CHAPTER 2

PYTHON PROGRAMMING FOR PHYSICISTS

UR FIRST item of business is to learn how to write computer programs in the
Python programming language. Python is easy to learn, simple to use, and
enormously powerful. It has facilities and features for performing tasks of

many kinds. You can do art or engineering in Python, surf the web or calculate your
taxes, write words or write music, make a movie or make the next billion-dollar In-
ternet start-up. We will not attempt to learn about all of Python’s features, however,
but restrict ourselves to those that are most useful for doing physics calculations. We
will learn about the core structure of the language first—how to put together the in-
structions that make up a program—but we will also learn about some of the powerful
features that can make the life of a computational physicist easier, such as features
for doing matrix calculations and features for making graphs and computer graphics.
Some other features of Python that are more specialized, but still occasionally useful
for physicists, will not be covered here, but there is excellent documentation avail-
able on the web, so if there is something you want to do and it is not in this book,
you can probably find it online. A good place to start when looking for information
about Python is the official Python website at www.python.org.

2.1 GETTING STARTED

A Python program consists of a list of instructions, resembling a mixture of English
words and mathematics and collectively referred to as code. We will see exactly what
form the instructions take in a moment, but first we need to know how and where
to enter them into the computer.

When you are programming in Python you typically work in a development en-
vironment, which takes the form of a window or windows on your computer that
show the program you are working on and allow you to enter or edit lines of code
and run your program. There are several different development environments avail-
able for use with Python. Here we describe two of the most common ones, the basic
environment called IDLE and the more sophisticated Jupyter. (If you already know
you want to use Jupyter, you can skip the next section on IDLE and go straight to

2.1

Section 2.1.2 on page 11.)

IDLE and Jupyter are by no means the only development environments for Python.

If you are comfortable with computers and enjoy trying things out, there are a wide
range of others, mostly available for free, with names like PyCharm, Spyder, PyDeyv,
Wing, and more. You can also use general-purpose coding environments like Visual
Studio to write Python programs. Feel free to experiment and see what works for
you. Either IDLE or Jupyter can do everything we will need for the material in this
book, but nothing in the book will depend on what development environment you
use. As far as the programming and the physics go, they are all equivalent.

2.1.1 IDLE

IDLE! is a simple development environment that comes with the Python language. If
you have Python installed on your computer then you probably have IDLE installed
as well. If not, it is available as a free download from the web. How you start IDLE
depends on what kind of computer you have, but most commonly you click on an
icon on the desktop or under the start menu on a PC, or in the dock or the applications
folder on a Mac. If you wish, you can now start IDLE running on your computer and
follow along with the developments in this section step by step.

The first thing that happens when you start IDLE is that a window appears on
the computer screen. This is the Python shell window. It will have some text in it,
looking something like this:

Python 3.12 (main, Feb 4 2025)
Type "help" for more information.
>>>

This tells you what version of Python you are running (your version may be differ-
ent from the one above), along with some other information, followed by the symbol
“>>>” which is a prompt: it tells you that the computer is ready for you to type
something in. When you see this prompt you can type any command in the Python
language at the keyboard and the computer will carry out that command immedi-
ately. This can be a useful way to quickly try out individual Python commands but it
is not the main way that we will use Python. Normally, we want to type in an entire
Python program at once, consisting of many commands one after another, then run
the whole program together. To do this, go to the top of the window, where you
will see a set of menu headings. Click on the “File” menu and select “New Window”.
This will create a second window on the screen, this one completely empty. This is
an editor window. It behaves differently from the Python shell window. You type a

DLE stands for “Integrated Development Environment” (sort of). The name is also a joke, the Python
language itself being named, allegedly, after the influential British comedy troupe Monty Python, one of
whose members was the comedian Eric Idle.

GETTING STARTED

CHAPTER 2

10

PYTHON PROGRAMMING FOR PHYSICISTS

complete program into this window, usually consisting of many lines. You can edit
it, add things, delete things, and so forth, in a manner similar to the way one works
with a word processor. The menus at the top of the window provide a range of word-
processor style features, such as cut and paste, and when you are finished writing
your program you can save your work just as you would with a word processor doc-
ument. Then you can run your complete program, the whole thing, by clicking on
the “Run” menu at the top of the editor window and selecting “Run Module” (or you
can press the F5 function key, which is quicker).

To get the hang of how it works, try the following quick exercise. Open up an
editor window if you didn’t already (by selecting “New Window” from the “File”
menu) and type the following two-line program into the window, just as it appears

here:
x =1
print(x)

(If it is not obvious what this is meant to do, it will be soon.) Now save your program
by selecting “Save” from the “File” menu at the top of the editor window and typing
in a name.? The names of all Python programs must end with “.py”, so a suitable
name might be “example.py” or something similar. (If you do not give your program
a name ending in “. py” then the computer will not know it is a Python program and
will not handle it properly when you try to load it again—you will probably find that
‘.py” is important.)

Once you have saved your program, run it by selecting “Run module” from the

such a program will not even run at all, so the °

“Run” menu. When you do this the program will start running, and any output it
produces—anything it says or does or prints out—will appear in the Python shell
window (the other window, the one that appeared first). In this case you should see
something like this in the Python shell window:

1
>>>

The only result of this small program is that the computer prints out the number
“1” on the screen. (It’s the value of the variable x in the program—see Section 2.2.1
below.) The number is followed by a prompt “>>>” again, which tells you that the
computer is done running your program and is ready to do something else.

It is always a good idea to save your programs, as here, when they are finished

2Note that you can have several windows open at once, including the Python shell window and one
or more editor windows, and that each window has its own “File” menu with its own “Save” item. When
you click on one of these to save, IDLE saves the contents of the corresponding window and that window
only. Thus if you want to save a program you must be careful to use the “File” menu for the window
containing the program, rather than for any other window. If you click on the menu for the shell window,
for instance, IDLE will save the contents of the shell window, not your program, which is probably not
what you wanted.

2.1

and ready to run. If you forget to do it, IDLE will ask you if you want to save before
it runs your program.

2.1.2 JUPYTER

Jupyter is a more advanced development environment for Python programming that
allows you not only to enter and run Python code but also to save the output from
the code, and to interleave the code with text and graphics, providing commentary,
analysis, or documentation. Figure 2.1 shows a screenshot of a Jupyter session, called
a notebook, with the code of a program, its output, and some text all visible.

Jupyter is free and once installed it runs in your web browser, appearing in a
standard window or tab within the browser. There is also a free web version of
Jupyter, created by Google and called Colab, which provides all the benefits of Jupyter
without requiring you to install anything at all—you just open the web page and start
programming. You can find Colab at https://colab.research.google.com.

If you wish, you can start Jupyter running on your computer now and follow
along with the developments in this section step by step.

When you first start up Jupyter, you will see a file browser window with a list of

File Edit View Insert Cell Kernel Help Trusted ¢ | Python 3 (ipykernel) O

B + x @B 44 ¥ PRin B C W Code v @

Fibonacci numbers

This program calculates Fibonacci numbers up to 100

In [1]: f1,f2 = 1,1
while f2<100:
print(f2)
f1,f2 = f2,f1+f2

Figure 2.1: A Jupyter notebook running in a browser window. Jupyter notebooks allow
you to mix text, code, and program output, as seen here, as well as graphics and images, to
make a document that combines programs, documentation, results, and notes in a single place.

GETTING STARTED

11

CHAPTER 2

12

PYTHON PROGRAMMING FOR PHYSICISTS

the files in your current folder. Over to the right you will see a menu button labeled
with the word “New,” and if you click there it will give you the option to start a new
Python notebook (probably labeled “Python 3” if you are using the common version 3
of the Python language). Once you start a notebook you will see a new page with a
box that looks like this:

In [1]:

This is a Jupyter cell. You can click on it and type in Python code. For example, try
clicking on the cell and entering the following short program, exactly as it appears
here:

In[]: x=1
print(x

Once you have typed in the program, you can run it by clicking the “Run” button
at the top of the screen (or by pressing Shift-Enter, which is often quicker). When
you do this the program will start running and any output it produces—anything it
says or does or prints out—will appear immediately below it. In this case you will
see something like this:

In [1]: x =1
print(x)

1

In [1:

The only result of this small program is that the computer has printed out the number
“12 (It’s the value of the variable x in the program.) Now you can go back and make
additions or changes to the program and run it again if you wish, editing it as many
times as you like until it gives the results you want. When you are finished, or at any
point along the way, you can save your entire Jupyter notebook by clicking “Save”
under the “File” menu.

As mentioned above, Jupyter also allows you to add text to your notebook, doc-
umenting or commenting on your code. To do this, go to the pull-down menu that
says “Code” and change it to “Markdown”. This will change the current cell to a text
cell, into which you can now type ordinary text—anything you like:

This simple program just prints one number

When you “run” the cell, the text will be added to your document, so the complete
notebook now looks like this:

2.1

In [1]: x =1
print(x)

1

This simple program just prints one number

In []:

Text entered in this way has no effect on your code—its only purpose is to provide
notes and context for human readers. A text cell can also contain HTML markup
language, which allows you to specify emphasis, colors, fonts, and other stylistic
features, and mathematics, which is written using LaTeX mathematical notation.3

Jupyter allows you to have multiple cells containing code or text in the same
notebook, a collection of programs together in one document. For instance, if you
were working through the examples and exercises in this chapter you might want to
put all your code and results in one document. The code in each code cell can be run
individually by clicking on the cell and then clicking “Run.

A word of caution is in order here, however: the portions of code in different
cells of a Jupyter notebook are not completely separate programs. Although each
cell can be run on its own, it shares variables and functions previously defined in
other cells. (If you don’t know what variables and functions are we will learn about
them shortly.) Thus, for example, if you execute a line “x = 1” that creates a vari-
able x in one cell, then all other cells will henceforth also have that variable. The
line “print(x)” in another cell would print the value “1” even if the variable x is not
defined in that cell. This feature can be convenient when developing linked sets of
programs, allowing one to avoid duplicating code multiple times in different pro-
grams, but it can also produce unexpected results if you are unwary. For example,
you might forget that you defined a variable in one cell and use it inadvertently in
another. If you want to avoid this, you can include the special command

%reset

at the start of a code cell, which causes Jupyter to erase all existing variables and
functions and start from scratch whenever you run that cell. It will first ask you if
you are certain you want to erase the variables and you have to say yes to proceed,
which you might consider a useful failsafe or an irritating interruption depending
on your point of view. If you want to skip the question you can use the command

%reset -f

which will erase all variables without any cautionary prompt.

31f you are not familiar with HTML or LaTeX notation there are many good introductions available
online.

GETTING STARTED

13

CHAPTER 2

14

PYTHON PROGRAMMING FOR PHYSICISTS

Finally, we should mention that some of Python’s graphics features, which we
will use for visualizing results of our calculations, do not work perfectly with Jupyter.
In particular, for programs using the turtle and gdraw graphics packages, graphics
will appear when the program is first run but will fail to appear if the program is run
a second time. This is a known issue with Jupyter which, at the time of writing, has
unfortunately not been fixed. A simple workaround is to restart the Python “kernel”
before running the program a second time, which can be done by clicking on the
“Kernel” menu at the top of the Jupyter window.

2.2 BASIC PROGRAMMING

A program is a list of instructions, or statements, which under normal circumstances
the computer carries out, or executes, in the order they appear in the program. In-
dividual statements do things like performing arithmetic, asking for input from the
user of the program, or printing out results. The following sections introduce the
various types of statements in the Python language one by one.

2.2.1 VARIABLES AND ASSIGNMENTS

Quantities of interest in a program—which in physics usually means numbers, or
sets of numbers like vectors or matrices—are represented by variables, which play
roughly the same role as they do in ordinary algebra. Our first example of a program
statement in Python is this:

x =1

This is an assignment statement. It tells the computer that there is a variable called x
and we are assigning it the value 1. You can think of the variable as a box that stores
a value for you, and you can come back and retrieve that value at any later time, or
change it to a different value. We will use variables extensively in our computer pro-
grams to represent physical quantities like positions, velocities, forces, fields, volt-
ages, probabilities, and wavefunctions.

In normal algebra variable names are usually just a single letter like x, but in
Python (and most other programming languages) they don’t have to be—they can
be two, three, or more letters, or entire words. Variable names in Python can be as
long as you like and can contain both letters and numbers, as well as the underscore

« %

symbol “_”, but they cannot start with a number, or contain any other symbols, or

spaces. Thus x and Physics_101 are fine names for variables, but 4Score&7Years
is not (because it starts with a number, and also because it contains an &). Upper-
and lower-case letters are distinct from one another, meaning that x and X are two

different variables which can have different values.*

4Also variables cannot have names that are “reserved words” in Python. Reserved words are the

2.2 |

Many of the programs you will write will contain large numbers of variables
representing the values of different things and keeping them straight in your head
can be a challenge. It is a very good idea—one that is guaranteed to save you time
and effort in the long run—to give your variables meaningful names that describe
what they represent. If you have a variable that represents the energy of a system,
for instance, you might call it energy. If you have a variable that represents the
velocity of an object you could call it velocity. For more complex concepts, you
can make use of the underscore symbol “_” to create variable names with more than
one word, like maximum_energy or angular_velocity. There will also be times when
single-letter variable names are appropriate. If you need variables to represent the x
and y positions of an object, for instance, then by all means call them x and y. And
there is no reason why you cannot call your velocity variable simply v if that seems
natural to you. But whatever you do, choose names that help you remember what
the variables represent.

2.2.2 VARIABLE TYPES

Variables come in several types. Variables of different types store different kinds
of quantities. The main types we will use for our physics calculations are integer,
floating-point, and complex variables.
« Integer: Integer variables can take integer values and integer values only,
such as 1, 0, or —286784. Both positive and negative values are allowed, but
not fractional values like 1.5.

Floating-point: A floating-point variable, or “float” for short, can take real,
or floating-point, values such as 3.14159, —6.63 X 10734, or 1.0. Note that a
floating-point variable can take an integer value like 1.0 (which after all is also a
real number), by contrast with integer variables which cannot take noninteger
values.

« Complex: A complex variable can take a complex value, such as 1 + 2j or
—3.5 — 0.4j. Notice that in Python the unit imaginary number is called j, not i.
(Despite this, we will use i in some of the mathematical formulas we derive in
this book, since it is the common notation among physicists. Just remember
that when you translate your formulas into computer programs you must use
j instead.)

You might be asking yourself what these different types mean. What does it mean
that a variable has a particular type? Why do we need different types? Couldn’t all
values, including integers and real numbers, be represented with complex variables,
so that we only need one type of variable? In principle they could, but there are
significant advantages to having the different types. The values of the variables in

» .

words used in programming statements and include “for”, “if”, and “while”. (We will see the special uses
of each of these words in Python programming later in the chapter.)

BAsIC PROGRAMMING

15

CHAPTER 2

16

PYTHON PROGRAMMING FOR PHYSICISTS

a program are stored by the computer in its memory, and it takes twice as much
memory to store a complex number as it does a float, because the computer has to
store both the real and imaginary parts. Even if the imaginary part is zero (so that the
number is actually real), the computer still takes up memory space storing that zero.
This may not seem like a big issue given the huge amounts of memory computers
have these days, but in many physics programs we need to store enormous numbers
of variables—millions or billions of them—in which case memory space can become
a limiting factor.

Moreover, calculations with complex numbers take longer to complete, because
the computer has to calculate both the real and imaginary parts. Again, even if the
imaginary part is zero, the computer still has to do the calculation, so it takes longer
either way. Many of our physics programs will involve millions or billions of op-
erations. Big physics calculations can take days or weeks to run, so the speed of
individual mathematical operations can have a big effect. Of course, if we really
need to work with complex numbers then we will have to use complex variables, but
if our numbers are real then it is better to use a floating-point variable.

Similar considerations apply to floating-point variables and integers. If the num-
bers we are working with are genuinely noninteger real numbers, then we should
use floating-point variables to represent them. But if we know that the numbers
are integers then using integer variables is usually faster and takes up less memory
space.

Moreover, integer variables are in some cases actually more accurate than floating-
point variables. As we will see in Section 4.2, floating-point calculations on comput-
ers are not infinitely accurate. Just as on a hand-held calculator, computer calcu-
lations are only accurate to a certain number of significant figures (typically about
16 on modern computers). That means that the value 1 assigned to a floating-point
variable may actually be stored on the computer as 0.9999999999999999. In many
cases the difference will not matter much, but what happens, for instance, if some-
thing special is supposed to take place in your program if, and only if, the number
is less than 1? In that case, the difference between 1 and 0.9999999999999999 could
be crucially important. Numerous bugs and problems in computer programs have
arisen because of exactly this kind of issue—experiments have failed and spacecraft
have crashed. Luckily there is a simple way to avoid it. If the quantity you’re dealing
with is genuinely an integer, then store it in an integer variable. That way you know
that 1 means 1. Integer variables are not accurate to just 16 significant figures: they
are perfectly accurate. They represent the exact integer you assign to them, nothing
more and nothing less. If you say “x = 17, then indeed x is equal to 1.

This is an important lesson, and one that is often missed when people first start
programming: if you have an integer quantity, use an integer variable. In quantum
mechanics most quantum numbers are integers. The number of atoms in a gas is an
integer. So is the number of planets in the solar system or the number of stars in
the galaxy. Coordinates on lattices in solid-state physics are often integers. Dates

2.2 |

are integers. The population of the world is an integer. If you were representing
any of these quantities in a program it would in most cases be best to use an integer
variable. More generally, whenever you create a variable to represent a quantity in
one of your programs, think about what type of value that quantity will take and
choose the type of variable to match it.

How do you tell the computer what type you want a variable to be? The name
of the variable is no help. A variable called x could be an integer or it could be a
complex variable.

The type of a variable is set by the value that we give it. Thus for instance if we
say “x = 1” then x will be an integer variable, because we have given it an integer
value. If we say “x = 1.5” on the other hand then it will be a float. If we say
“x = 1+23” it will be complex.’ Very large floating-point or complex values can be
specified using scientific notation, in the form “x = 1.2e34” (which means 1.2x 10*%)
or “x = 1e-12 + 2.3e453” (which means 107! + 2.3 x 10%%j).

