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Number Theory Zeta Functions and Dynamical
Zeta Functions
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ABSTRACT. We describe analogies between number theory zeta func-
tions, dynamical zeta functions, and statistical mechanics zeta functions,
with emphasis on multi-variable zeta functions. We mainly consider
two-variable zeta functions (¢(z,s) in which the variable z is a “geo-
metric variable” , while the variable s is an “arithmetic variable”. The
s-variable has a thermodynamic interpretation, in which s parametrizes
a family of energy functions ¢,. We survey results on the analytic con-
tinuation and location of zeros and poles of two-variable zeta functions
for four examples connected with number theory. These examples are:
(1) the beta transformation f(z) = Bz (mod 1), (2) the Gauss continued
fraction map f(z) = 1/z (mod 1), (3) zeta functions of varieties over
finite fields, and (4) Riemann zeta function. [Revised: Nov. 2002]

1. Introduction

Dynamical zeta functions were introduced by Artin and Mazur [6] in
1965, based on an analogy with the number theory zeta functions attached
to a function field over a finite field. Later Ruelle associated zeta functions
to statistical mechanics models in one dimension (lattice gases). In the past
twenty years many parallels have been drawn between number theory zeta
functions, dynamical zeta functions, and statistical mechanics zeta func-
tions, starting with [77]. The object of this paper is to describe such paral-
lels in the case of multi-variable zeta functions. Such zeta functions of sev-
eral variables naturally arise in the thermodynamic formalism in statistical
mechanics, where the extra variables represent thermodynamic quantities.
We mainly consider two-variable zeta functions, and survey what is known
about the dynamic and geometric information encoded in two-variable zeta
functions in various specific cases of interest in number theory.
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This paper was motivated by a question concerning number theory zeta
functions attached to function fields over finite fields. It is well known that
there are two distinct treatments of the theory of zeta functions attached to
algebraic function fields K over a finite field IF;. The first is an “arithmetic
theory” which expresses the zeta function of K as a Dirichlet series in an
“arithmetic variable” s. This zeta function encodes the unique factorization
of ideals in a ring of integers in K. The second is a “geometric theory”
developed by Weil which counts points over IF‘q on a nonsingular projective
algebraic variety V attached to the function field, and which encodes in-
formation on the topology of this variety. In this case the zeta function is
a power series in a “geometric variable” z, and is a rational function of z.
These two types of zeta function are not identical, but are related by the
change of variable z = ¢%. These approaches to zeta functions of function
fields have different historical roots and appear to be independent theories.
The fact that their associated zeta functions are related by a simple change
of variable is a “coincidence” which I feel requires explanation.

This paper proposes such an explanation based on an analogy with
(multi-variable) dynamical zeta functions. The explanation is that one may
regard the function field zeta function as a function of two complex variables
¢(z, s) which happens to satisfy a special identity

(1.1) ((z,5) =¢(2q7*,0) .

This identity allows one to reduce this zeta function to a function of one
complex variable, which may be chosen to be either z or s. Indeed ((1,s)
gives the “arithmetic theory” zeta function and ((z,0) gives the “geometric
theory” zeta function. The two-variable zeta function ((z, s) is to be thought
of as analogous to a statistical mechanics zeta function.

To describe the parallel identity for dynamical zeta functions which moti-
vates (1.1), we recall that dynamical zeta functions also arose in two distinct
contexts. The first of these defines a dynamical zeta function as a gener-
ating function for periodic points of iterated maps and, more generally, to
periodic orbits of flows. This development was initiated by Artin and Mazur
[6] and extended by Smale [88]. The Artin-Mazur zeta function contains
a single variable z and was constructed by analogy with the “geometric
theory” zeta function above. The second context came from the statistical
mechanics of lattice gases, and was developed by Ruelle based on his ther-
modynamic formalism, see Ruelle [77], [78]. The statistical mechanics zeta
function is attached to an energy function ¢ describing the physical sys-
tem, and contains an additional “scaling variable” z, which is a generating
function variable for combining finite systems of different sizes. When one
considers a family of energy functions ¢, that depends on a thermodynamic
parameter labelled s, one obtains a zeta function of two variables. More
generally, when d thermodynamic parameters are introduced. one obtains
zeta functions of d + 1 variables. These parameters describe macroscopi-
cally measurable quantities of the physical system. We consider here the
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case of zeta functions of two complex variables (f(z,s), in which z is the
“scaling variable”, which can be used to take the thermodynamic limit as
the size of the system becomes infinite, while the variable s corresponds to
the thermodynamic quantity “inverse temperature”.

