5. Arrays work faster than lists. Especially if you have a very large array with

many elements, then calculations may be signi�cantly faster using an array.

In physics it o�en happens that we are working with a �xed number of elements all

of the same type, as when we are working with matrices or vectors, for instance. In

that case, arrays are clearly the tool of choice: the fact that we cannot add or remove

elements is immaterial if we never need to do such a thing, and the superior speed

of arrays and their �exibility in other respects can make a signi�cant di�erence to

our programs. We will use arrays extensively in this book.

Before you use an array you need to create it, meaning you need to tell the com-

puter how many elements it will have and of what type. Python provides functions

(On the other hand, if it doesn’t ma�er to you what order the elements of a list appear in, then you can

e�ectively remove any element rapidly by �rst se�ing it equal to the last element in the list, then removing

the last element.) �ere is also another, less commonly used container in Python called a deque, that allows

one to quickly add or remove elements from either the beginning or the end (but not the middle). We will

not used deques in this book however.

51

Chapter 2 | Python programming for physicists

that allow you do this in several di�erent ways. �ese functions are all found in the

package numpy. (�e name is short for “numerical Python.”)

In the simplest case, we can create a one-dimensional array with = elements, all

of which are initially equal to zero, using the function zeros from the numpy package.

�e function takes two arguments. �e �rst is the number of elements the array is

to have and the second is the type of the elements, such as int, float, or complex.

For instance, to create a new array with four �oating-point elements we would do

the following:

from numpy import zeros

a = zeros(4,float)

print(a)

In this example the new array is denoted a. When we run the program the array is

printed out as follows:

[0. 0. 0. 0.]

Note that arrays are printed out slightly di�erently from lists—there are no commas

between the elements, only spaces.

We can use the same approach to create an array of ten integers with the state-

ment “a = zeros(10,int)” or an array of a hundred complex numbers with the

statement “a = zeros(100,complex)”. �e size of the arrays you can create is lim-

ited only by the computer memory available to hold them. Modern computers can

hold arrays with hundreds of millions or even billions of elements.

To create a two-dimensional �oating-point array with < rows and = columns,

you say “zeros([m,n],float)”, so

a = zeros([3,4],float)

print(a)

produces

[[0. 0. 0. 0.]

[0. 0. 0. 0.]

[0. 0. 0. 0.]]

Note that the �rst argument of the zeros function in this case is itself a list (that’s why

it is enclosed in brackets [. . .]), whose elements give the size of the array along each

dimension. We could create a three-dimensional array by giving a three-element list

(and so on for higher dimensions).

�ere is a similar function in numpy called ones that creates an array with all

elements equal to one. �e form of the function is exactly the same as for the function

zeros. Only the values in the array are di�erent.

On the other hand, if we are going to change the values in an array immediately

a�er we create it, then it doesn’t make sense to have the computer set all of them to

52

2.4 | Lists and arrays

zero (or one). Se�ing them to zero takes some time, time that is wasted if you don’t

need the zeros. In that case you can use a di�erent function, empty, again from the

package numpy, to create an empty array:

from numpy import empty

a = empty(4,float)

�is creates an array of four “empty” �oating-point elements. In practice the ele-

ments are not actually empty. Instead they contain whatever numbers happened

to be li�ered around the computer’s memory at the time the array is created. �e

computer just leaves those values as they are and doesn’t waste any time changing

them. You can also create empty integer or complex arrays by saying int or complex

instead of float.

A di�erent way to create an array is to take a list and convert it into an array,

which you can do with the function array from the package numpy. For instance we

can say:

from numpy import array

r = [1.0, 1.5, -2.2]

a = array(r,float)

which will create an array of three �oating-point elements, with values 1.0, 1.5,

and −2.2. If the elements of the list (or some of them) are not already �oats, they

will be converted to �oats.23 You can also create integer or complex arrays in the

same fashion, and the list elements will be converted to the appropriate type if nec-

essary.24

�e second and third lines above can conveniently be combined into one, like

this:

a = array([1.0,1.5,-2.2],float)

�is is a quick and easy way to create a new array with predetermined values in its

elements. We will use this trick frequently.

We can also create two-dimensional arrays with speci�ed values. To do this we

again use the array function, but now the argument we give it is a list of lists, which

gives the elements of the array row by row. For example,

23�ough it is not something we will o�en need to do, you can also convert an array into a list using

the built-in function list by writing r = list(a). Note that you do not specify a type for the list, because

lists don’t have types. �e types of the elements in the list will just be the same as the types of the elements

in the array.

24Two caveats apply here. (1) If you create an integer array from a list that has any �oating-point

elements, the fractional part of the �oating-point elements (i.e., the part a�er the decimal point) will be

thrown away. (2) If you try to create a �oating-point or integer array from a list containing complex values

you will get an error message. �is is not allowed.

53

Chapter 2 | Python programming for physicists

a = array([[1,2,3],[4,5,6]],int)

print(a)

�is creates a two-dimensional array of integers and prints it out:

[[1 2 3]

[4 5 6]]

�e list of lists must have the same number of elements for each row of the array

(three in this case) or the computer will complain.

We can refer to individual elements of an array in a manner similar to the way

we refer to the elements of a list. For a one-dimensional array we write a[0], a[1],

and so forth. Note, as with lists, that the numbering of the elements starts at zero,

not one. We can also set individual elements equal to new values thus:

a[2] = 4

Note, however, that, since the elements of an array are of a particular type (which

cannot be changed a�er the array is created), any value you specify will be converted

to that type. If you give an integer value for a �oating-point array element, it will be

converted to �oating-point. If you give a �oating-point value for an integer array,

it will be converted to an integer, discarding the part a�er the decimal point, if any.

(And if you try to assign a complex value to an integer or �oating-point array you

will get an error message—this is not allowed.)

For two-dimensional arrays we use two indices, separated by commas, to denote

the individual elements, as in a[2,4], with counting again starting at zero for both

indices. �us, for example

from numpy import zeros

a = zeros([2,2],int)

a[0,1] = 1

a[1,0] = -1

print(a)

would produce the output

[[0 1]

[-1 0]]

Note that when Python prints a two-dimensional array it observes the convention

of standard matrix arithmetic that the �rst index of a two-dimensional array denotes

the row of the array element and the second denotes the column.

54

2.4 | Lists and arrays

2.4.3 Reading an array from a file

Another, somewhat di�erent, way to create an array is to read a set of values from a

computer �le, which we can do with the function loadtxt from the package numpy.

Suppose we have a text �le that contains the following string of numbers, on con-

secutive lines:

1.0

1.5

-2.2

2.6

and suppose that this �le is called values.txt on the computer. �en we can do the

following:

from numpy import loadtxt

a = loadtxt("values.txt",float)

print(a)

When we run this program, we get the following printed on the screen:

[1.0 1.5 -2.2 2.6]

As you can see, the computer has read the numbers in the �le and put them in a

�oating-point array of the appropriate length. (For this to work the �le values.txt

has to be in the same folder or directory on the computer as your Python program.25)

We can use the same trick to read a two-dimensional grid of values and put them

in a two-dimensional array. If the �le values.txt contained the following:

1 2 3 4

3 4 5 6

5 6 7 8

then the exact same program above would create a two-dimensional 3 × 4 array of

�oats with the appropriate values in it.

�e loadtxt function is a very useful one for physics calculations. It happens

o�en that we have a �le or �les containing numbers we need for a calculation. �ey

might be data from an experiment, for example, or numbers calculated by another

computer program. We can use loadtxt to transfer those numbers into an array so

that we can perform calculations on them.

25You can also give a full path name for the �le, specifying explicitly the folder as well as the �le name,

in which case the �le can be in any folder.