The type of a variable can change as a Python program runs. For example, sup-
pose we have the following two lines one after the other in our program:

x =1
1.5

If we run this program then after the first line is executed by the computer x will be an
integer variable with value 1. But immediately after that the computer will execute
the second line and x will become a float with value 1.5. Its type has changed from
integer to float.®

However, although you can change the types of variables in this way, it doesn’t
mean you should. It is considered poor programming to use the same variable as two
different types in a single program, because it makes the program significantly more
difficult to follow and increases the chance that you may make a mistake in your
programming. If x is an integer in some parts of the program and a float in others
then it becomes difficult to remember which it is and confusion can ensue. A good
programmer, therefore, will use a given variable to store only one type of quantity in
a given program. If you need a variable to store another type, use a different variable
with a different name. Thus, in a well written program, the type of a variable will
be set the first time it is given a value and will remain the same for the rest of the
program.

SNotice that when specifying complex values we say 1+23, not 1+2xj. The latter means “one plus two
times the variable j”, not the complex number 1 + 2i.

®If you have previously programmed in one of the static-typed languages, such as C, C++, Fortran,
or Java, then you will be used to creating variables with a declaration such as “int i” which means “I'm
going to be using an integer variable called i.” In such languages the types of variables are fixed once they
are declared and cannot change. There is no equivalent declaration in Python. Variables in Python are
created when you first use them, with types which are deduced from the values they are given and which
may change when they are given new values.

BAsIC PROGRAMMING

17

CHAPTER 2

18

PYTHON PROGRAMMING FOR PHYSICISTS

This doesn’t quite tell the whole story, however, because as we’ve said a floating-
point variable can also take an integer value. There will be times when we wish to
give a variable an integer value, like 1, but nonetheless have that variable be a float.
There is no contradiction in this, but how do we tell the computer that this is what we
want? If we simply say “x = 1” then, as we have seen, x will be an integer variable.

There are two simple ways to do what we want here. The first is to specify a
value that has an explicit decimal point in it, as in “x = 1.0”. The decimal point is
a signal to the computer that this is a floating-point value (even though, mathemati-
cally speaking, 1 is of course an integer) and the computer knows in this situation to
make the variable x a float. Thus “x = 1.90” specifies a floating-point variable called x
with the value 1.

An alternative way to achieve the same thing is to write “x = float(1)”, which
tells the computer to take the value 1 and convert it into a floating-point value before
assigning it to the variable x. This makes x a float.

A similar issue can arise with complex variables. There will be times when we
want to create a variable of complex type, but we want to give it a purely real value.
If we just say “x = 1.5” then x will be a real, floating-point variable, which is not
what we want. So instead we say “x = 1.5 + 0j”, which tells the computer that
we intend x to be complex. Alternatively, we can write “x = complex(1.5)”, which
achieves the same thing.

There is one further type of variable, the string, which is often used in Python
programming in general, but which comes up only rarely in physics programming,
which is why we have not mentioned it so far. A string variable stores text in the
form of strings of letters, punctuation, symbols, digits, and so forth. To indicate a
string value one uses quotation marks, like this:’

x = "This is a string"

This statement would create a variable x of string type with the value “This is a
string”. Any character can appear in a string, including numerical digits. Thus one
is allowed to say, for example, x = "1.234", which creates a string variable x with
the value “1.234”. It is crucial to understand that this is not the same as a floating-
point variable with the value 1.234. A floating-point variable contains a number, the
computer knows it’s a number, and, as we will shortly see, one can do arithmetic with
that number or use it as the starting point for some more complicated mathematical
calculation. A string variable with the value “1.234” does not represent a number.
The value “1.234” is, as far as the computer is concerned, just a string of symbols in
a row. The symbols happen to be digits in this case (and a decimal point) but they
could just as easily be letters or spaces or punctuation. If you try to do arithmetic

7In Python you can use either single or double quotes to indicate a string value: ’string’ or "string".
We use double quotes for compatibility with other programming languages, where this is the common
standard, but you will see single quotes used in many places also.

2.2 |

with a string variable, even one that appears to contain a number, the computer will
most likely either complain or give you something entirely unexpected. We will not
have much need for string variables in this book and they will as a result appear
only rather rarely. One place they do appear, however, is in the following section on
output and input.

In all of the programming we have seen so far you are free to put spaces between
parts of a Python statement. For example, “x=1” and “x = 1” do exactly the same
thing—the spaces have no effect. Spaces do, however, much improve the readability
of a program. When we start writing more complicated statements in the following
sections, we will find it very helpful to add some spaces here and there. There are
a few places where one cannot add extra spaces, the most important being at the
beginning of a line, before the start of a statement. As we will see in Section 2.3.1,
inserting extra spaces at the beginning of a line does have an effect on the way a
program works, so, unless you know what you are doing, you should avoid putting
spaces at the beginning of lines.

You can also include blank lines between statements in a program, at any point
and as many as you like. This can be useful for separating logically distinct parts of a
program from one another, again making the program easier to understand. We will
use this trick many times in the programs in this book to improve their readability.

2.2.3 OUTPUT AND INPUT STATEMENTS

We have so far seen one example of a program statement, the assignment statement,
as in “x = 17, The next types of statements we will examine are statements for
output and input of data in Python programs. We have already seen an example of a
basic output statement, the “print” statement. In Section 2.1 we gave this very short
example program:

x =1
print(x)

The first line of this program we understand: it creates an integer variable called x and
gives it the value 1. The second statement tells the computer to “print” the value of x
on the screen of the computer. Note that it is the value of the variable x that is printed,
not the letter “x”. The value of the variable in this case is 1, so this short program
will result in the computer printing a “1” on the screen, as we saw on page 10.

The print statement always prints the current value of the variable at the moment

the statement is executed. Thus consider this program:

x =1
print(x)
X = 2
print(x)

BAsIC PROGRAMMING

19

CHAPTER 2

20

PYTHON PROGRAMMING FOR PHYSICISTS

First the variable x is set to 1 and its value is printed out, resulting in a 1 on the screen
as before. Then the value of x is changed to 2 and the value is printed again, which
produces a 2 on the screen. Overall we get this:

1
2

Thus the two print statements, although they look identical, produce different results
in this case. Note also that each print statement starts its printing on a new line on
the screen.

The print statement can be used to print out more than one thing on a line. Con-
sider this program:

x =1
y =2
print(x,y)

which produces this result:

12

Note now the two variables in the print statement are separated by a comma. When
their values are printed out, however, they are printed with a space between them
(not a comma).

We can also print out words, like this:

x =1

y =2
print("The value of x is",x,"and the value of y is",y)

which produces this on the screen:
The value of x is 1 and the value of y is 2

Adding a few words to your program like this can make its output easier to read
and understand. You can also have print statements that print out only words, as in
print("The results are as follows") or print("End of program").

The print statement can also print out the values of floating-point and complex
variables. For instance, we can write

x = 1.5
z = 2+3j
print(x,z)

and we get

1.5 (2+33)

2.2 |

In general, a print statement can include any series of items separated by commas,
including variables or text in quotation marks, and the computer will print out the
appropriate things in order, with spaces in between.® Occasionally you may want
to print things with something other than spaces in between, in which case you can
write the following:

print(x,z,sep="...")
which would print
1.5...(2+33)

The code sep="..." tells the computer to use whatever appears between the quo-
tation marks as a separator between values—three dots in this case, but you could
use any letters, numbers, or symbols you like. You can also have no separator be-

tween values at all by writing print(x,z,sep="") with nothing between the quota-

tion marks, which in the present case would give
1.5(2+33)

You can also use the print statement without any items at all between the paren-
theses, as in “print()”. (Note that the parentheses are still required, even though
they empty.) This statement just prints a blank line, which can sometimes be useful
for making the output of your program more readable. For instance, if you are print-
ing a large number of results at once it can be helpful to break them into blocks with
blank lines.

Input statements are only a little more complicated. The basic form of an input
statement in Python is like this:

x = input("Enter the value of x: ")

When the computer executes this statement it does two things. First, the statement
acts something like a print statement and prints out the quantity, if any, inside the
parentheses.’ So in this case the computer would print the words “Enter the value

8The print statement differs between Python version 3 and earlier versions. In earlier versions there
were no parentheses around the items to be printed—you would just write “print x”. If you are using an
earlier version of Python with this book then you will have to remember to omit the parentheses from
your print statements. Alternatively, if you are using version 2.6 or later (but not version 3) then you
can make the print statement behave as it does in version 3 by including the statement from __future__
import print_function at the start of your program. (Note that there are two underscore symbols before
the word “future” and two after it.) See Appendix D for further discussion of the differences between
Python versions.

%It doesn’t act exactly like a print statement however, since it can only print a single quantity, such
as a string of text in quotes (as here) or a variable, where the print statement can print many quantities
in a row.

BAsIC PROGRAMMING

21

CHAPTER 2

22

PYTHON PROGRAMMING FOR PHYSICISTS

of x: 7. If there is nothing inside the parentheses, as in “x = input()”, then the
computer prints nothing, but the parentheses are still required nonetheless.

Next the computer will stop and wait for the user to type a value on the keyboard.
It will wait patiently until the user types something and then the value that the user
types is assigned to the variable x. However, there is a catch: the value entered is
always interpreted as a string value, even if you type a number.!® (We encountered
strings previously in Section 2.2.2.) Thus consider this simple two-line program:

x = input("Enter the value of x: ")
print("The value of x is",x)

This does nothing more than collect a value from the user then print it out again. If
we run this program it might look something like the following:

Enter the value of x: 1.5
The value of x is 1.5

This looks reasonable. But we could also do the following:

Enter the value of x: Hello
The value of x is Hello

As you can see “value” is interpreted rather loosely. As far as the computer is con-
cerned, anything you type in is a string, so it doesn’t care whether you enter digits,
letters, a complete word, or several words. Anything is fine.

For physics calculations, however, we usually want to enter numbers, and have
them interpreted correctly as numbers, not strings. Luckily it is straightforward to
convert a string into a number. The following will do it:

temp = input("Enter the value of x: ")
x = float(temp)
print("The value of x is",x)

This program receives a string input from the user and assigns it to the tempo-
rary variable temp, which will be a string-type variable. Then the statement “x =
float(temp)” converts the string value to a floating-point value, which is then as-

Tnput statements are another thing that changed between versions 2 and 3 of Python. In version 2
and earlier, the value generated by an input statement would have the same type as whatever the user
entered. If the user entered an integer, the input statement would give an integer value. If the user entered
a float it would give a float, and so forth. However, this was considered confusing, because it meant that
if you then assigned that value to a variable (as in the program above) there would be no way to know in
advance what the type of the variable would be—the type would depend on what the user entered at the
keyboard. So in version 3 of Python the behavior was changed to its present form in which the input is
always interpreted as a string. If you are using a version of Python earlier than version 3 and you want
to reproduce the behavior of version 3 then you can write “x = raw_input()”. The function raw_input in
earlier versions is the equivalent of input in version 3.

2.2 |

signed to the variable x, and this is the value that is printed out. One can also
convert string values to integers or complex numbers with statements of the form
“x = int(temp)” or “x = complex(temp)”.

In fact, one does not have to use a temporary variable. The code above can be
expressed more succinctly like this:

x = float(input("Enter the value of x: "))
print("The value of x is",x)

which takes the string value given by input, converts it to a float, and assigns it
directly to the variable x. We will use this trick many times in this book.

In order for the program above to work, the value the user types must be one that
makes sense as a floating-point value, otherwise the computer will complain. Thus,
for instance, the following is fine:

Enter the value of x: 1.5
The value of x is 1.5

But suppose we do this:

Enter the value of x: Hello
ValueError: invalid literal for float(): Hello

This is our first example of an error message. The computer, in opaque technical
language, is complaining that we have given it an incorrect value.

It is normal to make a few mistakes when writing or using computer programs,
and you will soon become accustomed to the occasional error message (if you are
not already). Working out what these messages mean is one of the tricks of the
trade—they are often not entirely transparent.

2.2.4 ARITHMETIC

So far our programs have done very little, certainly nothing that would be of much
use for physics. But we can make them much more useful by adding some arithmetic
into the mix.
In most places where you can use a single variable in Python you can also use

a mathematical expression, like “x+y”. Thus you can write “print(x)” but you can
also write “print(x+y)” and the computer will calculate the sum of x and y for you
and print out the result. The basic mathematical operations—addition, subtraction,
etc.—are written as follows:

x+y addition

x-y subtraction

xxy multiplication

x/y division

xxxy raising x to the power of y

BAsIC PROGRAMMING

23

CHAPTER2 | PYTHON PROGRAMMING FOR PHYSICISTS

Notice that we use the asterisk symbol ”*” for multiplication and the slash sym-
bol ”/” for division, because there is no X or + symbol on a standard computer key-
board.

Two more obscure, but still useful operations, are integer division and the modulo
operation:

x//y the integer part of x divided by y, meaning x is divided by y and the re-
sult is rounded down to the nearest integer. For instance, 14//3 gives 4
and -14//3 gives —5.
x%y x modulo y, which means the remainder after x is divided by y. For
instance, 14%3 gives 2, because 14 divided by 3 gives 4-remainder-2.
This also works for non-integers: 1.5%@.4 gives 0.3, because 1.5 is 3 X
0.4, remainder 0.3. (There is, however, no modulo operation for complex
numbers.) The modulo operation is particularly useful for telling when
one number is divisible by another—the value of n%m will be zero if n is
divisible by m. Thus, for instance, n%2 is zero if n is even (and one if n is

odd).

There are also a handful of other mathematical operations available in Python, but
they are more obscure and rarely used.!!

An important rule about arithmetic in Python is that the type of result a calcula-
tion gives depends on the type of values that go into it. Consider, for example, this
statement

X=a+hb

If a and b are variables of the same type—integer, float, complex—then when they
are added together the result will also have the same type and this will be the type
of variable x. So if a is 1.5 and b is 2.4, meaning that they are both floats, then x will
be a float with value 3.9. Note when adding floats like this that even if the end result
of the calculation is a whole number, the variable x will still be floating point: if a
is 1.5 and b is 2.5, then the result of adding them together is 4, but x will still be a
floating-point variable with value 4.0 because a and b are floating point.

If a and b are of different types, then the end result has the more general of the
two types that went into it. This means that if you add a float and an integer, for
example, the end result will be a float. If you add a float and a complex number, the
end result will be complex.

The same rules apply to subtraction, multiplication, integer division, and the

1Such as:

x|y bitwise (binary) OR of two integers

x&y bitwise (binary) AND of two integers

x"y bitwise (binary) XOR of two integers
x>>y shift the bits of integer x rightwards y places
x<<y shift the bits of integer x leftwards y places

24

2.2 |

modulo operation: the type of the end result is the same as the starting types, or
the more general type if there are two different starting types. The division opera-
tion, however—ordinary non-integer division denoted by “/”—is different. It follows
basically the same rules except that it never gives an integer result. Division only
ever gives floating-point or complex values. This is necessary because you can di-
vide one integer by another and get a non-integer result (such as 3 + 2 = 1.5 for
example), so it would not make sense to have integer starting values always give an
integer final result.!? Thus if you divide any combination of integers or floats by one
another you will always get a floating-point value. If you start with one or more
complex numbers then you will get a complex value at the end.

You can combine several mathematical operations together to make a more com-
plicated expression, like x+2xy-z/3. When you do this the operations obey rules
similar to those of normal algebra. Multiplications and divisions are performed be-
fore additions and subtractions. If there are several multiplications or divisions in
a row they are carried out in order from left to right. Powers are calculated before
anything else. Thus

X+2xy is equivalent to x+2y
x-y/2 is equivalent to x— %y
3kx**2 is equivalent to 3x?
X/ 2%y is equivalent to %xy

You can also use parentheses () in your algebraic expressions, just as you would in
normal algebra, to mark things that should be evaluated as a unit, as in 2x(x+y).
However, only round parentheses () can be used for this purpose, not square brack-
ets [] or braces { }. Parentheses within parentheses are fine, asin x = 2*(x+3x(y-z)).

You can also add spaces between the parts of a mathematical expression to make
it easier to read. The spaces do not affect the value of the expression. So “x=2*(a+b)”
and “x = 2 * (a + b)” do the same thing. Thus the following are allowed
statements in Python

a+ b/c
(a + b)/c
a + 2%b - 0.5%(1.618x*c + 2/7)

12This is another respect in which version 3 of Python differs from earlier versions. In version 2 and
earlier all operations gave results of the same type that went into them, including division. This, however,
caused confusion for exactly the reason given here: if you divided 3 by 2, for instance, the result had to
be an integer, so the computer rounded it down from 1.5 to 1. Because of the difficulties this caused, the
language was changed in version 3 to give the current more sensible behavior. You can still get the old
behavior of dividing then rounding down using the integer divide operation //. Thus 3//2 gives 1 in all
versions of Python. If you are using Python version 2 (technically, version 2.1 or later) and want the newer
behavior of the divide operation, you can achieve it by including the statement “from __future__ import
division” at the start of your program. The differences between Python versions are discussed in more
detail in Appendix D.

BAsIC PROGRAMMING

25

CHAPTER 2

26

PYTHON PROGRAMMING FOR PHYSICISTS

On the other hand, the following will not work:
2%x =y

You might expect that this would result in the value of x being set to half the value
of y, but it’s not so. In fact, if you write this line in a program the computer will
stop when it gets to it and print the cryptic error message “SyntaxError: can’t
assign to operator” because it doesn’t know what to do. The problem is that
Python does not know how to solve equations for you by rearranging them. It only
knows about the simplest forms of equations, such as “x = y/2”. If an equation
needs to be rearranged to give the value of x then you have to do the rearranging
for yourself. Python will do basic sums for you, but its knowledge of math is very
limited.