Ruelle carried over his statistical mechanics construction to apply to
dynamical systems f :  — Q on a compact phase space (“generalized zeta
functions”). In this way one obtains multivariable dynamical zeta functions
attached to certain dynamical systems. The theory is particularly effective
for “expanding maps”. We consider the case of piecewise-C' expanding
maps of the interval f : [0,1] — [0,1], with |f'(z)] > 1. We show that
in the case of a homogeneously expanding function, which is one for which
|f'(z)| = B is constant, the associated two-variable zeta function satisfies

(1.2) Cr(z,8) = Cp(267°,0)

(See Theorem 3.1.) Here § measures the expansion rate of the map, and
log (3 is the entropy of f. The formula (1.1) now arises by analogy with (1.2)
if one considers the Frobenius automorphism acting on V(IF‘q) as behaving
as if! it were a homogeneously expanding map with entropy log g.

The two-variable version of the function field zeta function given above
in (1.1) is produced by a formal analogy, and it does not provide any new
information about function field arithmetic. However treating the two vari-
ables s and z as separate variables may have more than a casual significance.
Most of the “eigenvalue” interpretations for zeta functions that I know of
are formulated in terms of the z-variable. For function field zeta functions
the eigenvalues of Frobenius are eigenvalues in the z-variable. In the case of
dynamical zeta functions, the z-variable appears as an eigenvalue variable
for a transfer operator. I am not aware of any corresponding “eigenvalue”
interpretation of the s-variable. However the various “trace formulas” that
have been developed, including the “explicit formulae” of prime number the-
ory and the Selberg trace formula, are formulated in terms of the s-variable,
cf. [32], [92], [95], [100].

At this point one may wonder whether, in the function field case, the
definition of the two-variable zeta function in (1.1) above can be made more
than formal. That is, does there exist an explicit construction which assigns
to a function field over a finite field a statistical mechanics model (or a dy-
namical system model) whose two-variable zeta function will satisfy (1.1)
and recover both zeta functions attached to the function field? In a similar
vein, do there also exist such constructions that would apply to zeta func-
tions attached to algebraic number fields? At present no positive answer to
either of these questions is known. The main part of this paper describes the
relations among these different kinds of zeta functions, in a form intended

IThe Frobenius operator is an automorphism, so that it should correspond to the
natural extension of an expanding map, rather than the expanding map itself, see Section
4.4.
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to facilitate thinking about these questions. It emphasizes analogies, and
describes what is known in specific examples.

The detailed contents of the paper are as follows. In §2 we describe one-
variable number theory zeta functions in the number field case and in the
function field case; for the function field case we present both the “arithmetic
theory” and “geometric theory” interpretations.

In §3 we consider multivariable dynamical zeta functions, which were
introduced by Ruelle [76] as a generalization of statistical mechanics zeta
functions. We consider particularly the case of two-variable zeta functions
for expanding maps of the interval. We show that “homogeneously expand-
ing maps” have two-variable zeta functions that satisfy (1.2). We review
known results for the two-variable zeta functions of the (-transformation
fs(z) = Pz (mod 1), and the Gauss continued fraction map for(z) =
1/z (mod 1). The results for the Gauss continued fraction map are mainly
due to D. Mayer [51], [55], [56], [57], [L5]. He proved results showing that
the zeta function (cp(z,s) at the “special values” z = 1 and z = —1 is
related to Selberg’s zeta function for the modular surface H/PSL(2,Z).