55

Chapter 2 | Python programming for physicists

2.4.4 Arithmetic with arrays

As with lists, the individual elements of an array behave like ordinary variables, and

we can do arithmetic with them in the usual way. We can write things like

a[0] = a[1] + 1

or

x = a[2]**2 - 2*a[3]/y

But we can also do arithmetic with entire arrays at once, a powerful feature that

can be very useful in physics calculations. In general, when doing arithmetic with

whole arrays the rule is that whatever arithmetic operation you specify is done in-

dependently to each element of the array or arrays involved. Consider this short

program:

from numpy import array

a = array([1,2,3,4],int)

b = 2*a

print(b)

When we run this program it prints

[2 4 6 8]

As you can see, when we multiply the array a by 2 the computer simply multiplies

each individual element by 2. A similar thing happens if you divide. Note that when

we run this program, the computer creates a new array b holding the results of the

multiplication. �is is another way to create arrays, di�erent from the methods we

mentioned before. We do not have to create the array b explicitly, using for instance

the empty function. When we perform a calculation with arrays, Python will auto-

matically create a new array for us to hold the results.

If you add or subtract two separate arrays, the computer will add or subtract each

element separately, so that

a = array([1,2,3,4],int)

b = array([2,4,6,8],int)

print(a+b)

results in

[3 6 9 12]

(For this to work, the arrays must have the same size. If they do not, the computer

will complain.)

All of these operations give the same result as the equivalent mathematical oper-

ations on vectors in normal algebra, which makes arrays well suited to representing

56

2.4 | Lists and arrays

vectors in physics calculations.26 If we represent a vector using an array, then arith-

metic operations such as multiplying or dividing by a scalar or adding or subtracting

vectors can be wri�en just as they would in normal mathematics. You can also add

or subtract a scalar quantity to or from an array, which the computer interprets to

mean it should add that quantity to every element. So

a = array([1,2,3,4],int)

print(a+1)

results in

[2 3 4 5]

However, if we multiply two arrays together the outcome is perhaps not exactly

what you would expect—you do not get the vector (dot) product of the two. If we do

this:

a = array([1,2,3,4],int)

b = array([2,4,6,8],int)

print(a*b)

we get

[2 8 18 32]

What has the computer done? It has multiplied the two arrays together element by

corresponding element. �e �rst elements of the two arrays are multiplied together,

then the second elements, and so on. �is is logical in a sense—it is the exact equiva-

lent of what happens when you add. �e prescribed operation, multiplication in this

case, is performed independently on each element. (Division works similarly.) Oc-

casionally this may be what you want the computer to do, but more o�en in physics

calculations we want the true vector dot product of our arrays. In that case we can

calculate the product using the function dot from the package numpy:

from numpy import array,dot

a = array([1,2,3,4],int)

b = array([2,4,6,8],int)

print(dot(a,b))

When we run this program, it prints

60

which is the correct value of the dot product.

26�e same operations, by contrast, do not work with lists, so lists are less good for storing vector

values.

57

Chapter 2 | Python programming for physicists

All of the operations above also work with two-dimensional arrays, which makes

such arrays convenient for storing matrices. Multiplying and dividing by scalars as

well as addition and subtraction of two-dimensional arrays all work as in standard

matrix algebra. Multiplication will multiply element by element, which is usually

not what you want, but the dot function calculates the standard matrix product.

Consider, for example, this matrix calculation:(
1 3

2 4

) (
4 −2
−3 1

)
+ 2

(
1 2

2 1

)
=

(
−3 5

0 2

)

In Python we would do this as follows:

a = array([[1,3],[2,4]],int)

b = array([[4,-2],[-3,1]],int)

c = array([[1,2],[2,1]],int)

print(dot(a,b)+2*c)

You can also multiply matrices and vectors together. If v is a one-dimensional array

then dot(a,v) treats it as a column vector andmultiplies it on the le� by thematrix a,

while dot(v,a) treats it as a row vector and multiplies on the right by a. Python

is intelligent enough to know the di�erence between row and column vectors, and

between le�- and right-multiplication, and to choose the right operation in each case.

Functions can be applied to arrays in much the same way as to lists. �e built-in

functions sum, min, max, and len described in Section 2.4.1 can be applied to one-

dimensional arrays to calculate sums of elements, minimum and maximum values,

and the number of elements. Applying functions to arrays with two or more di-

mensions produces more erratic results. For instance, the len function applied to a

two-dimensional array returns the number of rows in the array and the functions max

and min produce only error messages. However, the numpy package contains func-

tions that perform similar duties and work more predictably with two-dimensional

arrays, such as functions min and max that �nd minimum and maximum values. In

place of the len function, there are two di�erent features, called size and shape.

Consider this example:

a = array([[1,2,3],[4,5,6]],int)

print(a.size)

print(a.shape)

which produces

6

(2, 3)

�us, a.size tells you the total number of elements in all rows and columns of

the array a (which is roughly the equivalent of the len function for lists and one-

dimensional arrays), and a.shape returns a list giving the dimensions of the array.

58

2.4 | Lists and arrays

(Technically it is a “tuple” not a list, but for our purposes it is roughly the same thing.

You can say n = a.shape, and then n[0] is the number of rows of a and n[1] is the

number of columns.) For one-dimensional arrays there is no di�erence between size

and shape. �ey both give the total number of elements.

�ere are a number of other functions in the numpy package that are useful for

performing calculations with arrays. �e full list can be found in the online docu-

mentation at www.scipy.org.

Example 2.5: Average of a set of values in a file

Suppose we have a set of numbers stored in a �le values.txt and we want to cal-

culate their mean. Even if we don’t know how many numbers there are we can do

the calculation quite easily:

from numpy import loadtxt

values = loadtxt("values.txt",float)

mean = sum(values)/len(values)

print(mean)

�e �rst line imports the loadtxt function and the second uses it to read the values

in the �le and put them in an array called values. �e third line calculates the mean

as the sum of the values divided by the number of values and the fourth prints out

the result.

Now suppose we want to calculate the mean-square value. To do this, we �rst

need to calculate the squares of the individual values, whichwe can do bymultiplying

the array values by itself. Recall, that the product of two arrays in Python multiplies

together each pair of corresponding elements, so values*values is an array with

elements equal to the squares of the original values. (We could also write values**2,

which would produce the same result.) �en we can use the function sum to add up

the squares. �us our program might look like this:

from numpy import loadtxt

values = loadtxt("values.txt",float)

mean = sum(values*values)/len(values)

print(mean)

On the other hand, suppose we want to calculate the geometric mean of our set

of numbers. (We will assume our numbers are all positive, since one cannot take the

geometric mean of negative numbers.) �e geometric mean of a set of = values G8 is

de�ned to be the =th root of their product, thus:

G =

(=∏
8=1

G8

)1/=
. (2.1)

59

Chapter 2 | Python programming for physicists

Taking natural logs of both sides we get

lnG = ln

(=∏
8=1

G8

)1/=
=

1

=

=∑
8=1

lnG8 (2.2)

or

G = exp

(
1

=

=∑
8=1

lnG8

)
. (2.3)

In other words, the geometric mean is the exponential of the arithmetic mean of the

logarithms. To write a program to calculate this, we need one new thing: the numpy

package contains its own log function that will calculate the logs of all the elements

of an array. �us we can write

from numpy import loadtxt,log

from math import exp

values = loadtxt("values.txt",float)

geometric = exp(sum(log(values))/len(values))

print(geometric)

�e log function here calculates all the logarithms in a single step, then we take their

average and calculate the exponential of the result, which gives us our geometric

mean.

Finally in this section, here is a word of warning. Consider the following pro-

gram:

from numpy import array

a = array([1,1],int)

b = a

a[0] = 2

print(a)

print(b)

Take a look at this program and work out for yourself what you think it will print.

If we actually run it (and you can try this for yourself) it prints the following:

[2 1]

[2 1]

�is may not be what you were expecting. Reading the program, it looks like array

a should be equal to [2,1] and b should be equal to [1,1] when the program ends,

but the output of the program appears to indicate that both are equal to [2,1]. What

has happened?