To be more precise, statements like “x = a + b/c” in Python are not technically
equations at all, in the mathematical sense. They are assignments. When it sees a
statement like this, what your computer actually does is very simple-minded. It first
examines the right-hand side of the equals sign and evaluates whatever expression
it finds there, using the current values of any variables involved. When it is finished
working out the value of the whole expression, and only then, it takes that value
and assigns it to the variable on the left of the equals sign. In practice, this means
that assignment statements in Python sometimes behave like ordinary equations, but
sometimes they don’t. A simple statement like “x = 1” does exactly what you would
think, but what about this statement:

X =x + 1

This does not make sense, under any circumstances, as a mathematical equation.
There is no way that x can ever be equal to x + 1. It would imply that 0 = 1. But this
statement makes perfect sense in Python. Suppose the value of x is currently 1. When
the statement above is executed by the computer it first evaluates the expression on
the right-hand side, which is x + 1 and therefore has the value 1 + 1 = 2. Then it
assigns this value to the variable on the left-hand side, which just happens in this
case to be the same variable x. So x now gets a new value 2. In fact, no matter what
value of x we start with, this statement will always end up giving x a new value that
is 1 greater. So this statement has the simple (but potentially very useful) effect of
increasing the value of x by one.
Thus consider the following lines:

X =3
print(x)

X = X*%2 - 2
print(x)

What will happen when the computer executes these lines? The first two are straight-
forward enough: the variable x gets the value 3 and then the 3 gets printed out. But

2.2 |

then what? The third line says “x = x**2 - 2” which in normal mathematical no-
tation would be x = x? — 2, which is a quadratic equation with solutions x = 2
and x = —1. However, the computer will not set x equal to either of these values. In-
stead it will evaluate the right-hand side of the equals sign and get x* —2 =32 -2 =7
and then set x to this new value. Then the last line of the program will print out “7”.

Thus the computer does not necessarily do what one might think it would, based
on one’s experience with normal mathematics. The computer will not solve equa-
tions for x or any other variable. It will not do your algebra for you—it’s not that
smart.

Another set of useful tricks are the Python modifiers, which allow you to make
changes to a variable as follows:

X += 1 add 1 to x (i.e., make x bigger by 1)
X -= 4 subtract 4 from x
X *= -2.6 multiply x by —2.6
X /= 5xy divide x by 5 times y
x //= 3.4 divide x by 3.4 and round down to an integer
As we have seen, you can achieve the same result as these modifiers with statements
like “x = x + 17, but the modifiers are more succinct. Some people also prefer them
precisely because “x = x + 1” looks like bad algebra and can be confusing.
Finally in this section, a nice feature of Python, not available in most other com-
puter languages, is the ability to assign the values of two variables with a single
statement. For instance, we can write

X,y = 1,2.5
which is equivalent to the two statements

x =1
y = 2.5

One can assign three or more variables in the same way, listing them and their as-
signed values with commas in between.
A more sophisticated example is

X,y = 2xz+1,(x+y)/3

An important point to appreciate is that, like all other assignment statements, this
one evaluates the whole of the right-hand side of the equals sign before assigning
values to the variables on the left. Thus in this example the computer will calculate
both of the values 2%z+1 and (x+y)/3 from the current x, y, and z, before assigning
those values to x and y.

One purpose for which this type of multiple assignment is commonly used is to
interchange the values of two variables. If we want to swap the values of x and y we
can write:

BAsIC PROGRAMMING

27

CHAPTER 2

File: dropped. py

28

PYTHON PROGRAMMING FOR PHYSICISTS

X,y =Y,X

and the two will be exchanged. In most other computer languages such swaps are
more complicated, requiring the use of an additional temporary variable.

EXAMPLE 2.1: A BALL DROPPED FROM A TOWER

Let us use what we have learned to solve a first physics problem. This is a very simple
problem, one we could easily do on paper, but we will move onto more complex ones
shortly.

The problem is as follows. A ball is dropped from the top of a tower of height h.
It has initial velocity zero and accelerates downward under gravity. The challenge is
to write a program that asks the user to enter the height in meters of the tower and a
time interval ¢ in seconds, then prints on the screen the height of the ball above the
ground at time ¢ after it is dropped, ignoring air resistance.

The steps involved are the following. First, we use input statements to get the
values of h and t from the user. Second, we calculate how far the ball falls in the
given time, using the standard kinematic formula s = %gtz, where g = 9.81ms™? is
the acceleration due to gravity. Third, we print the height above the ground at time ¢,
which is equal to the total height of the tower minus this value, or h — s.

Here is what the program looks like, all four lines of it:!3

h = float(input("Enter the height of the tower: "))
t = float(input("Enter the time interval: "))
s = 9.81xt*x2/2

print("The height of the ball is",h-s,"meters")

Let us use this program to calculate the height of a ball dropped from a 100 m high
tower after 1 second and after 5 seconds. Running the program twice in succession
we find the following:

Enter the height of the tower: 100
Enter the time interval: 1
The height of the ball is 95.095 meters

Enter the height of the tower: 100
Enter the time interval: 5
The height of the ball is -22.625 meters

3Many of the example programs in this book are also available online for you to download. The
programs, along with various other useful resources, are packaged together in a single zip file which can
be downloaded from https://www.umich.edu/ mejn/cpresources.zip. Throughout the book, a name
printed in the margin next to a program, such as “dropped. py” above, indicates that the complete program
can be found, under that name, in these online resources. Any mention of programs or data in the “online
resources” also refers to the same download.

2.2 |

Note that the result is negative in the second case, which means that the ball would
have fallen below ground level if that were possible, although in practice the ball
would hit the ground first. Thus a negative value indicates that the ball hits the
ground before time ¢.

Before we leave this example, here is a suggestion for a possible improvement
to the program. At present we perform the calculation of the distance traveled with
the single line “s = 9.81xt*%2/2”, which includes the constant 9.81 representing the
acceleration due to gravity. When we do physics calculations on paper, however, we
normally do not write out the values of constants in full like this. Normally we would
write s = % gt?, with the understanding that g represents the acceleration. We do this
primarily because it is easier to read and understand. A single symbol g is easier
to read than a row of digits, and moreover the use of the standard letter g reminds
us that the quantity we are talking about is the gravitational acceleration, rather
than some other constant that happens to have value 9.81. Especially in the case
of constants that have many digits, such as 7 = 3.14159265. . ., the use of symbols
rather than digits makes life a lot easier.

The same is also true of computer programs. You can make your programs easier
to read and understand by using symbols for constants instead of writing the values
out in full. This is easy to do—just create a variable to represent the constant, like
this:

g =9.81
grt*x2/2

7))
1]

You only have to create the variable g once in your program (usually somewhere
near the beginning) and then you can use it as many times as you like thereafter.!*
Doing this also has the advantage of decreasing the chances that you will make a
typographical error in the value of a constant. If you have to type out many digits
every time you need a particular constant, odds are you are going to make a mistake
at some point. If you have a variable representing the constant then you know the
value will be right every time you use it, as long as you typed it correctly when you
first created the variable.'®

Using variables to represent constants in this way is one example of a program-
ming trick that improves your programs even though it does not change the way
they actually work. Instead it improves readability and reliability, which can be al-

14Tn some computer languages, such as C, there are separate entities called “variables” and “constants;”
a constant being like a variable except that its value can be set only once in a program and is fixed there-
after. There is no such thing in Python, however; there are only variables.

5There exists a Python module called scipy.constants, part of the larger scipy package, that defines
values for a wide range of physical constants, so that you don’t have to. It includes the acceleration due to
gravity g, as well as the electronic charge, Planck’s constant, the speed of light, and many more. We will
not use this package in our programs in this book, but it may be worth a look if you use such constants
often. We discuss the use of Python packages in Section 2.2.5.

BAsIC PROGRAMMING

29

CHAPTER 2

30

PYTHON PROGRAMMING FOR PHYSICISTS

most as important as writing a correct program. We will see other examples of such
tricks later.

Exercise 2.1: Another ball dropped from a tower

A ball is again dropped from a tower of height h with initial velocity zero. Write a program
that asks the user to enter the height in meters of the tower and then calculates and prints
the time the ball takes until it hits the ground, ignoring air resistance. Use your program to
calculate the time for a ball dropped from a 100 m high tower.

Exercise 2.2: Altitude of a satellite

A satellite is to be launched into a circular orbit around the Earth so that it orbits the planet
once every T seconds.

a) Show that the altitude h above the Earth’s surface that the satellite must have is

GMT?\!/3
h= -R
472

where G = 6.67 x 10" m3kg™! 52 is Newton’s gravitational constant, M = 5.97 x
10%4 kg is the mass of the Earth, and R = 6371 km is its radius.

b) Write a program that asks the user to enter the desired value of T and then calculates
and prints out the correct altitude in meters.

c) Use your program to calculate the altitudes of satellites that orbit the Earth once a day
(so-called geosynchronous orbit), once every 90 minutes, and once every 45 minutes.
What do you conclude from the last of these calculations?

d) Technically a geosynchronous satellite is one that orbits the Earth once per sidereal
day, which is 23.93 hours, not 24 hours. Why is this? And how much difference will it
make to the altitude of the satellite?

2.2.5 FUNCTIONS, PACKAGES, AND MODULES

There are many operations one might want to perform in a program that are more
complicated than simple arithmetic, such as multiplying matrices, calculating a log-
arithm, or making a graph. Python comes with facilities for doing each of these and
many other common tasks easily and quickly. These facilities are divided into pack-
ages—collections of related useful things—and each package has a name by which
you can refer to it. For instance, all of the standard mathematical functions, such
as logarithm and square root, are contained in a package called math. Before you
can use any of these functions you have to tell the computer that you want to. For
example, to tell the computer you want to use the log function, you would add the
following line to your program:

2.2 |

from math import log

This tells the computer to “import” the logarithm function from the math package,
which means that it copies the code defining the function from where it is stored
(usually on the hard drive of your computer) into the computer’s memory, ready
for use by your program. You need to import each function you use only once per
program: once the function has been imported it continues to be available until the
program ends.!® You must import the function before the first time you use it in a
calculation and it is good practice to put the “from” statement at the very start of
the program, which guarantees that it occurs before the first use of the function and
also makes it easy to find when you are working on your code. As we write more
complicated programs, there will often be situations where we need to import many
different functions into a single program with many different from statements, and
keeping those statements together in a tidy block at the start of the code will make
things much easier.

Once you have imported the log function you can then use it in a calculation like
this:

x = log(2.5)

which will calculate the (natural) logarithm of 2.5 and set the variable x equal to the
result. Note that the argument of the logarithm, the number 2.5 in this case, goes in
parentheses. If you omit the parentheses the computer will complain. (Also if you
use the log function without first importing it from the math package the computer
will complain.)

The math package contains a good selection of the most commonly used mathe-
matical functions, including the following:

log natural logarithm

log1@ log base 10

exp exponential

sin, cos, tan sine, cosine, tangent (argument in radians)
asin, acos, atan arcsine, arccosine, arctangent (in radians)
sinh, cosh, tanh hyperbolic sine, cosine, tangent

sqrt positive square root

Note that the trigonometric functions work with angles specified in radians, not de-
grees. The exponential and square root functions may seem redundant, since one
can calculate both exponentials and square roots by taking powers. For instance,
xxx@.5 would give the square root of x. Because of the way the computer calculates
powers and roots, however, using the functions above is usually quicker and more
accurate.

161 you are programming in a Jupyter notebook or in Colab, functions need be imported only once
per notebook: functions imported by one code cell are automatically available to all other cells.

BAsIC PROGRAMMING

31

CHAPTER 2

32

PYTHON PROGRAMMING FOR PHYSICISTS

The math package also contains a number of less common functions, such as the
Gaussian error function and the gamma function, as well as two objects that are not
functions at all but constants, namely e and 7, which are denoted e and pi. This
program, for instance, calculates the value of 2

from math import pi
print(pix*x2)

which prints 9. 869604401089358 (which is roughly the right answer). Note that there
are no parentheses after the “pi” when we use it in the print statement, because it is
not a function. It is just a variable called pi with value 3.14159...

The functions in the math package do not work with complex numbers and the
computer will give an error message if you try, but there is another package called
cmath that contains versions of most of the same functions that do work with com-
plex numbers, plus a few additional functions that are specific to complex arithmetic.

In some cases you may find you want to use more than one function from the
same package in a program. You can import two different functions—say the log and
exponential functions—with two statements like this:

from math import log
from math import exp

but a more succinct way to do it is to use a single statement like this:
from math import log,exp

You can import a list as long as you like from a single package in this way:
from math import log,exp,sin,cos,sqrt,pi,e

You can also import all of the functions in a package with a statement of the form
from math import =*

The * here means “everything”. In most cases, however, we advise against using this
import-everything form because it can give rise to some unexpected behaviors (for
instance, if, unbeknownst to you, a package contains a function with the same name
as one of your variables, causing a clash between the two). It is usually better to
explicitly import only those functions you actually need to use.!”

17 A particular problem occurs when an imported package contains a function with the same name
as a previously existing function. In such a case the newly imported one will supersede the previous
one, which may not always be what you want. For instance, the packages math and cmath contain many
functions with the same names, such as sqrt. But the sqrt function in cmath works with complex numbers
and the one in math does not. If one did “from cmath import x” followed by “from math import *”, one
would end up with the version of sqrt that works only with real numbers. And if one then attempted to
calculate the square root of a complex number, one would get an error message.

2.2 |

There is, however, another way to import the entire contents of a package in
Python which avoids these pitfalls and can sometimes be useful. The statement

import math

imports the entire math package in one step. Subsequently, if we want to use, say,
the logarithm function, we write

x = math.log(2.5)

Note how we now specify the name of the imported package “math”, followed by a
period, followed by the function name. If we wanted to take a square root we would

say

x = math.sqrt(2.5)

and so forth. Thus this form simplifies the importing of functions from packages, at
the expense of making the use of those functions a bit more complicated. In some
cases this is a worthwhile tradeoff, and we will use it occasionally in this book.

A variant of the same trick, which can simplify life sometimes, is the statement

import math as mt

This defines “mt” as an alias for the math package, so that we can use “mt” anywhere
we would previously have used “math”, asin x = mt.log(2.5) or x = mt.sqrt(2.5).
In this case, doing so would not actually save us much effort—we have to type two
letters “mt” instead of four—but some packages have much longer names, in which
case this can be a useful trick.

Finally in this section, some large packages are for convenience split into smaller
subpackages, called modules. A module within a larger package is referred to as
packagename.modulename. For example, as we will see shortly, there are a large num-
ber of useful mathematical facilities available in the package called numpy, including
facilities for linear algebra and Fourier transforms, each in their own module within
the larger package. Thus the linear algebra module is called numpy.linalg and the
Fourier transform module is called numpy . fft (for “fast Fourier transform”). We im-
port a function from a module thus:

from numpy.linalg import inv

This would import the inv function, which calculates the inverse of a matrix. Alter-
natively we could import the entire linear algebra module thus:

import numpy.linalg as la

Then we would refer to the matrix inversion function as la.inv.

BAsIC PROGRAMMING

33

CHAPTER2 | PYTHON PROGRAMMING FOR PHYSICISTS

Smaller packages, like the math package, have no submodules, in which case one
could, arguably, say that the entire package is also a module, and in such cases the
words package and module are often used interchangeably.

ExAMPLE 2.2: CONVERTING POLAR COORDINATES

Suppose the position of a point in two-dimensional space is given to us in polar
coordinates r, 8 and we want to convert it to Cartesian coordinates x, y. How would
we write a program to do this? The appropriate steps are:

1. Get the user to enter the values of r and 6.

2. Convert those values to Cartesian coordinates using the standard formulas

x =rcosb, y=rsin6.

3. Print out the results.
Since the formulas involve the mathematical functions sin and cos, we are going to
have to import those functions from the math package. Also, the sine and cosine
functions in Python (and in most other computer languages) take arguments in radi-
ans. If we want to be able to enter the angle 6 in degrees then we are going to have to
convert from degrees to radians, which means multiplying by 7 and dividing by 180.
Thus our program might look something like this:

File: polar.py from math import sin,cos,pi

float(input("Enter r: "))
float(input("Enter theta in degrees: "))

[o N |
1n o

theta = d*pi/180

x = rxcos(theta)

y = rxsin(theta)

print("x =",x," y =",y)
Take a moment to read through this complete program and make sure you under-
stand what each line is doing. If we run the program, it will do something like the
following:

Enter r: 2
Enter theta in degrees: 60
x = 1.0 y = 1.73205080757

Try it for yourself.

34

2.2 |

2.2.6 OTHER PACKAGES

There are an extraordinary number of packages available in Python for performing
almost any computational task imaginable. There are packages for making graphics
and playing sounds, packages for data handling and statistics, packages for linear
algebra and calculus and trigonometry. Here are a few packages that are useful for
computational physics:

math Basic mathematical functions for real numbers

cmath Basic mathematical functions for complex numbers
numpy Arrays, vectors, and matrices

scipy Basic scientific tools, like special functions and statistics

matplotlib Graph drawing

collections Data structures, such as queues and default-dictionaries
csv Reading and writing data files in the common CSV format
pandas Spreadsheet-style data processing

We will not go into these packages in detail here, but we will introduce them as
needed in the following chapters.

2.2.7 BUILT-IN FUNCTIONS

There are a small number of functions in Python, called built-in functions, which do
not come from any package. These functions are always available to you in every
program; you do not have to import them. We have in fact seen several examples of
built-in functions already. For instance, we saw the float function, which takes a
number and converts it to floating point (if it is not floating point already):

x = float(1)

There are similar functions int and complex that convert to integers and complex
numbers. Another example of a built-in function, one we have not seen previously,
is the abs function, which returns the absolute value of a number, or the modulus
in the case of a complex number. Thus, abs(-2) returns the integer value 2 and
abs(3+4j) returns the floating-point value 5.0.

Earlier we also used the built-in functions input and print, which are not mathe-
matical functions in the usual sense of taking a number as argument and performing
a calculation on it, but as far as the computer is concerned they are still functions.
Consider, for instance, the statement

x = input("Enter the value of x: ")

»

Here the input function takes as argument the string “Enter the value of x: 7,
prints it out, waits for the user to type something in response, then sets x equal to
that something.