In §4 we consider multivariable statistical mechanics zeta functions for
one-dimensional lattice gases. We describe the equilibrium statistical me-
chanics of lattice gases and the thermodynamic formalism of Ruelle. We de-
fine statistical mechanics zeta functions and discuss the relation of their vari-
ables and singularities to the thermodynamic formalism. As an explicit ex-
ample, we determine the three-variable zeta function of the one-dimensional
Ising model using transfer matrices. In Table 4.1 we give a dictionary of
analogies between one-dimensional lattice gas models in statistical mechan-
ics and discrete dynamical systems, which motivated Ruelle’s definition of
multivariable dynamical zeta functions. In preparing this dictionary I have
benefited from Ruelle [74], [78] and Mayer [52].

In §5 we present two-variable number theory zeta functions ((z, s) con-
structed by analogy with two-variable dynamical zeta functions. We first
consider two variable zeta functions for the function field case, and elaborate
on the discussion given above. Then we address the number field case, and
consider ways of adding a “geometric variable” z to define a two-variable
extension of the Riemann zeta function. We describe two such functions, a
“naive” zeta function (z(z,s) and an Arakelov zeta function (z(z,s), con-
structed in formal analogy to the function field case. These definitions are
based on two different notions of the degree of a prime ideal. For these def-
initions we do not know of any associated dynamical system. The “naive”
function (z(z,s) was already studied in 1943 by A. Wintner [101], who
determined its properties under analytic continuation. Its analytic continu-
ation properties superficially resemble those of the two-variable zeta function
Ccr(z,s) attached to the continued fraction map discussed in §3; for all val-
ues of the z-variable except 1,0, and —1 it does not analytically continue
in the s-variable to the left of the line Re(s) = 0. The function (z(z,s)
does encode the Riemann hypothesis for all values of z other than z = 0 in
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a “trivial” way. The Arakelov zeta function (z(z,s) preserves the relation
(1.2), and therefore also encodes the Riemann hypothesis for all values of z
other than z = 0.

In §6 we give concluding remarks,including a brief summary, some di-
rections for further work, and some speculations.

We conclude this introduction by briefly mentioning three other parallels
between number theory zeta functions and dynamical zeta functions that are
not discussed in this paper. These parallels mainly concern zeta functions
expressed using the “arithmetic variable” s. First, there are analogies be-
tween Artin L-functions for number fields and zeta functions of coverings
and vector bundles on manifolds, see Fried [28], [29], Adachi and Sunada
[1] and Sunada [89]. Second, for certain dynamical zeta functions attached
to flows there are analogues of the prime number theorem and the Cheb-
otarev density theorem, and for these see Parry and Pollicott [65], [66], [67].
Third, certain “special values” of number theory zeta functions have paral-
lels in “special values” of dynamical zeta functions, which encode topological
invariants such as Reidemeister torsion; One aspect of this line of investiga-
tion was started by Milnor [61]. It also includes the Atiyah-Bott fixed point
formula, see Atiyah and Bott [7], and the Atiyah-Singer index theorem, see
Gilkey [31] and Hirzebruch and Zagier [36].

2. Number Theory Zeta Functions

This section reviews one-variable number theory zeta functions, in a
form intended to aid in later comparison with dynamical zeta functions.

2.1. Number Fields. The Riemann zeta function
o0
(2.1) ((s)=) _n"*.
n=1

can be viewed as a sum taken over the integral ideals (n) of the ring Z, in
which each term in the Dirichlet series represents a weight

wt(n) = #|Z/(n)| = n
assigned to the ideal (n). The ring Z is a Dedekind domain, and the unique

factorization of ideals into powers of prime ideals is reflected in the Fuler
product

(22) () =J[a-p"",
(p)

taken over the set of prime ideals p in Z. The Riemann zeta function satisfies
a functional equation of the form

(2.3) {(s):==C{(1—s),

in which

(2.4) {(s) =20 (5) C(s) -
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The Riemann hypothesis asserts that all zeros of ((s) lie on the line Re(s) =
1/2.