�e answer lies in the line “b = a” in the program. In Python, direct assignment

of arrays in this way, se�ing the value of one array equal to another, does not work

as you might expect. You might imagine that “b = a” would cause Python to create

60

2.4 | Lists and arrays

a new array b holding a copy of the numbers in the array a, but this is not what

happens. In fact, all that “b = a” does is that it declares “b” to be a new name for the

array previously called “a”. �at is, “a” and “b” now both refer to the same array of

numbers, stored somewhere in the memory of the computer. If we change the value

of an element in array a, as we do in the program above, then we also change the

same element of array b, because a and b are really just the same array.27

�is is a tricky point, one that can catch you out if you are not aware of it. You

can do all sorts of arithmetic operations with arrays and they will work just �ne, but

this one operation, se�ing an array equal to another array, does not work the way

you expect it to.

Why does Python do this? At �rst sight it seems peculiar, annoying even, but

there is a good reason for it. Arrays can be very large, with millions or even billions

of elements. So if a statement like “b = a” caused the computer to create a new

array b that was a complete copy of the array a, it might have to copy very many

numbers in the process, potentially using a lot of time and memory space. But in

many cases it is not actually necessary to make a copy of the array. Particularly if

you are interested only in reading the numbers in an array, not in changing them,

then it does not ma�er whether a and b are separate arrays that happen to contain

the same values or are actually just two names for the same array—everything will

work the same either way. Creating a new name for an old array is normally far

faster than making a copy of the entire contents, so, in the interests of e�ciency, this

is what Python does.

Of course there are times when you really do want to make a new copy of an

array, so Python also provides a way of doing this. To make a copy of an array a we

can use the function copy from the numpy package thus:

from numpy import copy

b = copy(a)

�is will create a new array b whose elements are an exact copy of those of array a.

If we were to use this line, instead of the line “b = a”, in the program above, then

run the program, it would print this:

[2 1]

[1 1]

which is now the “correct” answer.

27If you have worked with the programming languages C or C++ you may �nd this behavior familiar,

since those languages treat arrays the same way. In C, the statement “b = a”, where a and b are arrays,

also merely creates a new name for the array a, not a new array.

61

Chapter 2 | Python programming for physicists

Exercise 2.8: Suppose arrays a and b are de�ned as follows:

from numpy import array

a = array([1,2,3,4],int)

b = array([2,4,6,8],int)

What will the computer print upon executing the following lines? (Try to work out the answer

before testing it on the computer.)

a) print(b/a+1)

b) print(b/(a+1))

c) print(1/a)

2.4.5 Slicing

Here is another useful trick, called slicing, which works with both arrays and lists.

Suppose we have a list r. �en r[m:n] is another list composed of a subset of the

elements of r, starting with element< and going up to but not including element =.

Here is an example:

r = [1, 3, 5, 7, 9, 11, 13, 15]

s = r[2:5]

print(s)

which produces

[5, 7, 9]

Observe what has happened. �e variable s is a new list, which is a sublist of r

consisting of elements 2, 3, and 4 of r, but not element 5. Since the numbering of

elements starts at zero, not one, element 2 is actually the third element of the list,

which is the 5, and elements 3 and 4 are the 7 and 9. So s has three elements equal

to 5, 7, and 9.

Slicing is useful in many physics calculations, particularly, as we will see, in ma-

trix calculations, calculations on la�ices, and in the solution of di�erential equations.

�ere are a number of variants on the basic slicing formula above. You can write

r[2:], which means all elements of the list from element 2 up to the end of the list,

or r[:5], which means all elements from the start of the list up to, but not including,

element 5. And r[:] with no numbers at all means all elements from the beginning

to the end of the list, i.e., the entire list. �is last is not very useful—if we want to re-

fer to the whole list we can just say r. We get the same thing, for example, whether

we write print(r[:]) or print(r). However, we will see a use for this form in a

moment.

�ere is also a three-index version of slicing which takes the form r[m:n:k]. �is

version creates a new list with elements drawn from r, starting at element < and

going up to but not including element =, but now increasing in steps of : elements

62

2.4 | Lists and arrays

at a time. For example s = r[1:6:2] would give a list composed of elements 1, 3,

and 5 of r, which would be [3, 7, 11] if r is the same as the example above. �e

third index of the slice can also be negative, in which the elements are drawn from

r in reverse order. For example r[5:2:-1] produces a list consisting of elements 5,

4, and 3 from the original r (but not element 2), which would give [11, 9, 7] in

this case. �is also provides a quick way to reverse the order of the elements in a

list. Writing s = r[::-1] gives you a new list s containing all the elements of r in

reverse order.

Slicing can also be applied to arrays, giving you a new array of the same type as

the one you started with and containing a subset of its elements. For example:

from numpy import array

a = array([2,4,6,8,10,12,14,16],int)

b = a[3:6]

print(b)

which prints

[8 10 12]

You can also write a[3:], or a[:6], or a[:], as with lists, or the three-index version

a[3:6:2].

Slicing works with two-dimensional arrays as well. For instance, a[2,3:6] gives

you a one-dimensional arraywith three elements equal to a[2,3], a[2,4], and a[2,5],

while a[2:4,3:6] gives you a two-dimensional array of size 2× 3 with values drawn

from the appropriate subblock of a, starting at a[2,3]. And a[2,:] gives you the

whole of row 2 of array a, which means the third row since the numbering starts

at zero, while a[:,3] gives you the whole of column 3, which is the fourth column.

�ese forms will be particularly useful to us for doing vector and matrix arithmetic.

2.4.6 Set, dicts, and other containers

We have discussed two types of Python containers in detail, lists and arrays, and

these are the only types we will use in this book. �ere are, however, a number of

others, which we describe brie�y in this section and which can be useful in certain

circumstances.

A set is a Python container that stores an unordered collection of unique values,

akin to a set in mathematics. A set could for instance contain the integer values

{1, 4,−3}. In addition to integers a set can also contain �oats, complex values, strings,

or almost any other Python quantity, including entire lists, arrays, or even other sets.

�e contents of a set are unordered, which means that there is no �rst or last element

and the elements do not come in any particular order. �e elements are also unique,

meaning that a value can appear at most once in the set. So there cannot be two 1s for

example. If you try and add two 1s, only the �rst will be accepted and the a�empted

63

Chapter 2 | Python programming for physicists

addition of the second will have no e�ect. Sets can be created in a variety of ways,

but we can, for example, write s = set([1,4,-3]), which takes the list [1,4,-3] and

converts it into a set in much the same way that the array function converts a list

into an array. Note, however, that, unlike the array function, the set function does

not need to be imported from a package. It is a built-in function, always available in

Python. (See Section 2.2.7 for discussion of built-in functions.)

A dict—short for “dictionary”—is a Python container that behaves like a more

�exible kind of list or array. Consider the following example:

d = dict()

d[4] = 10

d[2] = 7.7

d[-3] = 5+3j

�is code �rst creates an empty dict using the built-in dict function, then adds three

elements to it. Elements can take (almost) any value we care to give them, and each

element is identi�ed by an index, technically called a key, which is given in square

brackets a�er the dict name, in a manner similar to a list or array, as in d[4] or d[-3].

Important points to notice about dicts are:

1. �e elements of a dict, like those of a list, can have any type of value, including

integer, �oating-point, or complex values, or strings. �ey can also be lists,

arrays, sets, or even other dicts. �e elements of a dict do not all have to be of

the same type.

2. Unlike a list or array, the elements of a dict can have any index—the indices

do not need to start at zero or run consecutively. Elements of a dict are only

created when you give them a value. If you ask for an element that has not yet

been created you will get an error message. For instance, print(d[0]) would

give an error in the example above.

3. �e index or key of an element does not need to be an integer. It can take

almost any value we like, including �oats, strings, and others. For instance,

we are allowed to write d[3.14] = "xyz" or d["abc"] = 2.

Sets and dicts are powerful data structures. While they will not be necessary for

the calculations we do in this book, they do �nd use in computational physics and in

many other applications, and you may encounter them when working with Python,

so they are worth knowing about.