The print function is slightly different. When we say

BAsIC PROGRAMMING

35

CHAPTER 2

36

PYTHON PROGRAMMING FOR PHYSICISTS

print(x)

print is a function, but it is not here generating a value the way the log or input
functions do. It does something with its argument x, namely printing it out on the
screen, but it does not generate a value. This differs from the functions we are used
to in mathematics, which always generate a value, but it is nonetheless allowed in
Python. Sometimes you just want a function to do something but it doesn’t need to
generate a value.

Exercise 2.3: Write a program to perform the inverse operation to that of Example 2.2. That
is, ask the user for the Cartesian coordinates x, y of a point in two-dimensional space, then
calculate and print the corresponding polar coordinates, with the angle 6 in degrees.

Exercise 2.4: A spaceship travels from Earth in a straight line at relativistic speed v to another
planet x light years away. Write a program to ask the user for the value of x and the speed v
as a fraction of the speed of light ¢, then print out the time in years that the spaceship takes
to reach its destination (a) in the rest frame of an observer on Earth and (b) as perceived by a
passenger on board the ship. Use your program to calculate the answers for a planet 10 light
years away with v = 0.99c.

Exercise 2.5: Quantum potential step

A well-known quantum mechanics problem involves a particle of mass m that encounters a
one-dimensional potential step, like this:

,,, E
Vv
Incoming
_—
0

The particle with initial kinetic energy E and wavevector k; = V2mE/h enters from the left
and encounters a sudden jump in potential energy of height V at position x = 0. By solving the
Schrodinger equation, one can show that when E > V the particle may either (a) pass the step,
in which case it has a lower kinetic energy of E — V on the other side and a correspondingly
smaller wavevector of ky = v/2m(E — V) /A, or (b) it may be reflected, keeping all of its kinetic
energy and an unchanged wavevector but moving in the opposite direction. The probabilities
T and R for transmission and reflection are given by

_ 4k ko _ k1 — ko 2
T (k1 + k)2’ Tk ko)

2.2 |

Suppose we have a particle with mass equal to the electron mass m = 9.11 x 103! kg and
energy 10 eV encountering a potential step of height 9 eV. Write a Python program to compute
and print out the transmission and reflection probabilities using the formulas above.

Exercise 2.6: Planetary orbits

The orbit in space of one body around another, such as a planet around the Sun, need not
be circular. In general it takes the form of an ellipse, with the body sometimes closer in and
sometimes further out. If you are given the distance #; of closest approach that a planet makes
to the Sun, also called its perihelion, and its linear velocity vy at perihelion, then any other
property of the orbit can be calculated as follows.
a) Kepler’s second law tells us that the distance ¢, and velocity v, of the planet at its most
distant point, or aphelion, satisfy fo02 = £101. At the same time the total energy, kinetic
plus gravitational, of a planet with velocity v and distance r from the Sun is given by

mM
E= %mv2 -G—,

’
where m is the planet’s mass, M = 1.9891 x 1030 kg is the mass of the Sun, and G =
6.6738x 10~ m3 kg1 s~2 is Newton’s gravitational constant. Given that energy must

be conserved, show that vs is the smaller root of the quadratic equation
2GM [9 ZGM]
v — [0]
41

2
02 —
2 0

Once we have vy we can calculate £ using the relation ¢» = £101 /vs.

b) Given the values of vy, #1, and 2, other parameters of the orbit are given by simple
formulas that can be derived from Kepler’s laws and the fact that the orbit is an ellipse:

Semi-major axis: a= %(fl + £3),
Semi-minor axis: b=+tty,
2mab
Orbital period: T= R
{101
b=t
Orbital eccentricity: =2-"
b+ 4

Write a program that asks the user to enter the distance to the Sun and velocity at
perihelion, then calculates and prints the quantities £2, v2, T, and e.

o
~

Test your program by having it calculate the properties of the orbits of the Earth (for
which £ = 1.4710 X 10! m and 0; = 3.0287 x 10* ms~!) and Halley’s comet (f; =
8.7830% 10!® m and v; = 5.4529 x 10* ms~1). Among other things, you should find that
the orbital period of the Earth is one year and that of Halley’s comet is about 76 years.

2.2.8 COMMENT STATEMENTS

This is a good time to mention another important feature of Python (and every other
computer language), namely comments. In Python any program line that starts with
a hash mark “#” is ignored completely by the computer. You can type anything you
like on the line following a hash mark and it will have no effect:

BAsIC PROGRAMMING

37

CHAPTER 2

File: polar.py

38

PYTHON PROGRAMMING FOR PHYSICISTS

Hello! Hi there! This line does nothing at all.

Such lines are called comments. Comments make no difference whatsoever to the
way a program runs, but they can be very useful nonetheless. You can use comment
lines to leave reminders for yourself in your programs, saying what particular parts
of the program do, what quantities are represented by which variables, changes that
you mean to make later to the program, things you are not sure about, and so forth.
Here, for instance, is a version of the polar coordinates program from Example 2.2,
with comments added to explain what is happening:

from math import sin,cos,pi

Ask the user for the values of the radius and angle
r = float(input("Enter r: "))
d = float(input("Enter theta in degrees: "))

Convert the angle to radians
theta = d*xpi/180

Calculate the equivalent Cartesian coordinates
rxcos(theta)
rxsin(theta)

x
1

Print out the results

print("x =",x," y =",y)

This version of the program will perform identically to the original version on page 34,
but it is easier to read and understand.

Comments may seem unnecessary for short programs like this one, but when
you move on to creating larger programs that perform complex physics calculations
you will find them very useful for reminding yourself of how things work. When
you are writing a program you may think you remember how everything works and
there is no need to add comments, but when you return to the same program again
a week later after spending the intervening time on something else you will find it’s
a different story—you can’t remember how anything works or why you did things
this way or that, and you will be very glad if you scattered a few helpful pointers in
comment lines around the program.

Comments become even more important if someone else other than you needs
to understand a program you have written, for instance if you are working as part
of a team that is developing a large program together. Understanding how other
people’s programs work can be tough at the best of times, and you will make your
collaborators’ lives a lot easier if you include some explanatory comments as you go
along.

Comments do not have to start at the beginning of a line. Python ignores any

2.3 | CONTROLLING PROGRAMS WITH “IF” AND “WHILE”

portion of a line that follows a hash mark, whether the hash mark is at the beginning
or not. Thus you can write things like this:

theta = d*pi/180 # Convert the angle to radians

and the computer will perform the calculation 8 = dx/180 at the beginning of the
line but completely ignore the hash mark and the text at the end. This is a useful
trick when you intend that a comment should refer to a specific single line of code
only.

2.3 CONTROLLING PROGRAMS WITH “IF” AND “WHILE”

The programs we have seen so far are all very linear. They march from one statement
to the next, from beginning to end of the program, then they stop. An important
feature of computers is their ability to break this linear flow, to jump around the
program, execute some lines but not others, or make decisions about what to do next
based on given criteria. In this section we will see how this is done in the Python
language.

2.3.1 THE IF STATEMENT

It will happen often in our computer programs that we want to do something only
if a certain condition is met—only if n = 0 perhaps, or if x > % We can do this using
an if statement. Consider the following example:

x = int(input("Enter a whole number no greater than ten: "))
if x>10:
print("You entered a number greater than ten")
print("Let me fix that for you")
x = 10
print("Your number is",x)

If we run this program and type in “5”, we get:

Enter a whole number no greater than ten: 5
Your number is 5

But if we break the rules and enter 11, we get:

Enter a whole number no greater than ten: 11
You entered a number greater than ten

Let me fix that for you

Your number is 10

This behavior is achieved using an if statement—the second line in the program
above—which tests the value of the variable x to see if it is greater than ten. Note

39

CHAPTER 2

40

PYTHON PROGRAMMING FOR PHYSICISTS

the structure of the if statement: there is the “if” part itself, which consists of the
word if followed by the condition you are checking. In this case the condition is
that x > 10. The condition is followed by a colon, and following that are one or more
lines that tell the computer what to do if the condition is satisfied. In our program
there are three of these lines, the first two printing out messages and the third fixing
the value of x. Note that these three lines are indented—they start with a few spaces
so that the text is shifted over a bit from the left-hand edge. This is how we tell the
program which instructions are “part of the if” The indented instructions will be
executed only if the condition in the if statement is met, i.e., only if x > 10 in this
case. Whether or not the condition is met, the computer then moves on to the next
line of the program, which prints the value of x.

In Section 1 we saw that you are free to add spaces between the parts of a Python
statement to make it more readable, as in “x = 17, and that such spaces will have no
effect on the operation of the program. Here we see an exception to that rule: spaces
at the beginning of lines do have an effect with an if statement. For this reason
one should be careful about putting spaces at the beginning of lines—they should be
added only when they are needed, as here, and not otherwise.

A question that people sometimes ask is, “How many spaces should I put at the
start of a line when I am indenting it?” The answer is that you can use any number
you like. Python considers any number of spaces, from one upward, to constitute an
indentation. The only rule is that once you start the indentation, every line has to
have the same number of spaces. You cannot vary the number from one line to the
next.

Even though you are free to choose the number of spaces you use for an in-
dentation, it has however become standard over the years among most Python pro-
grammers to use four spaces, and this is the number you will see used in almost all
programs, including the programs in this book. In fact, most Python development
environments automatically insert spaces for you when they see an if statement,
and they typically insert four. (Jupyter provides the option to use either two or four
spaces, but the default is four.)

There are various different types of conditions one can use in an if statement.
Here are some examples:

if x==1: Check if x = 1. Note the double equals sign.
if x>1: Check if x > 1
if x>=1: Checkifx > 1
if x<1: Checkifx < 1
if x<=1: Checkifx <1
if x!=1: Checkifx # 1

Note particularly the double equals sign in the first example. It is one of the most
common programming errors that people make in Python to use a single equals sign
in an if statement instead of a double one. If you do this, you will get an error message
when you try to run your program.

2.3 | CONTROLLING PROGRAMS WITH “IF” AND “WHILE”

You can also combine two conditions in a single if statement, like this:

if x>10 or x<1:
print("Your number is either too big or too small.")

You can use “and” in a similar way:

if x<=10 and x>=1:
print("Your number is just right.")

You can combine more than two criteria on a line as well—as many as you like.
Two useful further elaborations of the if statement are else and elif:

if x>10:
print("Your number is greater than ten.")
else:
print("Your number is fine. Nothing to see here.")

This prints different messages depending on whether x is greater than 10 or not. Note
that the else line, like the original if, is not indented and has a colon at the end. It
is followed by one or more indented lines, the indentation indicating that the lines
are “inside” the else clause.

An even more elaborate example is the following:

if x>10:

print("Your number is greater than ten.")
elif x>9:

print("Your number is OK, but you're cutting it close.")
else:

print("Your number is fine. Move along.")

The word elif is short for “else if.” If the first criterion is not met it tells the computer
to try a different one. Note that we can use both elif and else one after the other,
as here—if neither of the conditions specified in the if and elif clauses is satisfied
then the computer moves on to the else clause. You can also have more than one
elif, indeed you can have as many as you like, each one testing a different condition
if the previous one was not satisfied.

2.3.2 THE WHILE STATEMENT

A useful variation on the if statement is the while statement. It looks and behaves
similarly to the if statement:

41

CHAPTER 2

42

PYTHON PROGRAMMING FOR PHYSICISTS

x = int(input("Enter a whole number no greater than ten: "))
while x>10:

print("This is greater than ten. Please try again.")

x = int(input("Enter a whole number no greater than ten: "))
print("Your number is",x)

As with the if statement, the while statement checks if the condition given is met
(in this case if x > 10). If it is, it executes the indented block of code immediately
following; if not, it skips the block. However (and this is the important difference), if
the condition is met and the block is executed, the program then loops back from the
end of the block to the beginning and checks the condition again. If the condition is
still true, then the indented lines will be executed again. And it will go on looping
around like this, repeatedly checking the condition and executing the indented code
until the condition is finally false. (And if it is never false, then the loop goes on

forever.'®) Thus, if we were to run the snippet of code above, we would get something
like this:

Enter a whole number no greater than ten: 11
This is greater than ten. Please try again.
Enter a whole number no greater than ten: 57
This is greater than ten. Please try again.
Enter a whole number no greater than ten: 100
This is greater than ten. Please try again.
Enter a whole number no greater than ten: 5
Your number is 5

The computer keeps on going around the loop, asking for a number until it gets what
it wants. This construct—sometimes also called a while loop—is commonly used in
this way to ensure that some condition is met in a program or to keep on performing
an operation until a certain point or situation is reached.

As with the if statement, we can specify two or more criteria in a single while
statement using “and” or “or”. The while statement can also be followed by an else
statement, which is executed once (and once only) if and when the condition in the
while statement fails. (This type of else statement is primarily used in combination
with the break statement described in the next section.) There is no equivalent of
elif for a while loop, but there are two other useful statements that modify its be-
havior, break and continue.

181f you accidentally create a program with a loop that goes on forever then you will need to know
how to stop the program. In IDLE just closing the window where the program is running does the trick.
In Jupyter you can click on the run button again to stop the program.

2.3 | CONTROLLING PROGRAMS WITH “IF” AND “WHILE”

2.3.3 BREAK AND CONTINUE

Two useful refinements of the while statement are the break and continue statements.
The break statement allows us to break out of a loop even if the condition in the while
statement is not met. For instance,

while x>10:
print("This is greater than ten. Please try again.")
x = int(input("Enter a whole number no greater than ten: "))
if x==111:
break

This loop will continue looping until you enter a number not greater than 10, except
if you enter the number 111, in which case it will give up and proceed with the rest
of the program.

If the while loop is followed by an else statement, the else statement is not exe-
cuted after a break. This allows you to create a program that does different things if
the while loop finishes normally (and executes the else statement) or via a break (in
which case the else statement is skipped).

This example also illustrates another new concept: it contains an if statement
inside a while loop. This is allowed in Python and used often. In the programming
jargon we say the if statement is nested inside the while loop. While loops nested
inside if statements are also allowed, or ifs within ifs, or whiles within whiles. And
it doesn’t have to stop at just two levels. Any number of statements within state-
ments is allowed. For some of the more complicated calculations in this book we
will see examples nested four or five levels deep. In the example above, note how the
break statement is doubly indented from the left margin—it is indented by an extra
four spaces, for a total of eight, to indicate that it is part of a statement-within-a-
statement.!’

The continue statement is similar to the break statement, but with one important
difference. Saying continue anywhere in a loop will make the program skip the rest
of the indented code in the while loop, but instead of getting on with the rest of the
program as break does, it then goes back to the beginning of the loop, checks the
condition in the while statement again, and goes around the loop again if the con-
dition is met. In other words, the continue statement abandons the current iteration
of the loop and starts a new one, but does not abandon looping altogether.

ExAMPLE 2.3: EVEN AND ODD NUMBERS

Suppose we want to write a program that takes as input a single integer and prints
out the word “even” if the number is even, and “odd” if the number is odd. We can

1YWe will come across some examples in this book where we have a loop nested inside another loop
and then a break statement inside the inner loop. In that case the break statement breaks out of the inner
loop only, and not the outer one.

43

CHAPTER 2

File: evenodd. py

44

PYTHON PROGRAMMING FOR PHYSICISTS

do this by making use of the fact that n modulo 2 is zero if (and only if) n is even.
Recalling that n modulo 2 is written as n%2 in Python, here is how the program would

go:

n = int(input("Enter an integer: "))
if n%2==0:

print("even")
else:

print("odd")

Now suppose we want a program that asks for two integers, one even and one odd—
in either order—and keeps on asking until it gets what it wants. We could do this
by checking all of the various combinations of even and odd, but a simpler approach
is to notice that if we have one even and one odd number then their sum is odd;
otherwise it is even. Thus our program might look like this:

print("Enter two integers, one even, one odd")
m = int(input("Enter the first integer: "))
n = int(input("Enter the second integer: "))
while (m+n)%2==0:
print("One must be even and the other odd.")
m = int(input("Enter the first integer: "))
n = int(input("Enter the second integer: "))
print("The numbers you chose are",m,"and",n)

Note how the while loop checks to see if m + n is even. If it is, then the numbers you
entered must be wrong—either both are even or both are odd—so the program asks
for another pair, and it keeps on doing this until it gets what it wants.

As before, take a moment to look over this program and make sure you under-
stand what each line does and how the program works.

ExAMPLE 2.4: THE FIBONACCI NUMBERS

The Fibonacci numbers are the sequence of integers in which each is the sum of the
previous two, with the first two numbers being 1 and 1. Thus the first few members
of the sequence are 1, 1, 2, 3, 5, 8, 13, 21. Suppose we want to calculate the Fibonacci
numbers up to 1000. This would be a laborious task for a human, but it is straight-
forward for a computer program. All the program needs to do is keep a record of the
most recent two numbers in the sequence, add them together to calculate the next
number, then keep on repeating for as long as the numbers are less than 1000. Here
is a program to do it:

f1 =1
f2 =1
while f1<=1000:

2.3 | CONTROLLING PROGRAMS WITH “IF” AND “WHILE”

print(f1)

fnext = f1 + f2
f1 =12

f2 = fnext

Observe how the program works. The variables f1 and f2 store the two most re-
cent numbers of the sequence. If f1 is less than 1000, we print it out, then calculate
the next number by summing f1 and 2 and store the result in the variable fnext.
Then we update the values of f1 and 2 and go around the loop again. The process
continues until the value of f1 exceeds 1000, then stops.

This program works fine, but here is a neater way to solve the same problem
using the “multiple assignment” feature of Python discussed in Section 2.2.4:

f1,f2 = 1,1 File: fibonacci.py
while f1<=1000:

print(f1)

f1,f2 = f2,f1+f2

If we run this program, we get the following:

— 00 Ul W N = =

3
21
34
55
89
144
233
377
610
987

Indeed, the computer will happily print out the Fibonacci numbers up to a billion or
more in just a second or two. Try it if you like.

Exercise 2.7: Catalan numbers

The Catalan numbers C,, are a sequence of integers 1, 1, 2, 5, 14, 42, 132... that play important
roles in quantum mechanics and the theory of disordered systems. (They were central to

45

CHAPTER 2

46

PYTHON PROGRAMMING FOR PHYSICISTS

Eugene Wigner’s proof of the so-called semicircle law.) They are given by

4n+2
Co =1, Cni1 = nt2 Ch.

Write a program that prints in increasing order all Catalan numbers less than or equal to one
billion.

2.4 LISTS AND ARRAYS

We have seen how to work with integer, real, and complex numbers in Python and
how to use variables to store those numbers. All the variables we have seen so far,
however, represent only a single number—a single integer, real, or complex value.
But in physics it is common for a variable to represent several numbers at once.
We might use a vector r, for instance, to represent the position of a point in three-
dimensional space, meaning that the single symbol r actually corresponds to three
real numbers (x,y,z). Similarly, a matrix, again usually denoted by just a single
symbol, can represent an entire grid of numbers, m X n of them, where m and n could
be as large as we like. There are also many cases where we have a set of numbers
that we would like to treat as a single entity even if they do not form a vector or
matrix. We might, for instance, do an experiment in the lab and make a hundred
measurements of some quantity. Rather than give a different name to each one—a,
b, ¢, and so forth—it makes sense to denote them by ay, a;, as, and then to consider
them collectively as a set A = {a;}, a single entity made up of a hundred numbers.

Situations like these are so common that Python provides standard features,
called containers, for storing collections of numbers. There are several kinds of con-
tainers. In this section we look at the most common types: lists and arrays.

2.4.1 Lists

The most basic type of container in Python is the list. A list, as the name suggests, is
a list of quantities, one after another. In all the examples in this book the quantities
will be numbers of some kind—integers, floats, and so forth—although any type of
quantity that Python knows about is allowed in a list, such as strings for example.?

The quantities in a list, which are called its elements, do not all have to be of
the same type. You can have an integer, followed by a float, followed by a complex
number if you want. In most of the cases we will deal with, however, the elements
will all be of the same type—all integers, say, or all floats—because this is what physics
calculations usually demand. Thus, for instance, in the example above where we
make a hundred measurements of a quantity in the lab and we want to represent

2If you have programmed in another computer language, then you may be familiar with arrays, which
are similar to lists but not exactly the same. Python has both lists and arrays and both have their uses in
physics calculations. We study arrays in Section 2.4.2.

24

them on the computer, we could use a list one hundred elements long and all the
elements would presumably be of the same type (probably floats) because they all
represent measurements of the same thing.

A list in Python is written like this: [3, @, @, -7, 24]. The elements of the
list are enclosed in square brackets and separated by commas. The elements of this
particular list are all integers, but they could be anything. Another example of a list
might be [1, 2.5, 3+4.63] which has three elements of different types, one integer,
one real, and one complex.

A list can be assigned to a variable:

r=1>[0,1,2, 3,5,8, 13, 21]

Previously in this chapter all variables have represented just single numbers, but
here we see that a variable can also represent a list of numbers. You can print a list
variable, just as you can any other variable, and the computer will print out the entire
list. If we run this program:

r=10[01,1,2, 3,5, 8, 13, 21]
print(r)

we get this:
[1, 1, 2, 3, 5, 8, 13, 21]

The quantities that make up the elements of a list can be specified using other vari-

ables, like this:
1.0

1.5

= -2.2

[X! yy Z]

SN <K X
1]

This will create a three-element list with the value [1.0, 1.5, -2.2]. It is important
to bear in mind, in this case, what happens when Python encounters an assignment
statement like r = [x, y, z]. Remember that in such situations Python first eval-
uates the expression on the right-hand side, which gives [1.0, 1.5, -2.2] in this
case, then assigns that value to the variable on the left. Thus the end result is that r
isequal to [1.0, 1.5, -2.2]. It is a common error to think of r as being equal to
[x, y, z]so thatif, say, the value of x is changed later in the program the value of r
will change as well. This is incorrect. The value of r will get setto [1.0, 1.5, -2.2]
and will not change later if x is changed. If you want to change the value of r you
have to explicitly assign a new value to it, with another statement like r = [x, y, z].

The elements of lists can also be calculated from entire mathematical expressions,
like this:

r = [2*%x, xty, z/sqrt(x*x2+y*x2)]

LI1STS AND ARRAYS

47

CHAPTER 2

438

PYTHON PROGRAMMING FOR PHYSICISTS

The computer will evaluate all the expressions on the right-hand side, then create a
list from the values it calculated.

Once we have created a list we probably want to do some calculations with the
elements it contains. The individual elements in a list r are denoted r[@1, r[11, r[2],
and so forth. That is they are numbered in order, from beginning to end of the list,
the numbers go in square brackets after the variable name, and crucially the numbers
start from zero, not one. This may seem odd—it’s not the way we usually do things
in physics or in everyday life—and it takes a little getting used to. However, it turns
out, as we will see, to be more convenient in a lot of situations than starting from
one.

The individual elements, such as r[0], behave like single variables and you can
use them in the same way you would an ordinary variable. Thus, here is a short
program that calculates and prints out the length of a vector in three dimensions:

from math import sqrt

r=1[1.0, 1.5, -2.2]

length = sqrt(r@]**2 + r[1]*x2 + r[2]**2)
print(length)

The first line imports the square root function from the math package, which we need
for the calculation. The second line creates the vector, in the form of a three-element
list. The third line is the one that does the actual calculation. It takes each of the three
elements of the vector, which are denoted r[0], r[1], and r[2], squares them, and
adds them together. Then it takes the square root of the result, which by Pythagoras’
theorem gives us the length of the vector. The final line prints out the length. If we
run this program it prints

2.8442925306655784

which is the correct answer (to 17 significant figures).
We can change the values of individual elements of a list at any time, like this:

r=1[1.0, 1.5, -2.2]
rf1] = 3.5
print(r)

The first line will create a list with three elements. The second then changes the value
of element 1, which is the middle of the three elements since they are numbered
starting from zero. So if we run the program it prints out this:

[1.0, 3.5, -2.2]

A powerful and useful feature of Python is its ability to perform operations on
entire lists at once. For instance, it sometimes happens that we want to know the
sum of the values in a list. Python contains a built-in function called sum that can
calculate such sums in a single line, thus:

24

r=1[.0, 1.5, -2.2]
total = sum(r)
print(total)

The first line here creates a three-element list and the second calculates the sum of
its elements. The final line prints out the result, and if we run the program we get
this:

0.3

Other useful built-in functions include max and min, which give the largest and small-
est values in a list respectively, and len, which calculates the number of elements in
a list. Applied to the list r above, for instance, max(r) would give 1.5 and min(r)
would give —2.2, while len(r) would give 3. Thus, for example, one can calculate
the mean of the values in a list like this:

r=1[1.0, 1.5, -2.2]
mean = sum(r)/len(r)
print(mean)

The second line here sums the elements in the list and then divides by the number
of elements to give the mean value. In this case, the calculation would give a mean
of 0.1.

Another feature of lists in Python, one that we will use often, is the ability to add
elements to an already existing list. Suppose we have a list called r and we want to
add a new element to the end of the list with value, say, 6.1. We can do this with the
statement

r.append(6.1)

This slightly odd-looking statement is a little different in form from ones we have
seen previously.?! It consists of the name of our list, which is r, followed by a dot
(i.e., a period), then “append(6.1)”. Its effect is to add a new element to the end of
the list with the given value, which is 6.1 in this case. The value can also be specified
using a variable or a mathematical expression, thus:

r=1[1.0, 1.5, -2.2]
X = 0.8
r.append(2*xx+1)
print(r)

2This is an example of Python’s object-oriented programming features. The function append is tech-
nically a “method” that belongs to the list “object” r. The function does not exist as an entity in its own
right, only as a subpart of the list object. We will not dig into Python’s object-oriented features in this
book, since they are of relatively little use for the type of physics programming we will be doing. For
software developers engaged in large-scale commercial or group programming projects, however, they
can be invaluable.

LI1STS AND ARRAYS

49

CHAPTER 2

50

PYTHON PROGRAMMING FOR PHYSICISTS

If we run this program we get
[1.0, 1.5, -2.2, 2.6]

Note how the computer has calculated the value of 2*xx+1 to be 2.6, then added that
value to the end of the list.

A particularly useful trick that we will employ frequently in this book is the
following. We create an empty list, a list with no elements in it at all, then add
elements to it one by one as we learn of or calculate their values. A list created
in this way can grow as large as we like (within limitations set by the amount of
memory the computer has to store the list).

To create an empty list we say

r =[]

This creates a list called r with no elements. Even though it has no elements in it,
the list still exists. It’s like an empty set in mathematics—it exists as an object, but it
doesn’t contain anything (yet). Now we can add elements thus:

r.append(1.0)
r.append(1.5)
r.append(-2.2)
print(r)

which produces
[1.0, 1.5, -2.2]

We will, for instance, use this technique to make graphs in Section 3.1. Note that you

must create the empty list first before adding elements. You cannot add elements to

a list until it has been created—the computer will give an error message if you try.
We can also remove a value from the end of a list by saying r.pop():

r=1r[1.0, 1.5, -2.2, 2.6]

r.pop()
print(r)

which gives
[1.0, 1.5, -2.2]

And we can remove a value from anywhere in a list by saying r.pop(n), where n is
the number of the element you want to remove.?* Bear in mind that the elements are

22However, removing an element from the middle (or the beginning) of a list is a slow operation
because the computer then has to move all the elements above that down one place to fill the gap. For a
long list this can take a long time and slow down your program, so you should avoid doing it if possible.

24

numbered from zero, so if you want to remove the first item from a list you would
say r.pop(9).

2.4.2 ARRAYS

As we have seen, a list in Python is an ordered set of values, such as a set of integers
or a set of floats. There is another object in Python that is somewhat similar: an array.
An array is also an ordered set of values, but there are some important differences
between lists and arrays:

1. The number of elements in an array is fixed. You cannot add elements to an
array once it is created, or remove them.

2. The elements of an array must all be of the same type, such as all floats or all
integers. You cannot mix elements of different types in the same array and you
cannot change the type of the elements once an array is created.

Lists, as we have seen, have neither of these restrictions and, on the face of it, these
seem like significant drawbacks of the array. Why would we ever use an array if lists
are more flexible? The answer is that arrays have several significant advantages over
lists as well:

3. Arrays can be two-dimensional, like matrices in algebra. That is, rather than
just a one-dimensional row of elements, we can have a grid of them. Indeed,
arrays can in principle have any number of dimensions, including three or
more, although we will not use dimensions above two in this book. Lists, by
contrast, are always just one-dimensional.

4. Arrays behave roughly like vectors or matrices: you can do arithmetic with
them, such as adding them together, and you will get the result you expect.
This is not true with lists. If you try to do arithmetic with a list you will either
get an error message, or you will not get the result you expect.

5. Arrays work faster than lists. Especially if you have a very large array with
many elements, then calculations may be significantly faster using an array.

In physics it often happens that we are working with a fixed number of elements all
of the same type, as when we are working with matrices or vectors, for instance. In
that case, arrays are clearly the tool of choice: the fact that we cannot add or remove
elements is immaterial if we never need to do such a thing, and the superior speed
of arrays and their flexibility in other respects can make a significant difference to
our programs. We will use arrays extensively in this book.

Before you use an array you need to create it, meaning you need to tell the com-

puter how many elements it will have and of what type. Python provides functions

(On the other hand, if it doesn’t matter to you what order the elements of a list appear in, then you can
effectively remove any element rapidly by first setting it equal to the last element in the list, then removing
the last element.) There is also another, less commonly used container in Python called a deque, that allows
one to quickly add or remove elements from either the beginning or the end (but not the middle). We will
not used deques in this book however.

LI1STS AND ARRAYS

51

CHAPTER 2

52

PYTHON PROGRAMMING FOR PHYSICISTS

that allow you do this in several different ways. These functions are all found in the
package numpy. (The name is short for “numerical Python.)

In the simplest case, we can create a one-dimensional array with n elements, all
of which are initially equal to zero, using the function zeros from the numpy package.
The function takes two arguments. The first is the number of elements the array is
to have and the second is the type of the elements, such as int, float, or complex.
For instance, to create a new array with four floating-point elements we would do
the following:

from numpy import zeros
a = zeros(4,float)
print(a)

In this example the new array is denoted a. When we run the program the array is
printed out as follows:

[o. 0. 0. 0.]

Note that arrays are printed out slightly differently from lists—there are no commas
between the elements, only spaces.

We can use the same approach to create an array of ten integers with the state-
ment “a = zeros(10,int)” or an array of a hundred complex numbers with the
statement “a = zeros(100,complex)”. The size of the arrays you can create is lim-
ited only by the computer memory available to hold them. Modern computers can
hold arrays with hundreds of millions or even billions of elements.

To create a two-dimensional floating-point array with m rows and n columns,
you say “zeros([m,n],float)”, so

a = zeros([3,4],float)

print(a)
produces
[[o. 0. 0. 0.]
[o. 0. 0. 0.]
[Lo. 0. 0. 0.]]

Note that the first argument of the zeros function in this case is itself a list (that’s why
it is enclosed in brackets [...]), whose elements give the size of the array along each
dimension. We could create a three-dimensional array by giving a three-element list
(and so on for higher dimensions).

There is a similar function in numpy called ones that creates an array with all
elements equal to one. The form of the function is exactly the same as for the function
zeros. Only the values in the array are different.

On the other hand, if we are going to change the values in an array immediately
after we create it, then it doesn’t make sense to have the computer set all of them to

24

zero (or one). Setting them to zero takes some time, time that is wasted if you don’t
need the zeros. In that case you can use a different function, empty, again from the
package numpy, to create an empty array:

from numpy import empty
a = empty(4,float)

This creates an array of four “empty” floating-point elements. In practice the ele-
ments are not actually empty. Instead they contain whatever numbers happened
to be littered around the computer’s memory at the time the array is created. The
computer just leaves those values as they are and doesn’t waste any time changing
them. You can also create empty integer or complex arrays by saying int or complex
instead of float.

A different way to create an array is to take a list and convert it into an array,
which you can do with the function array from the package numpy. For instance we
can say:

from numpy import array
r =1[1.0, 1.5, -2.2]
a = array(r,float)

which will create an array of three floating-point elements, with values 1.0, 1.5,
and —2.2. If the elements of the list (or some of them) are not already floats, they
will be converted to floats.”®> You can also create integer or complex arrays in the
same fashion, and the list elements will be converted to the appropriate type if nec-
essary.?*

The second and third lines above can conveniently be combined into one, like
this:

a = array([1.0,1.5,-2.2],float)

This is a quick and easy way to create a new array with predetermined values in its
elements. We will use this trick frequently.

We can also create two-dimensional arrays with specified values. To do this we
again use the array function, but now the argument we give it is a list of lists, which
gives the elements of the array row by row. For example,

ZBThough it is not something we will often need to do, you can also convert an array into a list using
the built-in function 1ist by writing r = list(a). Note that you do not specify a type for the list, because
lists don’t have types. The types of the elements in the list will just be the same as the types of the elements
in the array.

24Two caveats apply here. (1) If you create an integer array from a list that has any floating-point
elements, the fractional part of the floating-point elements (i.e., the part after the decimal point) will be
thrown away. (2) If you try to create a floating-point or integer array from a list containing complex values
you will get an error message. This is not allowed.

LI1STS AND ARRAYS

53

CHAPTER 2

54

PYTHON PROGRAMMING FOR PHYSICISTS

a = array([[1,2,3],[4,5,6]],int)
print(a)

This creates a two-dimensional array of integers and prints it out:

[C1 2 3]
[4 5 6]1]

The list of lists must have the same number of elements for each row of the array
(three in this case) or the computer will complain.

We can refer to individual elements of an array in a manner similar to the way
we refer to the elements of a list. For a one-dimensional array we write a[@], a[1],
and so forth. Note, as with lists, that the numbering of the elements starts at zero,
not one. We can also set individual elements equal to new values thus:

al2] = 4

Note, however, that, since the elements of an array are of a particular type (which
cannot be changed after the array is created), any value you specify will be converted
to that type. If you give an integer value for a floating-point array element, it will be
converted to floating-point. If you give a floating-point value for an integer array,
it will be converted to an integer, discarding the part after the decimal point, if any.
(And if you try to assign a complex value to an integer or floating-point array you
will get an error message—this is not allowed.)

For two-dimensional arrays we use two indices, separated by commas, to denote
the individual elements, as in a[2,4], with counting again starting at zero for both
indices. Thus, for example

from numpy import zeros
a = zeros([2,2],int)
ale,1] =1

al1,0] = -1

print(a)

would produce the output

(Lo 11
[-1 e]]

Note that when Python prints a two-dimensional array it observes the convention
of standard matrix arithmetic that the first index of a two-dimensional array denotes
the row of the array element and the second denotes the column.

2.4 | LISTS AND ARRAYS

2.4.3 READING AN ARRAY FROM A FILE

Another, somewhat different, way to create an array is to read a set of values from a
computer file, which we can do with the function loadtxt from the package numpy.
Suppose we have a text file that contains the following string of numbers, on con-
secutive lines:

1.0
1.5
-2.2
2.6

and suppose that this file is called values. txt on the computer. Then we can do the
following:

from numpy import loadtxt
a = loadtxt("values.txt",float)
print(a)

When we run this program, we get the following printed on the screen:
[1.0 1.5-2.2 2.6]

As you can see, the computer has read the numbers in the file and put them in a
floating-point array of the appropriate length. (For this to work the file values. txt
has to be in the same folder or directory on the computer as your Python program.?®)
We can use the same trick to read a two-dimensional grid of values and put them

in a two-dimensional array. If the file values. txt contained the following:

1234
3456
56738

then the exact same program above would create a two-dimensional 3 X 4 array of
floats with the appropriate values in it.

The loadtxt function is a very useful one for physics calculations. It happens
often that we have a file or files containing numbers we need for a calculation. They
might be data from an experiment, for example, or numbers calculated by another
computer program. We can use loadtxt to transfer those numbers into an array so
that we can perform calculations on them.

%5You can also give a full path name for the file, specifying explicitly the folder as well as the file name,
in which case the file can be in any folder.