Other Python containers include the deque, a type of double-ended list that allows

one to quickly add or remove elements from either the start or the end of the list, and

the defaultdict, a variant of a dict that de�nes a default value for elements that have

not been explicitly created. �ese, however, are relative rarities in Python code, and

particularly in computational physics, and we will not consider them further in this

book.

64

2.5 | For loops

2.5 For loops

In Section 2.3.2 we saw a way to make a program loop repeatedly around a given

section of code using a while statement. In practice, however, while statements are

used only rather rarely. �ere is another, much more commonly used loop construc-

tion in the Python language, the for loop. A for loop is a loop that runs through the

elements of a container, such as a list or array, in turn. Consider this short example:

r = [1, 3, 5]

for n in r:

print(n)

print(2*n)

print("Finished")

If we run this program it prints the following:

1

2

3

6

5

10

Finished

What’s happening here is as follows. �e program �rst creates the list r, then the for

statement sets n equal to each value in the list in turn. For each value the computer

carries out the steps in the following two lines, printing out = and 2=, then loops

back around to the for statement again and sets n to the next value in the list. Note

that the two print statements are indented, in a manner similar to the if and while

statements we saw earlier. �is is how we tell the program which instructions are

“in the loop.” Only the indented instructions will be executed each time around the

loop. When the program has worked its way through all the values in the list, it stops

looping and moves on to the next line of the program, which in this case is a third

print statement which prints the word “Finished.” In this example the computer will

go around the loop three times, since there are three elements in list r.

�e same construction works with arrays as well—you can use a for loop to go

through the elements of a (one-dimensional) array in turn.28 Also the statements

break and continue (see Section 2.3.3) can be used with for loops the same way they

are used with while loops: break ends the loop and moves to the next statement a�er

the loop; continue abandons the current iteration of the loop and moves on to the

next iteration. And you can add an else statement at the end of a for loop, which

operates in the same way as it does with a while loop: the code following the else

28For loops also work with sets, dicts, deques, and other more exotic containers (see Section 2.4.6 on

page 63), although we will not use any of these in this book.

65

Chapter 2 | Python programming for physicists

statement is executed a�er the for loop ends, but only if it ends normally. If the loop

is aborted prematurely using break then the else statement is skipped.

�emost common use of a for loop is simply to run through a piece of code a spec-

i�ed number of times, such as ten, say, or a million. To achieve this, Python provides

a special built-in function called range, which creates a list of a given length, usually

for use with a for loop. For example range(5) returns a list [0, 1, 2, 3, 4]—that

is, a list of consecutive integers, starting at zero and going up to, but not including, 5.

Note that this means the list contains exactly �ve elements but does not include the

number 5 itself.29 �us

r = range(5)

for n in r:

print("Hello again")

produces the following output

Hello again

Hello again

Hello again

Hello again

Hello again

�e for loop gives n each of the values in r in turn, of which there are �ve, and for each

of them it prints out the words “Hello again”. So the end result is that the computer

prints out the same message �ve times. In this case we are not actually interested in

the values r contains, only the fact that there are �ve of them—they merely provide a

convenient tool that allows us to run around the same piece of code a given number

of times.

A more interesting use of the range function is the following:

r = range(5)

for n in r:

print(n**2)

29Technically, range produces not a list but an iterator , a specialized object that contains the ele-

ments of the range in order. If you actually wanted to produce a list using range then you could write

“list(range(5))”, which would create an iterator and then convert it to a list. In practice, however, we

need to do this very rarely, and never in this book—the main use of the range function is in for loops and

you can use an iterator directly in a for loop without converting it into a list �rst.

�e di�erence between an iterator and a list is that the values in an iterator are not stored in memory

the way the values in a list are, but are instead calculated on the �y when they are needed, which saves

memory space. In versions of Python prior to version 3, the range function produced a list, not an iterator,

but both lists and iterators give the same results when used in for loops, so the loops in this book will

work without modi�cation with either version 2 or version 3 of Python. For further discussion of this

point, and of iterators in general, see Appendix D starting on page 580.

66

2.5 | For loops

Now we are making use of the actual values r contains, printing out the square of

each one in turn:

0

1

4

9

16

In both of these examples we used a variable r to store the results of the range func-

tion, but it is not necessary to do this. O�en one takes a shortcut and just writes

for n in range(5):

print(n**2)

which achieves the same result with less fuss. �is is probably the most common

form of the for loop and we will see many loops of this form throughout this book.

�ere are a number of useful variants of the range function, as follows:

range(5) gives [0, 1, 2, 3, 4]

range(2,8) gives [2, 3, 4, 5, 6, 7]

range(2,20,3) gives [2, 5, 8, 11, 14, 17]

range(20,2,-3) gives [20, 17, 14, 11, 8, 5]

When there are two arguments to the function it generates integer values that run

from the �rst up to, but not including, the second. When there are three arguments,

the values run from the �rst up to but not including the second, in steps of the third.

�us in the third example above the values increase in steps of 3. In the fourth

example, which has a negative argument, the values decrease in steps of 3. Note that

in each case the values returned by the function do not include the value at the end

of the given range—the �rst value in the range is always included; the last never is.

�us, for example, we can print out the �rst ten powers of two with the following

lines:

for n in range(1,11):

print(2**n)

Note how the upper limit of the range is given as 11. �is program will print out

the powers 2, 4, 8, 16, and so forth up to 1024. It stops at 210, not 211, because range

always excludes the last value.

A further point to notice about the range function is that all its arguments must

be integers. �e function will not work if you give it non-integer arguments, such

as �oats, and you will get an error message if you try. It is particularly important to

remember this when the arguments are calculated from the values of other variables.

�is short program, for example, will not work:

67

Chapter 2 | Python programming for physicists

p = 10

q = 2

for n in range(p/q):

print(n)

You might imagine these lines would print out the integers from zero to four, but if

you try it you will just get an error message because, as discussed in Section 2.2.4, the

division operation returns a �oating-point value, even if the result of the division is,

mathematically speaking, an integer. �us the quantity “p/q” in the program above

is a �oating-point quantity equal to 5.0 and is not allowed as an argument of the

range function. We can �x this problem by using integer division instead:

for n in range(p//q):

print(n)

�is will nowwork as expected. (See Section 2.2.4, page 24 for a discussion of integer

division.)

Another useful function is arange from the numpy package, which is similar to

range but generates arrays, rather than lists or iterators30 and moreover works with

�oating-point arguments aswell as integer ones. For example, arange(1,8,2) gives a

one-dimensional array of integers [1,3,5,7], while arange(1.0,8.0,2.0) gives an

array of �oating-point values [1.0,3.0,5.0,7.0] and arange(2.0,2.8,0.2) gives

[2.0,2.2,2.4,2.6]. As with range, the arange function can be used with one, two,

or three arguments, and does the equivalent thing to range in each case.

Another similar function is the function linspace, also from the numpy package,

which generates an arraywith a given number of �oating-point values between given

limits. For instance, linspace(2.0,2.8,5) divides the interval from 2.0 to 2.8 into 5

values, creating an array with �oating-point elements [2.0,2.2,2.4,2.6,2.8]. Sim-

ilarly, linspace(2.0,2.8,3) would create an array with elements [2.0,2.4,2.8].

Note that, unlike both range and arange, linspace includes the last point in the

range. Also note that although linspace can take either integer or �oating-point

arguments, it always generates �oating-point values, even when the arguments are

integers.

Example 2.6: Performing a sum

It happens o�en in physics calculations that we need to evaluate a sum. If we have

the values of the terms in the sum stored in a list or array then we can calculate the

sum using the built-in function sum described in Section 2.4.1. In more complicated

30�e function arange generates an actual array, calculating all the values and storing them in the

computer’s memory. �is can cause problems if you generate a very large array because the computer

can run out of memory, crashing your program, an issue that does not arise with the iterators generated by

the range function. For instance, arange(20000000000)will produce an errormessage onmost computers,

while the equivalent expression with range will not. See Appendix D for more discussion of this point.