55

CHAPTER 2

56

PYTHON PROGRAMMING FOR PHYSICISTS

2.4.4 ARITHMETIC WITH ARRAYS

As with lists, the individual elements of an array behave like ordinary variables, and
we can do arithmetic with them in the usual way. We can write things like

ale] = a[1] + 1
or
x = a[2]*xx2 - 2*xa[3]1/y

But we can also do arithmetic with entire arrays at once, a powerful feature that
can be very useful in physics calculations. In general, when doing arithmetic with
whole arrays the rule is that whatever arithmetic operation you specify is done in-
dependently to each element of the array or arrays involved. Consider this short
program:

from numpy import array
a = array([1,2,3,4]1,int)
b = 2*a
print(b)

When we run this program it prints
[2 4 6 8]

As you can see, when we multiply the array a by 2 the computer simply multiplies
each individual element by 2. A similar thing happens if you divide. Note that when
we run this program, the computer creates a new array b holding the results of the
multiplication. This is another way to create arrays, different from the methods we
mentioned before. We do not have to create the array b explicitly, using for instance
the empty function. When we perform a calculation with arrays, Python will auto-
matically create a new array for us to hold the results.

If you add or subtract two separate arrays, the computer will add or subtract each
element separately, so that

a = array([1,2,3,4],int)
b = array([2,4,6,8],int)
print(a+b)

results in
[3 69 12]

(For this to work, the arrays must have the same size. If they do not, the computer
will complain.)

All of these operations give the same result as the equivalent mathematical oper-
ations on vectors in normal algebra, which makes arrays well suited to representing

24

vectors in physics calculations.?® If we represent a vector using an array, then arith-
metic operations such as multiplying or dividing by a scalar or adding or subtracting
vectors can be written just as they would in normal mathematics. You can also add
or subtract a scalar quantity to or from an array, which the computer interprets to
mean it should add that quantity to every element. So

a = array([1,2,3,4],int)
print(a+1)

results in
[2 3 4 5]

However, if we multiply two arrays together the outcome is perhaps not exactly
what you would expect—you do not get the vector (dot) product of the two. If we do
this:

a = array([1,2,3,4],int)
b = array([2,4,6,8]1,int)
print(a*b)

we get
[2 8 18 32]

What has the computer done? It has multiplied the two arrays together element by
corresponding element. The first elements of the two arrays are multiplied together,
then the second elements, and so on. This is logical in a sense—it is the exact equiva-
lent of what happens when you add. The prescribed operation, multiplication in this
case, is performed independently on each element. (Division works similarly.) Oc-
casionally this may be what you want the computer to do, but more often in physics
calculations we want the true vector dot product of our arrays. In that case we can
calculate the product using the function dot from the package numpy:

from numpy import array,dot
a = array([1,2,3,4],int)
b = array([2,4,6,8],int)
print(dot(a,b))

When we run this program, it prints

60

which is the correct value of the dot product.

26The same operations, by contrast, do not work with lists, so lists are less good for storing vector
values.

LI1STS AND ARRAYS

57

CHAPTER 2

58

PYTHON PROGRAMMING FOR PHYSICISTS

All of the operations above also work with two-dimensional arrays, which makes
such arrays convenient for storing matrices. Multiplying and dividing by scalars as
well as addition and subtraction of two-dimensional arrays all work as in standard
matrix algebra. Multiplication will multiply element by element, which is usually
not what you want, but the dot function calculates the standard matrix product.
Consider, for example, this matrix calculation:

13[4 -2 42 12y (=35
24)\-3 1 21) o 2
In Python we would do this as follows:

a = array([[1,3],[2,4]],int)
b = array([[4,-21,[-3,11],int)
c = array([[1,2]1,[2,1]1],int)
print(dot(a,b)+2x*c)

You can also multiply matrices and vectors together. If v is a one-dimensional array
then dot(a, v) treats it as a column vector and multiplies it on the left by the matrix a,
while dot(v,a) treats it as a row vector and multiplies on the right by a. Python
is intelligent enough to know the difference between row and column vectors, and
between left- and right-multiplication, and to choose the right operation in each case.

Functions can be applied to arrays in much the same way as to lists. The built-in
functions sum, min, max, and len described in Section 2.4.1 can be applied to one-
dimensional arrays to calculate sums of elements, minimum and maximum values,
and the number of elements. Applying functions to arrays with two or more di-
mensions produces more erratic results. For instance, the len function applied to a
two-dimensional array returns the number of rows in the array and the functions max
and min produce only error messages. However, the numpy package contains func-
tions that perform similar duties and work more predictably with two-dimensional
arrays, such as functions min and max that find minimum and maximum values. In
place of the len function, there are two different features, called size and shape.
Consider this example:

a = array([[1,2,3],[4,5,61],int)
print(a.size)
print(a.shape)

which produces

6
2, 3)

Thus, a.size tells you the total number of elements in all rows and columns of
the array a (which is roughly the equivalent of the len function for lists and one-
dimensional arrays), and a.shape returns a list giving the dimensions of the array.

24

(Technically it is a “tuple” not a list, but for our purposes it is roughly the same thing.
You can say n = a.shape, and then n[@] is the number of rows of a and n[1] is the
number of columns.) For one-dimensional arrays there is no difference between size
and shape. They both give the total number of elements.

There are a number of other functions in the numpy package that are useful for
performing calculations with arrays. The full list can be found in the online docu-
mentation at www. scipy.org.

EXAMPLE 2.5: AVERAGE OF A SET OF VALUES IN A FILE

Suppose we have a set of numbers stored in a file values. txt and we want to cal-
culate their mean. Even if we don’t know how many numbers there are we can do
the calculation quite easily:

from numpy import loadtxt

values = loadtxt("values.txt",float)
mean = sum(values)/len(values)
print(mean)

The first line imports the loadtxt function and the second uses it to read the values
in the file and put them in an array called values. The third line calculates the mean
as the sum of the values divided by the number of values and the fourth prints out
the result.

Now suppose we want to calculate the mean-square value. To do this, we first
need to calculate the squares of the individual values, which we can do by multiplying
the array values by itself. Recall, that the product of two arrays in Python multiplies
together each pair of corresponding elements, so values*values is an array with
elements equal to the squares of the original values. (We could also write values**2,
which would produce the same result.) Then we can use the function sum to add up
the squares. Thus our program might look like this:

from numpy import loadtxt

values = loadtxt("values.txt",float)
mean = sum(values*values)/len(values)
print(mean)

On the other hand, suppose we want to calculate the geometric mean of our set
of numbers. (We will assume our numbers are all positive, since one cannot take the
geometric mean of negative numbers.) The geometric mean of a set of n values x; is
defined to be the nth root of their product, thus:

n 1/n
X = (]—[xi)) (2.1)

LI1STS AND ARRAYS

59

CHAPTER 2

60

PYTHON PROGRAMMING FOR PHYSICISTS

Taking natural logs of both sides we get

n

1/n n
_ 1
Inx = ln(l_[x,-) = ; In x; (2.2)

i=1

or
1 n
X = exp(—Zlnxi). (2.3)
ni=

In other words, the geometric mean is the exponential of the arithmetic mean of the
logarithms. To write a program to calculate this, we need one new thing: the numpy
package contains its own log function that will calculate the logs of all the elements
of an array. Thus we can write

from numpy import loadtxt,log

from math import exp

values = loadtxt("values.txt",float)
geometric = exp(sum(log(values))/len(values))
print(geometric)

The log function here calculates all the logarithms in a single step, then we take their
average and calculate the exponential of the result, which gives us our geometric
mearn.

Finally in this section, here is a word of warning. Consider the following pro-
gram:

from numpy import array
a = array([1,1]1,int)

b =a

a[o] = 2

print(a)

print(b)

Take a look at this program and work out for yourself what you think it will print.
If we actually run it (and you can try this for yourself) it prints the following:

[2 1]
[2 1]

This may not be what you were expecting. Reading the program, it looks like array
a should be equal to [2,1] and b should be equal to [1,1] when the program ends,
but the output of the program appears to indicate that both are equal to [2,1]. What
has happened?

The answer lies in the line “b = a” in the program. In Python, direct assignment
of arrays in this way, setting the value of one array equal to another, does not work
as you might expect. You might imagine that “b = a” would cause Python to create

24

a new array b holding a copy of the numbers in the array a, but this is not what
happens. In fact, all that “b = a” does is that it declares “b” to be a new name for the
array previously called “a”. That is, “a” and “b” now both refer to the same array of
numbers, stored somewhere in the memory of the computer. If we change the value
of an element in array a, as we do in the program above, then we also change the
same element of array b, because a and b are really just the same array.?’

This is a tricky point, one that can catch you out if you are not aware of it. You
can do all sorts of arithmetic operations with arrays and they will work just fine, but
this one operation, setting an array equal to another array, does not work the way
you expect it to.

Why does Python do this? At first sight it seems peculiar, annoying even, but
there is a good reason for it. Arrays can be very large, with millions or even billions
of elements. So if a statement like “b = a” caused the computer to create a new
array b that was a complete copy of the array a, it might have to copy very many
numbers in the process, potentially using a lot of time and memory space. But in
many cases it is not actually necessary to make a copy of the array. Particularly if
you are interested only in reading the numbers in an array, not in changing them,
then it does not matter whether a and b are separate arrays that happen to contain
the same values or are actually just two names for the same array—everything will
work the same either way. Creating a new name for an old array is normally far
faster than making a copy of the entire contents, so, in the interests of efficiency, this
is what Python does.

Of course there are times when you really do want to make a new copy of an
array, so Python also provides a way of doing this. To make a copy of an array a we
can use the function copy from the numpy package thus:

from numpy import copy
b = copy(a)

This will create a new array b whose elements are an exact copy of those of array a.
If we were to use this line, instead of the line “b = a”, in the program above, then
run the program, it would print this:

[2 1]
[1 11

which is now the “correct” answer.

27If you have worked with the programming languages C or C++ you may find this behavior familiar,
since those languages treat arrays the same way. In C, the statement “b = a”, where a and b are arrays,
also merely creates a new name for the array a, not a new array.

LI1STS AND ARRAYS

61

CHAPTER 2

62

PYTHON PROGRAMMING FOR PHYSICISTS

Exercise 2.8: Suppose arrays a and b are defined as follows:

from numpy import array
a = array([1,2,3,4],int)
b = array([2,4,6,8],int)

What will the computer print upon executing the following lines? (Try to work out the answer
before testing it on the computer.)

a) print(b/a+1)

b) print(b/(a+1))

¢) print(1/a)

2.4.5 SLICING

Here is another useful trick, called slicing, which works with both arrays and lists.
Suppose we have a list r. Then r[m:n] is another list composed of a subset of the
elements of r, starting with element m and going up to but not including element n.
Here is an example:

r=1[1,3,5, 7,9, 11, 13, 15]
s = r[2:5]
print(s)

which produces
[5, 7, 9]

Observe what has happened. The variable s is a new list, which is a sublist of r
consisting of elements 2, 3, and 4 of r, but not element 5. Since the numbering of
elements starts at zero, not one, element 2 is actually the third element of the list,
which is the 5, and elements 3 and 4 are the 7 and 9. So s has three elements equal
to 5,7, and 9.

Slicing is useful in many physics calculations, particularly, as we will see, in ma-
trix calculations, calculations on lattices, and in the solution of differential equations.
There are a number of variants on the basic slicing formula above. You can write
r[2:], which means all elements of the list from element 2 up to the end of the list,
or r[:5], which means all elements from the start of the list up to, but not including,
element 5. And r[:] with no numbers at all means all elements from the beginning
to the end of the list, i.e., the entire list. This last is not very useful—if we want to re-
fer to the whole list we can just say r. We get the same thing, for example, whether
we write print(r[:]1) or print(r). However, we will see a use for this form in a
moment.

There is also a three-index version of slicing which takes the form rm:n:k]. This
version creates a new list with elements drawn from r, starting at element m and
going up to but not including element n, but now increasing in steps of k elements

24

at a time. For example s = r[1:6:2] would give a list composed of elements 1, 3,
and 5 of r, which would be [3, 7, 11]if r is the same as the example above. The
third index of the slice can also be negative, in which the elements are drawn from
r in reverse order. For example r[5:2:-1] produces a list consisting of elements 5,
4, and 3 from the original r (but not element 2), which would give [11, 9, 7] in
this case. This also provides a quick way to reverse the order of the elements in a
list. Writing s = r[::-1] gives you a new list s containing all the elements of r in
reverse order.

Slicing can also be applied to arrays, giving you a new array of the same type as
the one you started with and containing a subset of its elements. For example:

from numpy import array

a = array([2,4,6,8,10,12,14,16],int)
b = a[3:6]

print(b)

which prints
[810 12]

You can also write a[3:], or a[:6], or a[: 1, as with lists, or the three-index version
al3:6:2].

Slicing works with two-dimensional arrays as well. For instance, a[2,3:6] gives
you a one-dimensional array with three elements equal toal[2,3],al2,4],and a[2,5],
while a[2:4,3:6] gives you a two-dimensional array of size 2 X 3 with values drawn
from the appropriate subblock of a, starting at a[2,3]. And a[2,:] gives you the
whole of row 2 of array a, which means the third row since the numbering starts
at zero, while a[:, 3] gives you the whole of column 3, which is the fourth column.
These forms will be particularly useful to us for doing vector and matrix arithmetic.

2.4.6 SET, DICTS, AND OTHER CONTAINERS

We have discussed two types of Python containers in detail, lists and arrays, and
these are the only types we will use in this book. There are, however, a number of
others, which we describe briefly in this section and which can be useful in certain
circumstances.

A set is a Python container that stores an unordered collection of unique values,
akin to a set in mathematics. A set could for instance contain the integer values
{1, 4, -3}. In addition to integers a set can also contain floats, complex values, strings,
or almost any other Python quantity, including entire lists, arrays, or even other sets.
The contents of a set are unordered, which means that there is no first or last element
and the elements do not come in any particular order. The elements are also unique,
meaning that a value can appear at most once in the set. So there cannot be two 1s for
example. If you try and add two 1s, only the first will be accepted and the attempted

LI1STS AND ARRAYS

63

CHAPTER 2

64

PYTHON PROGRAMMING FOR PHYSICISTS

addition of the second will have no effect. Sets can be created in a variety of ways,
but we can, for example, write s = set([1,4,-3]), which takes the list [1,4,-3] and
converts it into a set in much the same way that the array function converts a list
into an array. Note, however, that, unlike the array function, the set function does
not need to be imported from a package. It is a built-in function, always available in
Python. (See Section 2.2.7 for discussion of built-in functions.)

A dict—short for “dictionary”—is a Python container that behaves like a more
flexible kind of list or array. Consider the following example:

d = dict()
dr4] = 10
df21 = 7.7
d[-3] = 5+3j

This code first creates an empty dict using the built-in dict function, then adds three
elements to it. Elements can take (almost) any value we care to give them, and each
element is identified by an index, technically called a key, which is given in square
brackets after the dict name, in a manner similar to a list or array, as in d[4] or d[-3].
Important points to notice about dicts are:

1. The elements of a dict, like those of a list, can have any type of value, including
integer, floating-point, or complex values, or strings. They can also be lists,
arrays, sets, or even other dicts. The elements of a dict do not all have to be of
the same type.

2. Unlike a list or array, the elements of a dict can have any index—the indices
do not need to start at zero or run consecutively. Elements of a dict are only
created when you give them a value. If you ask for an element that has not yet
been created you will get an error message. For instance, print(d[@]) would
give an error in the example above.

3. The index or key of an element does not need to be an integer. It can take
almost any value we like, including floats, strings, and others. For instance,
we are allowed to write d[3.14] = "xyz" or d["abc"] = 2.

Sets and dicts are powerful data structures. While they will not be necessary for
the calculations we do in this book, they do find use in computational physics and in
many other applications, and you may encounter them when working with Python,
so they are worth knowing about.

Other Python containers include the deque, a type of double-ended list that allows
one to quickly add or remove elements from either the start or the end of the list, and
the defaultdict, a variant of a dict that defines a default value for elements that have
not been explicitly created. These, however, are relative rarities in Python code, and
particularly in computational physics, and we will not consider them further in this
book.

2.5 For roops

In Section 2.3.2 we saw a way to make a program loop repeatedly around a given
section of code using a while statement. In practice, however, while statements are
used only rather rarely. There is another, much more commonly used loop construc-
tion in the Python language, the for loop. A for loop is a loop that runs through the
elements of a container, such as a list or array, in turn. Consider this short example:

r =1[1, 3, 5]

for n in r:
print(n)
print(2*n)

print("Finished")

If we run this program it prints the following:

D w N =

5
10
Finished

What’s happening here is as follows. The program first creates the list r, then the for
statement sets n equal to each value in the list in turn. For each value the computer
carries out the steps in the following two lines, printing out n and 2n, then loops
back around to the for statement again and sets n to the next value in the list. Note
that the two print statements are indented, in a manner similar to the if and while
statements we saw earlier. This is how we tell the program which instructions are
“in the loop.” Only the indented instructions will be executed each time around the
loop. When the program has worked its way through all the values in the list, it stops
looping and moves on to the next line of the program, which in this case is a third
print statement which prints the word “Finished.” In this example the computer will
go around the loop three times, since there are three elements in list r.

The same construction works with arrays as well—you can use a for loop to go
through the elements of a (one-dimensional) array in turn.?® Also the statements
break and continue (see Section 2.3.3) can be used with for loops the same way they
are used with while loops: break ends the loop and moves to the next statement after
the loop; continue abandons the current iteration of the loop and moves on to the
next iteration. And you can add an else statement at the end of a for loop, which
operates in the same way as it does with a while loop: the code following the else

ZBFor loops also work with sets, dicts, deques, and other more exotic containers (see Section 2.4.6 on
page 63), although we will not use any of these in this book.

2.5

For Loors

65

CHAPTER 2

66

PYTHON PROGRAMMING FOR PHYSICISTS

statement is executed after the for loop ends, but only if it ends normally. If the loop
is aborted prematurely using break then the else statement is skipped.