68

2.5 | For loops

situations, however, it is o�en more convenient to use a for loop. Suppose, for in-

stance, that we want to know the value of the sum B =
∑100
:=1
(1/:). �e standard way

to program this is as follows:

1. First create a variable to hold the value of the sum, and initially set it to zero.

As above, we will call the variable s, and we want it to be a �oating-point

variable, so we will write “s = 0.0”.

2. Now use a for loop to take the variable k through all values from 1 to 100. For

each value, calculate 1/k and add it to the variable s.

3. When the for loop ends the variable s will contain the value of the complete

sum.

�us our program looks like this:

s = 0.0

for k in range(1,101):

s += 1/k

print(s)

Note how we use range(1,101) so that the values of k start at 1 and end at 100. We

also used the “+=” modi�er, which adds to a variable as described in Section 2.2.4. If

we run this program it prints the value of the sum thus:

5.187377517639621

As another example, suppose we have a set of real values stored in a computer

�le called values.txt and we want to compute and print the sum of their squares.

We could achieve this as follows:

from numpy import loadtxt

values = loadtxt("values.txt",float)

s = 0.0

for x in values:

s += x**2

print(s)

Here we have used the function loadtxt from Section 2.4.3 to read the values in the

�le and put them in an array called values. Note also how this example does not use

the range function, but simply goes through the list of values directly.

For loops and the sum function give us two di�erent ways to compute sums of

quantities. It is not uncommon for there to be more than one way to achieve a given

goal in a computer program, and in particular it is o�en the case that one can use

either a for loop or a function to perform the same calculation. In general for loops are

more �exible, but functions are o�en faster and can save signi�cant amounts of time

if you are dealing with large arrays. �us both approaches have their advantages.

Part of the art of good computer programming is learning which approach is best in

which situation.

69

Chapter 2 | Python programming for physicists

Example 2.7: Finding the largest number in a list

Another operation that comes up frequently in computational physics is �nding the

largest or smallest element in a list or array. �ere exist two built-in functions, max

and min, that can perform these operations, but again one can also use a for loop,

and o�en the la�er approach is more �exible.

To �nd the largest element in a list using a for loop we would create a variable to

hold the largest value—let’s call it largest—and initially give it a value less than or

equal to the smallest value a list element can have. For instance, if our list contains

only positive values, then we could safely set largest to zero, knowing that no list

element will be smaller than this. �en we run through the elements in our list in

turn and check each one against the current value of largest. If an element is larger

than the current value, it becomes the new largest value. �e code looks like this:

from numpy import loadtxt

values = loadtxt("values.txt",float)

largest = 0.0

for x in values:

if x>largest:

largest = x

print(largest)

When the loop ends the variable largest is equal to the largest element in the list.

We can use a similar procedure to �nd the smallest element also.

Example 2.8: Emission lines of hydrogen

Let us revisit an example we saw in Chapter 1. On page 6 we gave a program for

calculating the wavelengths of emission lines in the spectrum of the hydrogen atom,

based on the Rydberg formula

1

_
= '

(
1

<2
− 1

=2

)
. (2.4)

Our program looked like this:

R = 1.097e-2

for m in [1,2,3]:

print("Series for m =",m)

for k in [1,2,3,4,5]:

n = m + k

invlambda = R*(1/m**2-1/n**2)

print(" ",1/invlambda,"nm")

Based on what we have learned we can now understand how this program works.

It uses two nested for loops—a loop within another loop—with the code in the inner

70

2.5 | For loops

loop doubly indented. We discussed nesting previously in Section 2.3.3. �e �rst for

loop takes the integer variable m through the values 1, 2, 3. �en for each value of m,

the second, inner loop takes k though the values 1, 2, 3, 4, 5, adds those values to m to

calculate n and then applies the Rydberg formula. �e end result is that the program

prints out a wavelength for each combination of values of < and =, which is what

we want.

�is program works �ne, but knowing what we do now, we can write a simpler

version by making use of the range function, thus:

File: rydberg.pyR = 1.097e-2

for m in range(1,4):

print("Series for m =",m)

for n in range(m+1,m+6):

invlambda = R*(1/m**2-1/n**2)

print(" ",1/invlambda,"nm")

Note how we were able to eliminate the variable k in this version by specifying a

range for n that depends directly on the value of m.

Exercise 2.9: �e semi-empirical mass formula

In nuclear physics, the semi-empirical mass formula is a formula for calculating the approx-

imate nuclear binding energy � of an atomic nucleus with atomic number / and mass num-

ber �:

� = 01� − 02�2/3 − 03
/ 2

�1/3 − 04
(� − 2/)2

�
+ 05

�1/2 ,

where, in units of millions of electron volts, the constants are 01 = 15.8, 02 = 18.3, 03 = 0.714,

04 = 23.2, and

05 =



0 if � is odd,

12.0 if � and / are both even,

−12.0 if � is even and / is odd.

a) Write a program that takes as its input the values of� and/ , and prints out the binding

energy for the corresponding atom. Use your program to �nd the binding energy of an

atom with � = 58 and / = 28. (Hint: �e correct answer is around 500MeV.)

b) Modify your program to print out not the total binding energy �, but the binding energy

per nucleon, which is �/�.
c) Now modify your program so that it takes as input just a single value of the atomic

number / and then goes through all values of � from � = / to � = 3/ , to �nd the one

that has the largest binding energy per nucleon. �is is the most stable nucleus with

the given atomic number. Have your program print out the value of � for this most

stable nucleus and the value of the binding energy per nucleon.

71

Chapter 2 | Python programming for physicists

d) Modify your program once more so that, instead of taking / as input, it runs through

all values of / from 1 to 100 and prints out the most stable value of � for each one,

along with the corresponding binding energy per nucleon. At what value of / does the

overall maximum binding energy per nucleon occur? (�e true answer, in real life, is

/ = 28, which is nickel.)

�e nucleus with the maximum binding energy per nucleon is the most stable in the sense

that creating any other state with the same number of nucleons, for instance by �ssioning

into smaller nuclei, would require the input of energy, and hence is never going to happen

spontaneously.

2.6 User-defined functions

We saw in Section 2.2.5 how to use functions, such as log or sqrt, to do mathematics

in our programs, and Python comeswith a broad array of functions for performing all

kinds of calculations. �ere are many situations in computational physics, however,

where we need a specialized function to perform a particular calculation and Python

allows you to de�ne your own functions in such cases.

Suppose, for example, we are performing a calculation that requires us to calcu-

late the factorials of integers. Recall that the factorial =! of a positive integer = is

de�ned as the product of all integers from 1 to =. We can calculate such a product in

Python with a loop like this:

f = 1.0

for k in range(1,n+1):

f *= k

When the loop �nishes, the variable f will be equal to the factorial we want.31

If our calculation requires us to calculate factorials many times in various di�er-

ent parts of the program we could use a loop, as above, each time, but this would

get tedious quickly and would increase the chances that we make an error. A more

convenient approach is to de�ne our own function to calculate the factorial, which

we do like this:

def factorial(n):

f = 1.0

for k in range(1,n+1):

f *= k

return f

�is de�nition consists of the word def, followed by the name we give our function,

its argument in parentheses, and a colon. �en the rest of the lines contain the code

31We have chosen to make f a �oating-point variable in this example, even though the factorial is an

integer. We could use an integer variable, but factorials can be very large and for such large numbers

�oating-point calculations are usually faster in Python.

72

2.6 | User-defined functions

that performs the calculation of the function. Note how these lines are indented,

in a manner similar to the if statements and for loops of previous sections. �is

indentation tells Python which lines are part of the function and where the function

ends. �e last line of the function consists of the word return followed by the value

that is to be returned as the result of the function.

Once we have this de�nition, we can, anywhere later in the program, say

a = factorial(10)

or

b = factorial(r+2*s)

and the program will calculate the factorial of the appropriate number. In e�ect

what happens when we write “a = factorial(10)”—when the function is called—

is that the program jumps to the de�nition of the function (the part starting with

def above), sets n = 10, and then runs through the instructions in the function.

When it gets to the �nal line “return f” it jumps back to where it came from and

the value of the factorial function is set equal to whatever quantity appeared a�er

the word return—which is the �nal value of the variable f in this case. �e net

e�ect is that we calculate the factorial of 10 and set the variable a equal to the result.

User-de�ned functions allow us to encapsulate complex calculations inside a single

function de�nition and can make programs much easier to write and to read. We

will see many uses for them in this book.32

An important point to note is that any variables created inside the de�nition of a

function exist only inside that function. Such variables are called local variables. For

instance the variables f and k in the factorial function above are local variables. �is

means we can use them only when we are inside the function and they disappear

when we leave. �us, for example, you could print the value of the variable k just

�ne if you put the print statement inside the function, but if you were to try to print

the variable anywhere outside the function then you would get an error message

telling you that no such variable exists.33 Note, however, that the reverse is not true—

you can use a variable inside a function that is de�ned outside it. �e arguments of

functions are local variables too, so the variable n in our factorial function does not

exist outside the function. You are allowed to change the argument variable inside

the function—it does not have to keep the value it arrived with—but if you do change

it your changes will have no e�ect on anything outside the function.

32While the factorial is a nice example to illustrate user-de�ned function, note that there is actually a

function in the math package, called factorial, that calculates factorials, so in practice it would usually

be simpler to use that function than to write your own.

33To make things more complicated, you can separately de�ne a variable called k outside the function

and then you are allowed to print that variable (or do any other operation with it), but in that case it is

a di�erent variable—now you have two variables called k that have separate values and which value you

get depends on whether you are inside the function or not.

73

Chapter 2 | Python programming for physicists

User-de�ned functions can have more than one argument. As an example, sup-

pose that the location of a point is speci�ed in cylindrical coordinates A, \, I, and we

want to know the distance 3 between the point and the origin. �e simplest way

to do the calculation is to convert A and \ to Cartesian coordinates �rst, then apply

Pythagoras’ theorem to calculate 3 :

G = A cos\, ~ = A sin\, 3 =

√
G2 + ~2 + I2. (2.5)

If we �nd ourselves having to do such a conversion many times within a program

we might want to de�ne a function to do it. Here is a suitable function in Python:

def distance(r,theta,z):

x = r*cos(theta)

y = r*sin(theta)

d = sqrt(x**2+y**2+z**2)

return d

(�is assumes that we have already imported the functions sin, cos, and sqrt from

the math package.)

Note how the function takes three arguments. When we call the function we

must supply it with three values and they must come in the same order—A , \ , I—that

they occur in the de�nition of the function. �us if we say

D = distance(2.0,0.1,-1.5)

the program will calculate the distance for A = 2, \ = 0.1, and I = −1.5. (If we give
the wrong number of arguments for the function—one, or two, or four—we will get

an error message.)

�e values of function arguments can be of any type that Python knows about,

including integers and real and complex numbers, but also including lists, arrays, or

other objects. �is allows us, for example, to create functions that perform operations

on vectors or matrices stored in arrays. We will see examples of such functions when

we look at linear algebra methods in Chapter 6.

�e value returned by a function can also be of any type, including integer, real,

complex, or a list or array. Using lists or arrays allows us to return more than one

value if want to, or to return a vector or matrix. For instance, we might write a

function to convert from polar coordinates to Cartesian coordinates like this:

def cartesian(r,theta):

x = r*cos(theta)

y = r*sin(theta)

position = [x,y]

return position

74

2.6 | User-defined functions

�is function takes a pair of values A, \ and returns a two-element list containing the

corresponding values of G and ~. In fact, we could combine the two �nal lines here

into one and say simply

return [x,y]

Or we could return G and ~ in the form of a two-element array by saying

return array([x,y],float)

An alternative way to return multiple values from a function is to use the “mul-

tiple assignment” feature of Python, which we examined in Section 2.2.4. We saw

there that one can write statements of the form “x,y = a,b” which will simultane-

ously set x = a and y = b. �e equivalent maneuver with a user-de�ned function is

to write

def f(z):

Some calculations here...

return a,b

whichwill make the function return the values of a and b both. To call such a function

we write something like

x,y = f(1)

and the two returned values will get assigned to the variables x and y. One can

also specify three or more returned values in this fashion, and the individual values

themselves can again be lists, arrays, or other objects, in addition to single numbers,

which allows functions to return very complex sets of values when necessary.

User-de�ned functions can also return no value at all—it is permi�ed for func-

tions to end without a return statement. �e body of the function is marked by in-

denting the lines of code and the function ends when the indentation does, whether

or not there is a return statement. If the function ends without a return statement

then the program will jump back to wherever it came from, to the statement where

it was called, but without giving a value. Why would you want to do this? In fact

there are many cases where this is a useful thing to do. For example, suppose you

have a program that uses three-element arrays to hold vectors and you �nd that you

frequently want to print out the values of those vectors. You could write something

like

print("(",r[0],r[1],r[2],")")

every time you want to print a vector, but this is di�cult to read and prone to typing

errors. A be�er way to do it would be to de�ne a function that prints a vector, like

this:

75

Chapter 2 | Python programming for physicists

def print_vector(r):

print("(",r[0],r[1],r[2],")")

�en when you want to print a vector you simply say “print_vector(r)” and the

computer handles the rest. Note how, when calling a function that returns no value

you simply give the name of the function. One just says “print_vector(r)”, and not

“x = print_vector(r)” or something like that. �is is di�erent from the functions

we are used to in mathematics, which always return a value. Perhaps a be�er name

for functions like this would be “user-de�ned statements” or something similar, but

by convention they are still called functions in Python.34

A return statement in a user-de�ned function can also occur in the middle of

the function—it does not have to be at the end. And there does not have to be just

one return statement. For example, the following function takes two arguments,

G1 and G2, and returns +1, −1, or 0 depending on whether G1 is greater than, less

than, or equal to G2, respectively:

def compare(x1,x2):

if x1>x2:

return 1

if x1<x2:

return -1

return 0

�e code de�ning a function—the code starting with the word def—can occur

anywhere in a program, except that it must occur before the �rst time you use the

function. It is good programming style to put all your function de�nitions (you will

o�en have more than one) at or near the beginning of your programs. �is guaran-

tees that they come before their �rst use, and also makes them easier to �nd if you

want to look them up or change them later.

One more trick is worth mentioning. �e functions you de�ne do not have to be

in the same �le on your computer as the rest of the program you are writing. You can,

for example, place the de�nition for a function called myfunction in a separate �le

called mydefinitions.py. You can put the de�nitions for many di�erent functions

in the same �le if you want. �en, when you want to use a function in a program,

you say

from mydefinitions import myfunction

�is tells Python to look in the �le mydefinitions.py for the de�nition of myfunction

and magically that function will now become available in your program. �is is a

very convenient feature if you have a function that you need to use in many di�er-

34We have already seen one other example of a function with no return value, the standard print

function itself.

76

2.6 | User-defined functions

ent programs: you need write the function only once and store it in a �le, then you

can import it into as many other programs as you like.

As you will no doubt have realized, this is what is happening when we say things

like “from math import sqrt” in a program. Someone wrote a function called sqrt

that calculates square roots and placed it in a �le so that you can import it when

you need it. �e math package in Python is nothing other than a large collection

of function de�nitions for useful mathematical functions, gathered together in one

�le.35

Example 2.9: Prime factors and prime numbers

Suppose we have an integer = and we want to know its prime factors. �e prime

factors can be calculated relatively easily by dividing repeatedly by all integers from

2 up to = and checking to see if the remainder is zero. Recall that the remainder

a�er division can be calculated in Python using the modulo operation “%”. Here is a

function that takes an integer n as argument and returns a list of its prime factors:

def factors(n):

factorlist = []

k = 2

while k<=n:

while n%k==0:

factorlist.append(k)

n //= k

k += 1

return factorlist

�is is a slightly tricky piece of code—make sure you understand how it does the

calculation. Note how we have used the integer division operation “//” to perform

the divisions, which ensures that the result returned is another integer. (Remember

that the ordinary division operation “/” produces a �oat even when the numbers

being divided are integers.) Note also how we change the value of the variable n

(which is the argument of the function) inside the function. �is is allowed: the

argument variable behaves like any other variable and can be modi�ed, although

it is a local variable, so it exists only inside the function and gets erased when the

function ends.