The most common use of a for loop is simply to run through a piece of code a spec-
ified number of times, such as ten, say, or a million. To achieve this, Python provides
a special built-in function called range, which creates a list of a given length, usually
for use with a for loop. For example range(5) returns a list [0, 1, 2, 3, 4]—that
is, a list of consecutive integers, starting at zero and going up to, but not including, 5.
Note that this means the list contains exactly five elements but does not include the
number 5 itself.?’ Thus

r = range(5)
for n in r:
print("Hello again")

produces the following output

Hello again
Hello again
Hello again
Hello again
Hello again

The for loop gives n each of the values in r in turn, of which there are five, and for each
of them it prints out the words “Hello again”. So the end result is that the computer
prints out the same message five times. In this case we are not actually interested in
the values r contains, only the fact that there are five of them—they merely provide a
convenient tool that allows us to run around the same piece of code a given number
of times.

A more interesting use of the range function is the following:

r = range(5)
for n in r:
print(nx*x2)

P Technically, range produces not a list but an iterator, a specialized object that contains the ele-
ments of the range in order. If you actually wanted to produce a list using range then you could write
“list(range(5))”, which would create an iterator and then convert it to a list. In practice, however, we
need to do this very rarely, and never in this book—the main use of the range function is in for loops and
you can use an iterator directly in a for loop without converting it into a list first.

The difference between an iterator and a list is that the values in an iterator are not stored in memory
the way the values in a list are, but are instead calculated on the fly when they are needed, which saves
memory space. In versions of Python prior to version 3, the range function produced a list, not an iterator,
but both lists and iterators give the same results when used in for loops, so the loops in this book will
work without modification with either version 2 or version 3 of Python. For further discussion of this
point, and of iterators in general, see Appendix D starting on page 580.

Now we are making use of the actual values r contains, printing out the square of
each one in turn:

- O b =

In both of these examples we used a variable r to store the results of the range func-
tion, but it is not necessary to do this. Often one takes a shortcut and just writes

for n in range(5):
print(n*x*2)

which achieves the same result with less fuss. This is probably the most common
form of the for loop and we will see many loops of this form throughout this book.
There are a number of useful variants of the range function, as follows:

range(5) gives [0, 1, 2, 3, 4]
range(2,8) gives [2, 3, 4, 5, 6, 7]
range(2,29,3) gives [2, 5, 8, 11, 14, 17]
range(20,2,-3) gives [20, 17, 14, 11, 8, 5]

When there are two arguments to the function it generates integer values that run
from the first up to, but not including, the second. When there are three arguments,
the values run from the first up to but not including the second, in steps of the third.
Thus in the third example above the values increase in steps of 3. In the fourth
example, which has a negative argument, the values decrease in steps of 3. Note that
in each case the values returned by the function do not include the value at the end
of the given range—the first value in the range is always included; the last never is.

Thus, for example, we can print out the first ten powers of two with the following
lines:

for n in range(1,11):
print(2**n)

Note how the upper limit of the range is given as 11. This program will print out
the powers 2, 4, 8, 16, and so forth up to 1024. It stops at 21°, not 2!, because range
always excludes the last value.

A further point to notice about the range function is that all its arguments must
be integers. The function will not work if you give it non-integer arguments, such
as floats, and you will get an error message if you try. It is particularly important to
remember this when the arguments are calculated from the values of other variables.
This short program, for example, will not work:

2.5

For Loors

67

CHAPTER 2

68

PYTHON PROGRAMMING FOR PHYSICISTS

p =10

q=2

for n in range(p/q):
print(n)

You might imagine these lines would print out the integers from zero to four, but if
you try it you will just get an error message because, as discussed in Section 2.2.4, the
division operation returns a floating-point value, even if the result of the division is,
mathematically speaking, an integer. Thus the quantity “p/qg” in the program above
is a floating-point quantity equal to 5.0 and is not allowed as an argument of the
range function. We can fix this problem by using integer division instead:

for n in range(p//q):
print(n)

This will now work as expected. (See Section 2.2.4, page 24 for a discussion of integer
division.)

Another useful function is arange from the numpy package, which is similar to
range but generates arrays, rather than lists or iterators*’ and moreover works with
floating-point arguments as well as integer ones. For example, arange(1,8,2) gives a
one-dimensional array of integers [1,3,5,7], while arange(1.0,8.90,2.0) gives an
array of floating-point values [1.0,3.0,5.0,7.0] and arange(2.90,2.8,0.2) gives
[2.0,2.2,2.4,2.6]. As with range, the arange function can be used with one, two,
or three arguments, and does the equivalent thing to range in each case.

Another similar function is the function linspace, also from the numpy package,
which generates an array with a given number of floating-point values between given
limits. For instance, linspace(2.0,2.8,5) divides the interval from 2.0 to 2.8 into 5
values, creating an array with floating-point elements [2.0,2.2,2.4,2.6,2.8]. Sim-
ilarly, linspace(2.0,2.8,3) would create an array with elements [2.0,2.4,2.8].
Note that, unlike both range and arange, linspace includes the last point in the
range. Also note that although linspace can take either integer or floating-point
arguments, it always generates floating-point values, even when the arguments are
integers.

EXAMPLE 2.6: PERFORMING A SUM

It happens often in physics calculations that we need to evaluate a sum. If we have
the values of the terms in the sum stored in a list or array then we can calculate the
sum using the built-in function sum described in Section 2.4.1. In more complicated

30The function arange generates an actual array, calculating all the values and storing them in the
computer’s memory. This can cause problems if you generate a very large array because the computer
can run out of memory, crashing your program, an issue that does not arise with the iterators generated by
the range function. For instance, arange (20000000000) will produce an error message on most computers,
while the equivalent expression with range will not. See Appendix D for more discussion of this point.

situations, however, it is often more convenient to use a for loop. Suppose, for in-
stance, that we want to know the value of the sum s = ZIICO:O] (1/k). The standard way
to program this is as follows:

1. First create a variable to hold the value of the sum, and initially set it to zero.
As above, we will call the variable s, and we want it to be a floating-point
variable, so we will write “s = 0.0

2. Now use a for loop to take the variable k through all values from 1 to 100. For
each value, calculate 1/k and add it to the variable s.

3. When the for loop ends the variable s will contain the value of the complete
sum.

Thus our program looks like this:

S =0.0

for k in range(1,101):
s += 1/k

print(s)

Note how we use range(1,101) so that the values of k start at 1 and end at 100. We
” modifier, which adds to a variable as described in Section 2.2.4. If
we run this program it prints the value of the sum thus:

also used the “+=

5.187377517639621

As another example, suppose we have a set of real values stored in a computer
file called values. txt and we want to compute and print the sum of their squares.
We could achieve this as follows:

from numpy import loadtxt
values = loadtxt("values.txt",float)
s =0.0
for x in values:
S += X*%*2
print(s)

Here we have used the function loadtxt from Section 2.4.3 to read the values in the
file and put them in an array called values. Note also how this example does not use
the range function, but simply goes through the list of values directly.

For loops and the sum function give us two different ways to compute sums of
quantities. It is not uncommon for there to be more than one way to achieve a given
goal in a computer program, and in particular it is often the case that one can use
either a for loop or a function to perform the same calculation. In general for loops are
more flexible, but functions are often faster and can save significant amounts of time
if you are dealing with large arrays. Thus both approaches have their advantages.
Part of the art of good computer programming is learning which approach is best in
which situation.

2.5

For Loors

69

CHAPTER2 | PYTHON PROGRAMMING FOR PHYSICISTS

ExAMPLE 2.7: FINDING THE LARGEST NUMBER IN A LIST

Another operation that comes up frequently in computational physics is finding the
largest or smallest element in a list or array. There exist two built-in functions, max
and min, that can perform these operations, but again one can also use a for loop,
and often the latter approach is more flexible.

To find the largest element in a list using a for loop we would create a variable to
hold the largest value—let’s call it largest—and initially give it a value less than or
equal to the smallest value a list element can have. For instance, if our list contains
only positive values, then we could safely set largest to zero, knowing that no list
element will be smaller than this. Then we run through the elements in our list in
turn and check each one against the current value of largest. If an element is larger
than the current value, it becomes the new largest value. The code looks like this:

from numpy import loadtxt
values = loadtxt("values.txt",float)
largest = 0.0
for x in values:
if x>largest:
largest = x
print(largest)

When the loop ends the variable largest is equal to the largest element in the list.
We can use a similar procedure to find the smallest element also.

ExXAMPLE 2.8: EMISSION LINES OF HYDROGEN

Let us revisit an example we saw in Chapter 1. On page 6 we gave a program for
calculating the wavelengths of emission lines in the spectrum of the hydrogen atom,
based on the Rydberg formula

L J . 24
A (m2 nz)' (24)
Our program looked like this:
R = 1.097e-2
for m in [1,2,3]:
print("Series for m =" ,m)
for k in [1,2,3,4,5]:
n=m+Kk
invlambda = R*x(1/m**2-1/nx*2)
print(" ",1/invlambda,"nm")

Based on what we have learned we can now understand how this program works.
It uses two nested for loops—a loop within another loop—with the code in the inner

70

loop doubly indented. We discussed nesting previously in Section 2.3.3. The first for
loop takes the integer variable m through the values 1, 2, 3. Then for each value of m,
the second, inner loop takes k though the values 1, 2, 3, 4, 5, adds those values to m to
calculate n and then applies the Rydberg formula. The end result is that the program
prints out a wavelength for each combination of values of m and n, which is what
we want.

This program works fine, but knowing what we do now, we can write a simpler
version by making use of the range function, thus:

R = 1.097e-2
for m in range(1,4):
print("Series for m =",m)

for n in range(m+1,m+6):
invlambda = Rx(1/m*xx2-1/n**2)
print(" ",1/invlambda,"nm"

Note how we were able to eliminate the variable k in this version by specifying a
range for n that depends directly on the value of m.

Exercise 2.9: The semi-empirical mass formula

In nuclear physics, the semi-empirical mass formula is a formula for calculating the approx-
imate nuclear binding energy B of an atomic nucleus with atomic number Z and mass num-
ber A:
(A-22)? L85

A Al/2’
where, in units of millions of electron volts, the constants are a; = 15.8, ap = 18.3, as = 0.714,
as = 23.2, and

ZZ
B=a1A—a2A2/3 —(Bm — a4

0 if A is odd,
as =4 12.0 if A and Z are both even,
—12.0 if Aiseven and Z is odd.

a) Write a program that takes as its input the values of A and Z, and prints out the binding

energy for the corresponding atom. Use your program to find the binding energy of an
atom with A = 58 and Z = 28. (Hint: The correct answer is around 500 MeV.)

b) Modify your program to print out not the total binding energy B, but the binding energy
per nucleon, which is B/A.

¢) Now modify your program so that it takes as input just a single value of the atomic
number Z and then goes through all values of A from A = Z to A = 3Z, to find the one
that has the largest binding energy per nucleon. This is the most stable nucleus with
the given atomic number. Have your program print out the value of A for this most
stable nucleus and the value of the binding energy per nucleon.

2.5 | ForLOOPS

File: rydberg.py

71

CHAPTER 2

72

PYTHON PROGRAMMING FOR PHYSICISTS

d) Modify your program once more so that, instead of taking Z as input, it runs through
all values of Z from 1 to 100 and prints out the most stable value of A for each one,
along with the corresponding binding energy per nucleon. At what value of Z does the
overall maximum binding energy per nucleon occur? (The true answer, in real life, is
Z = 28, which is nickel.)

The nucleus with the maximum binding energy per nucleon is the most stable in the sense
that creating any other state with the same number of nucleons, for instance by fissioning
into smaller nuclei, would require the input of energy, and hence is never going to happen
spontaneously.

2.6 USER-DEFINED FUNCTIONS

We saw in Section 2.2.5 how to use functions, such as log or sqrt, to do mathematics
in our programs, and Python comes with a broad array of functions for performing all
kinds of calculations. There are many situations in computational physics, however,
where we need a specialized function to perform a particular calculation and Python
allows you to define your own functions in such cases.

Suppose, for example, we are performing a calculation that requires us to calcu-
late the factorials of integers. Recall that the factorial n! of a positive integer n is
defined as the product of all integers from 1 to n. We can calculate such a product in
Python with a loop like this:

f=1.0
for k in range(1,n+1):
f *x= k

When the loop finishes, the variable f will be equal to the factorial we want.>!

If our calculation requires us to calculate factorials many times in various differ-
ent parts of the program we could use a loop, as above, each time, but this would
get tedious quickly and would increase the chances that we make an error. A more
convenient approach is to define our own function to calculate the factorial, which
we do like this:

def factorial(n):
f=1.0
for k in range(1,n+1):
f *= k
return f

This definition consists of the word def, followed by the name we give our function,
its argument in parentheses, and a colon. Then the rest of the lines contain the code

31We have chosen to make f a floating-point variable in this example, even though the factorial is an
integer. We could use an integer variable, but factorials can be very large and for such large numbers
floating-point calculations are usually faster in Python.

2.6 ’ USER-DEFINED FUNCTIONS

that performs the calculation of the function. Note how these lines are indented,
in a manner similar to the if statements and for loops of previous sections. This
indentation tells Python which lines are part of the function and where the function
ends. The last line of the function consists of the word return followed by the value
that is to be returned as the result of the function.

Once we have this definition, we can, anywhere later in the program, say

a = factorial(10)
or

b

factorial (r+2xs)

and the program will calculate the factorial of the appropriate number. In effect
what happens when we write “a = factorial(10)”—when the function is called—
is that the program jumps to the definition of the function (the part starting with
def above), sets n = 10, and then runs through the instructions in the function.
When it gets to the final line “return f” it jumps back to where it came from and
the value of the factorial function is set equal to whatever quantity appeared after
the word return—which is the final value of the variable f in this case. The net
effect is that we calculate the factorial of 10 and set the variable a equal to the result.
User-defined functions allow us to encapsulate complex calculations inside a single
function definition and can make programs much easier to write and to read. We
will see many uses for them in this book.*?

An important point to note is that any variables created inside the definition of a
function exist only inside that function. Such variables are called local variables. For
instance the variables f and k in the factorial function above are local variables. This
means we can use them only when we are inside the function and they disappear
when we leave. Thus, for example, you could print the value of the variable k just
fine if you put the print statement inside the function, but if you were to try to print
the variable anywhere outside the function then you would get an error message
telling you that no such variable exists.*> Note, however, that the reverse is not true—
you can use a variable inside a function that is defined outside it. The arguments of
functions are local variables too, so the variable n in our factorial function does not
exist outside the function. You are allowed to change the argument variable inside
the function—it does not have to keep the value it arrived with—but if you do change
it your changes will have no effect on anything outside the function.

32While the factorial is a nice example to illustrate user-defined function, note that there is actually a
function in the math package, called factorial, that calculates factorials, so in practice it would usually
be simpler to use that function than to write your own.

33To make things more complicated, you can separately define a variable called k outside the function
and then you are allowed to print that variable (or do any other operation with it), but in that case it is
a different variable—now you have two variables called k that have separate values and which value you
get depends on whether you are inside the function or not.

73

CHAPTER 2

74

PYTHON PROGRAMMING FOR PHYSICISTS

User-defined functions can have more than one argument. As an example, sup-
pose that the location of a point is specified in cylindrical coordinates r, 8, z, and we
want to know the distance d between the point and the origin. The simplest way
to do the calculation is to convert and 6 to Cartesian coordinates first, then apply
Pythagoras’ theorem to calculate d:

x =rcosb, y=rsin6, d=+x*+y%+ 2% (2.5)

If we find ourselves having to do such a conversion many times within a program
we might want to define a function to do it. Here is a suitable function in Python:

def distance(r,theta,z):

X = rxcos(theta)

y = r*sin(theta)

d = sqri(x**2+y*x*2+zx*2)
return d

(This assumes that we have already imported the functions sin, cos, and sqrt from
the math package.)

Note how the function takes three arguments. When we call the function we
must supply it with three values and they must come in the same order—r, 8, z—that
they occur in the definition of the function. Thus if we say

D = distance(2.0,0.1,-1.5)

the program will calculate the distance for r = 2, 8 = 0.1, and z = —1.5. (If we give
the wrong number of arguments for the function—one, or two, or four—we will get
an error message.)

The values of function arguments can be of any type that Python knows about,
including integers and real and complex numbers, but also including lists, arrays, or
other objects. This allows us, for example, to create functions that perform operations
on vectors or matrices stored in arrays. We will see examples of such functions when
we look at linear algebra methods in Chapter 6.

The value returned by a function can also be of any type, including integer, real,
complex, or a list or array. Using lists or arrays allows us to return more than one
value if want to, or to return a vector or matrix. For instance, we might write a
function to convert from polar coordinates to Cartesian coordinates like this:

def cartesian(r,theta):
X = rxcos(theta)
y = rxsin(theta)
position = [x,y]
return position

2.6 ’ USER-DEFINED FUNCTIONS

This function takes a pair of values r, § and returns a two-element list containing the
corresponding values of x and y. In fact, we could combine the two final lines here
into one and say simply

return [x,y]
Or we could return x and y in the form of a two-element array by saying
return array([x,y],float)

An alternative way to return multiple values from a function is to use the “mul-
tiple assignment” feature of Python, which we examined in Section 2.2.4. We saw
there that one can write statements of the form “x,y = a,b” which will simultane-
ously set x = aandy = b. The equivalent maneuver with a user-defined function is
to write

def f(z):
Some calculations here...
return a,b

which will make the function return the values of a and b both. To call such a function
we write something like

X,y = (1)

and the two returned values will get assigned to the variables x and y. One can
also specify three or more returned values in this fashion, and the individual values
themselves can again be lists, arrays, or other objects, in addition to single numbers,
which allows functions to return very complex sets of values when necessary.
User-defined functions can also return no value at all—it is permitted for func-
tions to end without a return statement. The body of the function is marked by in-
denting the lines of code and the function ends when the indentation does, whether
or not there is a return statement. If the function ends without a return statement
then the program will jump back to wherever it came from, to the statement where
it was called, but without giving a value. Why would you want to do this? In fact
there are many cases where this is a useful thing to do. For example, suppose you
have a program that uses three-element arrays to hold vectors and you find that you

frequently want to print out the values of those vectors. You could write something
like

print("(",rlel,r[1],rf21,")")

every time you want to print a vector, but this is difficult to read and prone to typing
errors. A better way to do it would be to define a function that prints a vector, like
this:

75

CHAPTER 2

76

PYTHON PROGRAMMING FOR PHYSICISTS

def print_vector(r):
print("(",r[0]1,r(11,r[21,")")

Then when you want to print a vector you simply say “print_vector(r)” and the
computer handles the rest. Note how, when calling a function that returns no value
you simply give the name of the function. One just says “print_vector(r)”, and not
“x = print_vector(r)” or something like that. This is different from the functions
we are used to in mathematics, which always return a value. Perhaps a better name
for functions like this would be “user-defined statements” or something similar, but
by convention they are still called functions in Python.3*

A return statement in a user-defined function can also occur in the middle of
the function—it does not have to be at the end. And there does not have to be just
one return statement. For example, the following function takes two arguments,
x1 and x;, and returns +1, —1, or 0 depending on whether x; is greater than, less
than, or equal to x;, respectively:

def compare(x1,x2):
if x1>x2:
return 1
if x1<x2:
return -1
return 0

The code defining a function—the code starting with the word def—can occur
anywhere in a program, except that it must occur before the first time you use the
function. It is good programming style to put all your function definitions (you will
often have more than one) at or near the beginning of your programs. This guaran-
tees that they come before their first use, and also makes them easier to find if you
want to look them up or change them later.

One more trick is worth mentioning. The functions you define do not have to be
in the same file on your computer as the rest of the program you are writing. You can,
for example, place the definition for a function called myfunction in a separate file
called mydefinitions.py. You can put the definitions for many different functions
in the same file if you want. Then, when you want to use a function in a program,
you say

from mydefinitions import myfunction

This tells Python to look in the file mydefinitions. py for the definition of myfunction
and magically that function will now become available in your program. This is a
very convenient feature if you have a function that you need to use in many differ-

34We have already seen one other example of a function with no return value, the standard print
function itself.

2.6 ’ USER-DEFINED FUNCTIONS

ent programs: you need write the function only once and store it in a file, then you
can import it into as many other programs as you like.

As you will no doubt have realized, this is what is happening when we say things
like “from math import sqrt”in a program. Someone wrote a function called sqgrt
that calculates square roots and placed it in a file so that you can import it when
you need it. The math package in Python is nothing other than a large collection
of function definitions for useful mathematical functions, gathered together in one

file.3

EXAMPLE 2.9: PRIME FACTORS AND PRIME NUMBERS

Suppose we have an integer n and we want to know its prime factors. The prime
factors can be calculated relatively easily by dividing repeatedly by all integers from
2 up to n and checking to see if the remainder is zero. Recall that the remainder
after division can be calculated in Python using the modulo operation “%”. Here is a
function that takes an integer n as argument and returns a list of its prime factors:

def factors(n):
factorlist = []
k=2
while k<=n:
while n%k==0:
factorlist.append(k)
n//=k
k +=1
return factorlist

This is a slightly tricky piece of code—make sure you understand how it does the
calculation. Note how we have used the integer division operation “//” to perform
the divisions, which ensures that the result returned is another integer. (Remember
that the ordinary division operation “/” produces a float even when the numbers
being divided are integers.) Note also how we change the value of the variable n
(which is the argument of the function) inside the function. This is allowed: the
argument variable behaves like any other variable and can be modified, although
it is a local variable, so it exists only inside the function and gets erased when the
function ends.

Now if we say “print(factors(17556))”, the computer prints out the list of fac-
tors “[2, 2, 3, 7, 11, 1971 On the other hand, if we specify a prime number in
the argument, such as “print(factors(23))”, we get back “[23]"—the only prime
factor of a prime number is itself. We can use this fact to make a program that prints

%In fact the functions in the math package are not written in Python—they are written in the C pro-
gramming language, and one has to do some additional trickery to make these C functions work in Python,
but the same basic principle still applies.

77

CHAPTER 2

78

PYTHON PROGRAMMING FOR PHYSICISTS

out the prime numbers up to any limit we choose by checking to see if they have
only a single prime factor:

for n in range(2,10000):
if len(factors(n))==1:
print(n)

Run this program, and in a matter of seconds we have a list of the primes up to 10 000.
(This is not a very efficient way of calculating primes—see Exercise 2.11 on page 80
for a faster way of doing it.)

2.6.1 RECURSION

Another useful feature of user-defined functions is recursion, the ability of a function
to call itself. For example, consider the following definition of the factorial n! of a
positive integer n:

ol = 1 ifn=1,
Tlax(n-1) ifn> 1.

This constitutes a complete definition of the factorial which allows us to calculate the
value of n! for any positive integer. We can employ this definition directly to create
an alternative Python function for factorials, like this:

def factorial(n):
if n==1:
return 1
else:
return nxfactorial(n-1)

Note how, if n is not equal to 1, the function calls itself to calculate the factorial of
n — 1. This is recursion. If we now say “print(factorial(5))” the computer will
correctly print the answer 120.

Why does this work? Consider what happens when we call the function for
different values of n. If we call factorial(1) then it’s simple: the function just re-
turns the answer 1. If we call factorial(2), then the function calls itself to calculate
factorial(1), which as we have said returns 1, then it multiplies that value by n = 2
to get 2! = 2 X 1 = 2, which is the correct result. If we call factorial(3), then the
function calls itself to calculate factorial(2), which correctly returns 2 as we have
said, then multiplies that value by 3 to get 3! = 3 X 2 = 6, which again is the correct
result. And so forth. If the function can correctly calculate factorial(n-1), then
it can also correctly calculate factorial(n), just by multiplying by an extra factor
of n. Hence it can correctly calculate n! for any n. (You can create a formal proof of
correctness using mathematical induction, but it is not really necessary: it is already
clear from the argument above why the program works.)

2.6 ’ USER-DEFINED FUNCTIONS

Thus, we have seen two different ways of calculating factorials, either directly
or using recursion. In most cases, if a quantity can be calculated without recursion,
then it will be faster to do so, and we normally recommend taking this route if possi-
ble. For this reason recursion is something of a specialized technique that finds only
occasional use. However, there are some calculations that are essentially impossible
(or at least much more difficult) without recursion, and for these it is a useful tool.
We will see some examples later in this book.

ExAMPLE 2.10: THE CATALAN NUMBERS

The Catalan numbers C, are a sequence of integers 1, 1, 2, 5, 14, 42, 132...that play
important roles in quantum mechanics and the theory of disordered systems. We
encountered them previously in Exercise 2.7 on page 45. With just a little rearrange-
ment, the definition given there can be rewritten in the form

1 ifn=0,

Ch=14n-2
n+1

Cn-1 ifn>0.

This allows us to write a very simple Python function to calculate the Catalan num-
bers as follows:

def C(n):
if n==0:
return 1
else:

return (4*n-2)*C(n-1)//(n+1)

Notice how we use integer division to make sure the results are always integers. We
can use this function to calculate the 100th Catalan number Cj¢q thus:

print(C(100))
which prints

896519947090131496687170070074100632420837521538745909320

Exercise 2.10: Binomial coefficients

The binomial coefficient ({) is an integer equal to

ny n! nxX(n-1)x(n-2)x...X(n—k+1)
(k)_k!(n—k)!_ 1x2x...xk

when k > 1, or ('5) =1whenk =0.

79

CHAPTER 2

80

PYTHON PROGRAMMING FOR PHYSICISTS

a) Write a user-defined function binomial(n,k) that calculates the binomial coefficient
for given integers n and k. Make sure your function returns the answer in the form of
an integer (not a float) and gives the correct value of 1 for the case k = 0.

b) Using your function, write a program to print out the first 20 lines of “Pascal’s triangle.
The nth line of Pascal’s triangle contains n + 1 numbers, which are the coefficients

(6), (1), and so on up to (7). Thus the first few lines are

11
121
1331
14641

c) The probability that an unbiased coin, tossed n times, will come up heads k times is
(})/2". Write a program to calculate (i) the total probability that a coin tossed 100
times comes up heads exactly 60 times, and (ii) the probability that it comes up heads
60 or more times.

Exercise 2.11: Prime numbers

The program in Example 2.9 is not a very efficient way of calculating prime numbers: it checks
each number to see if it is divisible by any number less than it. We can write a much faster
program for prime numbers by making use of the following observations:

a) A number n is prime if it has no prime factors less than n. Hence we need only check
if it is divisible by other primes.

b) If a number n is non-prime, having a factor r, then n = rs, where s is also a factor. If
r > +/nthen n = rs > +/ns, which implies that s < +/n. In other words, any non-
prime must have factors, and hence also prime factors, less than or equal to /. Thus
to determine if a number is prime we only have to check its prime factors up to and
including +/n. If there are none then the number is prime.

c) If we find even a single prime factor less than v/n then we know that the number is non-
prime, and hence there is no need to check any further—we can abandon this number
and move on to something else.

Write a Python program that prints out all the primes up to ten thousand. Create a list to store
the primes, which starts out with just the one prime number 2 in it. Then for each number n
from 3 to 10 000 check whether the number is divisible by any of the primes in the list up to
and including v/n. As soon as you find a single prime factor you can stop checking the rest of
them—you know n is not a prime. If you find no prime factors y/n or less, then n is prime and
you should add it to the list. You can print out the list all in one go at the end of the program,
or you can print out the individual numbers as you find them.

Exercise 2.12: Greatest common divisor

Euclid showed that the greatest common divisor g(m, n) of two nonnegative integers m and n

satisfies
m ifn=0,
g(m’n)z{g(n,mmodn) ifn>0.
Write a Python function g(m,n) that employs recursion to calculate the greatest common
divisor of m and n using this formula. Use your function to calculate and print the greatest

common divisor of 108 and 192.

2.7 | GoOD PROGRAMMING STYLE

2.7 GOOD PROGRAMMING STYLE

When writing a program to solve a physics problem there are, usually, many ways
to do it, many programs that will give you the solution you are looking for. For
instance, you can use different names for your variables, use either lists or arrays for
storing sets of numbers, break up the code by using user-defined functions to do some
operations, and so forth. Although all of these approaches may ultimately give the
same answer, not all of them are equally satisfactory. There are well written programs
and poorly written ones. A well written program will, as far as possible, have a simple
structure, be easy to read and understand, and, ideally, run fast. A poorly written
one may be convoluted or unnecessarily long, difficult to follow, or may run slowly.
Making programs easy to read is a particularly important—and often overlooked—
goal. An easy-to-read program makes it easier to find problems, easier to modify the
code, and easier for other people to understand how things work.

Good programming is, to some extent, a matter of experience, and you will
quickly get the hang of it as you start to write programs. But here are a few general
rules of thumb that may help.

1. Use meaningful variable names. Give your variables names that help you
remember what they represent. The names don’t have to be long. In fact, very
long names are usually harder to read. But choose your names sensibly. Use E
for energy and t for time. Use full words where appropriate or even pairs of
words to spell out what a variable represents, like mass or angular_momentum.
If you are writing a program to calculate the value of a mathematical formula,
give your variables the same names as in the formula. If variables are called x
and f in the formula, call them x and beta in the program.

2. Use the right types of variables. Use integer variables to represent quan-
tities that actually are integers, like vector indices or quantum numbers. Use
floats and complex variables for quantities that really are real or complex num-
bers.

3. Include comments in your programs. Leave comments in the code to re-
mind yourself what particular variables mean, what calculations are being per-
formed in different sections of the code, what arguments functions require, and
so forth. It is amazing how you can come back to a program you wrote only a
week ago and not remember how it works. You will thank yourself later if you
include comments. And comments are even more important if you are writing
programs that other people will have to read and understand. It is frustrating
to be the person who has to fix or modify someone else’s code if they neglected
to include any comments to explain how it works.

4. Import functions first. If you are importing functions from packages, put
your import statements at the start of your program. This makes them easy to
find if you need to check them or add to them, and it ensures that you import
functions before the first time they are used.

81

CHAPTER 2

82

PYTHON PROGRAMMING FOR PHYSICISTS

5. Give your constants names. If there are constants in your program, such

as the number of atoms N in a gas or the mass m of a particle, create suitably
named variables at the beginning of your program to represent these quanti-
ties, then use those variables wherever those quantities appear in your pro-
gram. This makes formulas easier to read and understand and it allows you to
later change the value of a constant by changing only a single line at the be-
ginning of the program, even if the constant appears many times throughout
your calculations. Thus, for example, you might have a line “A = 58” that sets
the atomic mass of an atom for a calculation at the beginning of the program,
then you would use A everywhere else in the program that you need to refer to
the atomic mass. If you later want to perform the same calculation for atomic
mass 59, you need only change the single line at the beginning to “A = 59”.
Most physics programs have a section near the beginning (usually right af-
ter the import statements) that defines all the constants and parameters of the
program, making them easy to find when you need to change their values.

. Employ user-defined functions, where appropriate. User-defined func-

tions can usefully encapsulate repeated operations, especially complicated op-
erations, and can greatly increase the legibility of your code. Avoid overusing
them, however: simple operations, ones that can be represented by just a line
or two of code, are often better left in the main body of the program. It makes
the flow of the calculation easier to follow and may also make the program
faster, since there is a (small) time cost to using any function. Normally you
should put your function definitions at the start of your program, probably
after imports and constant definitions. This ensures that each function defini-
tion appears before the first use of the function and that the definitions can be
easily found and modified when necessary.

. Print out partial results and updates throughout your program. Large

computational physics calculations can take a long time—minutes, hours, or
even days. You will find it helpful to include print statements in your program
that print updates about where the program has got to or partial results from
the calculations, so you know how the program is progressing. It is difficult
to tell whether a calculation is working correctly if the computer simply sits
silently, saying nothing, for hours on end.

Thus, for example, if there is a for loop in your program that repeats many
times, it could be useful to include code like this at the beginning of the loop:

for n in range(1000000):
if n%1000==0:
print("Step",n)

These lines will cause the program to print out what step it has reached every
time n is exactly divisible by 1000, i.e., every thousandth step. So it will print:

2.7 | GoOD PROGRAMMING STYLE

Step 0

Step 1000
Step 2000
Step 3000

and so forth as it goes along.

8. Lay out your programs clearly. You can add spaces or blank lines in most
places within a Python program without affecting the operation of the program
and doing so can improve readability. Make use of blank lines to split code
into logical blocks. Make use of spaces to divide up complicated algebraic
expressions or particularly long program lines.

You can also split long program lines into more than one line if necessary.
If you place a backslash symbol “\” at the end of a line it tells the computer
that the following line is a continuation of the current one, rather than a new
line in its own right. Thus, for instance you can write:

energy = mass*(VX**2 + vyx*2 + vz**2)/2 + mass*gxz \
+ moment_of_inertiaxomegax*2/2

and the computer will interpret this as a single formula. If a program line is
very long indeed you can spread it over three or more lines with backslashes

at the end of each one, except the last.>

9. Don’t make your programs unnecessarily complicated. A short simple
program is enormously preferable to along involved one. If the job can be done
in ten or twenty lines, then it is probably worth doing it that way—the code
will be easier to understand, for you or anyone else, and if there are mistakes
in the program it will be easier to work out where they lie.

Good programming, like good science, is a matter of creativity as well as technical
skill. As you gain more experience with programming you will no doubt develop
your own programming style and learn to write code in a way that makes sense
to you and others, creating programs that achieve your scientific goals quickly and
elegantly.

36Under certain circumstances, you do not need to use a backslash. If a line does not make sense
on its own but it does make sense when the following line is interpreted as a continuation, then Python
will automatically assume the continuation even if there is no backslash character. This, however, is a
complicated rule to remember, and there are no adverse consequences to using a backslash even when
it is not strictly needed, so in most cases it is simpler just to use the backslash and not worry about the
rules.

83

CHAPTER 2

84

PYTHON PROGRAMMING FOR PHYSICISTS

CHAPTER SUMMARY

Python is a modern programming language that is powerful, widely used, free,
and well suited to computational physics. Python programs consist of a sequence
of statements, normally carried out in order one after another, that specify ele-
mentary operations.

Python programming is typically performed in a development environment,
a program that allows you to enter, edit, and run programs. Two examples are
IDLE, a simple environment that runs on any computer, and Jupyter, which
runs in your web browser. Colab is a version of Jupyter that runs entirely on the
web and does not require any software installation.

Numerical values in programs are represented by variables, which play a similar
role to variables in algebra. Python variables come in several basic types: inte-
ger (called int within programs), floating-point (float), complex numbers
(complex), and strings (str). The type of a variable is not normally specified
explicitly; it is determined by the value you give the variable.

Basic arithmetic in Python looks similar to conventional algebra, with operations
such as +, -, %, /, and functions such as sin, cos, log, and sqrt. A few functions
are built in to Python and always available, but most, including most mathemat-
ical functions, must be imported from packages before use.

Comments allow the programmer to leave textual messages within a program
to document what it is doing or how it works. Comments in Python are indicated
by the hash character “#”.

If and while statements allow sections of code to be executed if a variable takes
a certain value or some similar logical condition applies. The section of code to
be executed is denoted by indentation.

Collections of numbers, such as vectors or matrices, can be stored in containers
of various kinds. Lists, as the name suggests, are lists of values, one after another.
Lists can contain a mix of different types of values—integers, floats, etc.—and can
grow or shrink with the addition and removal of elements.

Arrays are similar to lists but can only contain a single type of value and their
length is fixed and cannot change. On the other hand, arrays can be two-
dimensional (to represent matrices), and they allow fast vector and matrix arith-
metic operations.

Other containers include sets, which are unordered collections of values, and
dictionaries or dicts, in which each value is referred to by a unique index.

For loops allow one to execute a section of code repeatedly. For loops in Python
work by iterating through the items in a container such as a list or array. The

2.7 | GoOD PROGRAMMING STYLE

number of times the section of code is executed is equal to the number of elements
in the list or array. Once again the section is indicated by indentation.

User-defined functions provide a way to add new functions to Python pro-
grams, including mathematical functions but also functions that perform com-
plex program operations. A recursive function is one that calls itself, a useful
feature that allows one to express certain operations more simply than one oth-
erwise would be able to.

85