Now if we say “print(factors(17556))”, the computer prints out the list of fac-

tors “[2, 2, 3, 7, 11, 19]”. On the other hand, if we specify a prime number in

the argument, such as “print(factors(23))”, we get back “[23]”—the only prime

factor of a prime number is itself. We can use this fact to make a program that prints

35In fact the functions in the math package are not wri�en in Python—they are wri�en in the C pro-

gramming language, and one has to do some additional trickery tomake these C functions work in Python,

but the same basic principle still applies.

77

Chapter 2 | Python programming for physicists

out the prime numbers up to any limit we choose by checking to see if they have

only a single prime factor:

for n in range(2,10000):

if len(factors(n))==1:

print(n)

Run this program, and in a ma�er of seconds we have a list of the primes up to 10 000.

(�is is not a very e�cient way of calculating primes—see Exercise 2.11 on page 80

for a faster way of doing it.)

2.6.1 Recursion

Another useful feature of user-de�ned functions is recursion, the ability of a function

to call itself. For example, consider the following de�nition of the factorial =! of a

positive integer =:

=! =

{
1 if = = 1,

= × (= − 1)! if = > 1.

�is constitutes a complete de�nition of the factorial which allows us to calculate the

value of =! for any positive integer. We can employ this de�nition directly to create

an alternative Python function for factorials, like this:

def factorial(n):

if n==1:

return 1

else:

return n*factorial(n-1)

Note how, if = is not equal to 1, the function calls itself to calculate the factorial of

= − 1. �is is recursion. If we now say “print(factorial(5))” the computer will

correctly print the answer 120.

Why does this work? Consider what happens when we call the function for

di�erent values of =. If we call factorial(1) then it’s simple: the function just re-

turns the answer 1. If we call factorial(2), then the function calls itself to calculate

factorial(1), which as we have said returns 1, then it multiplies that value by = = 2

to get 2! = 2 × 1 = 2, which is the correct result. If we call factorial(3), then the

function calls itself to calculate factorial(2), which correctly returns 2 as we have

said, then multiplies that value by 3 to get 3! = 3 × 2 = 6, which again is the correct

result. And so forth. If the function can correctly calculate factorial(n-1), then

it can also correctly calculate factorial(n), just by multiplying by an extra factor

of =. Hence it can correctly calculate =! for any =. (You can create a formal proof of

correctness using mathematical induction, but it is not really necessary: it is already

clear from the argument above why the program works.)

78

2.6 | User-defined functions

�us, we have seen two di�erent ways of calculating factorials, either directly

or using recursion. In most cases, if a quantity can be calculated without recursion,

then it will be faster to do so, and we normally recommend taking this route if possi-

ble. For this reason recursion is something of a specialized technique that �nds only

occasional use. However, there are some calculations that are essentially impossible

(or at least much more di�cult) without recursion, and for these it is a useful tool.

We will see some examples later in this book.

Example 2.10: The Catalan numbers

�e Catalan numbers �= are a sequence of integers 1, 1, 2, 5, 14, 42, 132. . . that play

important roles in quantum mechanics and the theory of disordered systems. We

encountered them previously in Exercise 2.7 on page 45. With just a li�le rearrange-

ment, the de�nition given there can be rewri�en in the form

�= =



1 if = = 0,

4= − 2
= + 1 �=−1 if = > 0.

�is allows us to write a very simple Python function to calculate the Catalan num-

bers as follows:

def C(n):

if n==0:

return 1

else:

return (4*n-2)*C(n-1)//(n+1)

Notice how we use integer division to make sure the results are always integers. We

can use this function to calculate the 100th Catalan number �100 thus:

print(C(100))

which prints

896519947090131496687170070074100632420837521538745909320

Exercise 2.10: Binomial coe�cients

�e binomial coe�cient
(=
:

)
is an integer equal to

(=
:

)
=

=!

:!(= − :)! =
= × (= − 1) × (= − 2) × . . . × (= − : + 1)

1 × 2 × . . . × :

when : ≥ 1, or
(=
0

)
= 1 when : = 0.

79

Chapter 2 | Python programming for physicists

a) Write a user-de�ned function binomial(n,k) that calculates the binomial coe�cient

for given integers = and : . Make sure your function returns the answer in the form of

an integer (not a �oat) and gives the correct value of 1 for the case : = 0.

b) Using your function, write a program to print out the �rst 20 lines of “Pascal’s triangle.”

�e =th line of Pascal’s triangle contains = + 1 numbers, which are the coe�cients(=
0

)
,
(=
1

)
, and so on up to

(=
=

)
. �us the �rst few lines are

1 1

1 2 1

1 3 3 1

1 4 6 4 1

c) �e probability that an unbiased coin, tossed = times, will come up heads : times is(=
:

)
/2= . Write a program to calculate (i) the total probability that a coin tossed 100

times comes up heads exactly 60 times, and (ii) the probability that it comes up heads

60 or more times.

Exercise 2.11: Prime numbers

�e program in Example 2.9 is not a very e�cient way of calculating prime numbers: it checks

each number to see if it is divisible by any number less than it. We can write a much faster

program for prime numbers by making use of the following observations:

a) A number = is prime if it has no prime factors less than =. Hence we need only check

if it is divisible by other primes.

b) If a number = is non-prime, having a factor A , then = = AB , where B is also a factor. If

A ≥
√
= then = = AB ≥

√
=B , which implies that B ≤

√
=. In other words, any non-

prime must have factors, and hence also prime factors, less than or equal to
√
=. �us

to determine if a number is prime we only have to check its prime factors up to and

including
√
=. If there are none then the number is prime.

c) If we �nd even a single prime factor less than
√
= then we know that the number is non-

prime, and hence there is no need to check any further—we can abandon this number

and move on to something else.

Write a Python program that prints out all the primes up to ten thousand. Create a list to store

the primes, which starts out with just the one prime number 2 in it. �en for each number =

from 3 to 10 000 check whether the number is divisible by any of the primes in the list up to

and including
√
=. As soon as you �nd a single prime factor you can stop checking the rest of

them—you know = is not a prime. If you �nd no prime factors
√
= or less, then = is prime and

you should add it to the list. You can print out the list all in one go at the end of the program,

or you can print out the individual numbers as you �nd them.

Exercise 2.12: Greatest common divisor

Euclid showed that the greatest common divisor 6(<,=) of two nonnegative integers< and =

satis�es

6(<,=) =
{
< if = = 0,

6(=,< mod =) if = > 0.

Write a Python function g(m,n) that employs recursion to calculate the greatest common

divisor of < and = using this formula. Use your function to calculate and print the greatest

common divisor of 108 and 192.

80

2.7 | Good programming style

2.7 Good programming style

When writing a program to solve a physics problem there are, usually, many ways

to do it, many programs that will give you the solution you are looking for. For

instance, you can use di�erent names for your variables, use either lists or arrays for

storing sets of numbers, break up the code by using user-de�ned functions to do some

operations, and so forth. Although all of these approaches may ultimately give the

same answer, not all of them are equally satisfactory. �ere arewell wri�en programs

and poorlywri�en ones. Awell wri�en programwill, as far as possible, have a simple

structure, be easy to read and understand, and, ideally, run fast. A poorly wri�en

one may be convoluted or unnecessarily long, di�cult to follow, or may run slowly.

Making programs easy to read is a particularly important—and o�en overlooked—

goal. An easy-to-read program makes it easier to �nd problems, easier to modify the

code, and easier for other people to understand how things work.

Good programming is, to some extent, a ma�er of experience, and you will

quickly get the hang of it as you start to write programs. But here are a few general

rules of thumb that may help.

1. Use meaningful variable names. Give your variables names that help you

remember what they represent. �e names don’t have to be long. In fact, very

long names are usually harder to read. But choose your names sensibly. Use E

for energy and t for time. Use full words where appropriate or even pairs of

words to spell out what a variable represents, like mass or angular_momentum.

If you are writing a program to calculate the value of a mathematical formula,

give your variables the same names as in the formula. If variables are called G

and V in the formula, call them x and beta in the program.

2. Use the right types of variables. Use integer variables to represent quan-

tities that actually are integers, like vector indices or quantum numbers. Use

�oats and complex variables for quantities that really are real or complex num-

bers.

3. Include comments in your programs. Leave comments in the code to re-

mind yourself what particular variables mean, what calculations are being per-

formed in di�erent sections of the code, what arguments functions require, and

so forth. It is amazing how you can come back to a program you wrote only a

week ago and not remember how it works. You will thank yourself later if you

include comments. And comments are even more important if you are writing

programs that other people will have to read and understand. It is frustrating

to be the person who has to �x or modify someone else’s code if they neglected

to include any comments to explain how it works.

4. Import functions �rst. If you are importing functions from packages, put

your import statements at the start of your program. �is makes them easy to

�nd if you need to check them or add to them, and it ensures that you import

functions before the �rst time they are used.

81

Chapter 2 | Python programming for physicists

5. Give your constants names. If there are constants in your program, such

as the number of atoms # in a gas or the mass< of a particle, create suitably

named variables at the beginning of your program to represent these quanti-

ties, then use those variables wherever those quantities appear in your pro-

gram. �is makes formulas easier to read and understand and it allows you to

later change the value of a constant by changing only a single line at the be-

ginning of the program, even if the constant appears many times throughout

your calculations. �us, for example, you might have a line “A = 58” that sets

the atomic mass of an atom for a calculation at the beginning of the program,

then you would use A everywhere else in the program that you need to refer to

the atomic mass. If you later want to perform the same calculation for atomic

mass 59, you need only change the single line at the beginning to “A = 59”.

Most physics programs have a section near the beginning (usually right af-

ter the import statements) that de�nes all the constants and parameters of the

program, making them easy to �nd when you need to change their values.

6. Employ user-de�ned functions, where appropriate. User-de�ned func-

tions can usefully encapsulate repeated operations, especially complicated op-

erations, and can greatly increase the legibility of your code. Avoid overusing

them, however: simple operations, ones that can be represented by just a line

or two of code, are o�en be�er le� in the main body of the program. It makes

the �ow of the calculation easier to follow and may also make the program

faster, since there is a (small) time cost to using any function. Normally you

should put your function de�nitions at the start of your program, probably

a�er imports and constant de�nitions. �is ensures that each function de�ni-

tion appears before the �rst use of the function and that the de�nitions can be

easily found and modi�ed when necessary.

7. Print out partial results and updates throughout your program. Large

computational physics calculations can take a long time—minutes, hours, or

even days. You will �nd it helpful to include print statements in your program

that print updates about where the program has got to or partial results from

the calculations, so you know how the program is progressing. It is di�cult

to tell whether a calculation is working correctly if the computer simply sits

silently, saying nothing, for hours on end.

�us, for example, if there is a for loop in your program that repeats many

times, it could be useful to include code like this at the beginning of the loop:

for n in range(1000000):

if n%1000==0:

print("Step",n)

�ese lines will cause the program to print out what step it has reached every

time n is exactly divisible by 1000, i.e., every thousandth step. So it will print:

82

2.7 | Good programming style

Step 0

Step 1000

Step 2000

Step 3000

and so forth as it goes along.

8. Lay out your programs clearly. You can add spaces or blank lines in most

placeswithin a Python programwithout a�ecting the operation of the program

and doing so can improve readability. Make use of blank lines to split code

into logical blocks. Make use of spaces to divide up complicated algebraic

expressions or particularly long program lines.

You can also split long program lines into more than one line if necessary.

If you place a backslash symbol “\” at the end of a line it tells the computer

that the following line is a continuation of the current one, rather than a new

line in its own right. �us, for instance you can write:

energy = mass*(vx**2 + vy**2 + vz**2)/2 + mass*g*z \

+ moment_of_inertia*omega**2/2

and the computer will interpret this as a single formula. If a program line is

very long indeed you can spread it over three or more lines with backslashes

at the end of each one, except the last.36

9. Don’t make your programs unnecessarily complicated. A short simple

program is enormously preferable to a long involved one. If the job can be done

in ten or twenty lines, then it is probably worth doing it that way—the code

will be easier to understand, for you or anyone else, and if there are mistakes

in the program it will be easier to work out where they lie.

Good programming, like good science, is a ma�er of creativity as well as technical

skill. As you gain more experience with programming you will no doubt develop

your own programming style and learn to write code in a way that makes sense

to you and others, creating programs that achieve your scienti�c goals quickly and

elegantly.

36Under certain circumstances, you do not need to use a backslash. If a line does not make sense

on its own but it does make sense when the following line is interpreted as a continuation, then Python

will automatically assume the continuation even if there is no backslash character. �is, however, is a

complicated rule to remember, and there are no adverse consequences to using a backslash even when

it is not strictly needed, so in most cases it is simpler just to use the backslash and not worry about the

rules.

83

Chapter 2 | Python programming for physicists

Chapter summary

• Python is a modern programming language that is powerful, widely used, free,

and well suited to computational physics. Python programs consist of a sequence

of statements, normally carried out in order one a�er another, that specify ele-

mentary operations.

• Python programming is typically performed in a development environment,

a program that allows you to enter, edit, and run programs. Two examples are

IDLE, a simple environment that runs on any computer, and Jupyter, which

runs in your web browser. Colab is a version of Jupyter that runs entirely on the

web and does not require any so�ware installation.

• Numerical values in programs are represented by variables, which play a similar

role to variables in algebra. Python variables come in several basic types: inte-

ger (called int within programs), �oating-point (float), complex numbers

(complex), and strings (str). �e type of a variable is not normally speci�ed

explicitly; it is determined by the value you give the variable.

• Basic arithmetic in Python looks similar to conventional algebra, with operations

such as +, -, *, /, and functions such as sin, cos, log, and sqrt. A few functions

are built in to Python and always available, but most, including most mathemat-

ical functions, must be imported from packages before use.

• Comments allow the programmer to leave textual messages within a program

to document what it is doing or how it works. Comments in Python are indicated

by the hash character “#”.

• If and while statements allow sections of code to be executed if a variable takes

a certain value or some similar logical condition applies. �e section of code to

be executed is denoted by indentation.

• Collections of numbers, such as vectors or matrices, can be stored in containers

of various kinds. Lists, as the name suggests, are lists of values, one a�er another.

Lists can contain a mix of di�erent types of values—integers, �oats, etc.—and can

grow or shrink with the addition and removal of elements.

• Arrays are similar to lists but can only contain a single type of value and their

length is �xed and cannot change. On the other hand, arrays can be two-

dimensional (to represent matrices), and they allow fast vector and matrix arith-

metic operations.

• Other containers include sets, which are unordered collections of values, and

dictionaries or dicts, in which each value is referred to by a unique index.

• For loops allow one to execute a section of code repeatedly. For loops in Python

work by iterating through the items in a container such as a list or array. �e

84

2.7 | Good programming style

number of times the section of code is executed is equal to the number of elements

in the list or array. Once again the section is indicated by indentation.

• User-de�ned functions provide a way to add new functions to Python pro-

grams, including mathematical functions but also functions that perform com-

plex program operations. A recursive function is one that calls itself, a useful

feature that allows one to express certain operations more simply than one oth-

erwise would be able to.

85