These facts generalize to the Dedekind zeta function (x(s) of an alge-
braic number field K. Here K is a finite extension of the rationals @, and
the ring Z is replaced by the ring of algebraic integers Ok in Kj; it is a
Dedekind domain. We define

(2.5) (k(s) =) (NA)™
A

where A runs over the integral ideals of Ok, and the weight of an ideal is
its norm

(2.6) wt(A) = NA := #|0Ok/A| .

Unique factorization of ideals gives the Euler product

(2.7) Cr(s) = [ - @P)=)7",
P

where the product is taken over all prime ideals P in Og. It satisfies a
functional equation of the form

(2.8) {k(s) =Ck(1—s),

in which
(2.9)  Ex(s) == |di|*? (W_S/QF (g))" <z—sr (3 ; 1>)n Ck(s)

where dg is the discriminant of K, ny is the number of real conjugate fields
to K and ngy the number of complex conjugate fields to K, and nq + 2nge =
[K : Q. The function x(s) has poles at s = 0 and s = 1. The extended
Riemann hypothesis asserts that all zeros of (x (s) lie on the line Re(s) = 1/2.

2.2. Function Fields — Arithmetic Variable. In 1924 E. Artin [5]
studied zeta functions attached to function fields of one variable K over a
finite field IF, where g = p¥. Here K is a finite extension of the function field
Ky = F4(T) which has a distinguished subring Ry = F,[T] of “integers”.
The ring of “integers” Rx of K is the integral closure of Ry in K; it is a
Dedekind domain. He sets

(2.10) (k(s) =) (NA)™*

A
where A runs over all integral ideals in Rg, and the weight
(2.11) NA = #|Rk/A]| .

The unique factorization of ideals in a Dedekind domain gives the Euler
product

(2.12) (k(s) =[] -@P)=*),

P
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where the product is taken over all prime ideals P in R. We call s an
arithmetic variable because the Euler product (2.12) encodes information
about the arithmetic of the ring Rgx. E. Artin [5] derived a functional
equation for (x(s) in the special case of hyperelliptic function fields K =
Ky(T,y) over a prime field IF,, where

v =apT" + an1T" 1+ +ap.

In 1931 F. K. Schmidt introduced the theory of divisors to study function
field zeta functions defined over an arbitrary finite field I, where ¢ = "
He obtained a functional equation [83, Satz 22]), of the form

(2.13) {k(s) =Ck(1—s),
in which
(2.14) Cre(s) == g~ 9532 (s)Ck () -

In this formula g > 0 is an integer called the genus of K, and (%(s) is a
finite Euler product coming from the “primes at infinity”.

F. K. Schmidt interpreted K as the field of regular functions attached
to a nonsingular projective curve C defined over F;, and interpreted the
functional equation (2.13) as equivalent to the Riemann-Roch theorem. The
quantity ¢ (1-9)% appearing in (2.14) is a normalizing factor, in which

1

l1-g= EX(C)

where x(C) is the Euler characteristic of the curve C. He defined the pro-
jective zeta function of the curve (¢(s) as the Euler product taken over all
prime divisors of the projective curve C including “primes at infinity”, i.e.

(2.15) Ce(s) == (R (s)Ck (s) -
F. K. Schmidt observed that the projective zeta function had the general
form

(2.16) Cels) =

in which

P(g™°)
(1—g5)(1—g'=9) "

29
P(z) = Z b2
j=0

is a polynomial with integer coefficients, which has exact degree 2g. The
functional equation (2.13) is equivalent to the property that the polynomial
P(z) in (2.16) satisfies

(2.17) 2 9P(/3z) = 2P (ﬁ) .

As an example, in the simplest case of Ky = F;(T), the ideals of Ry :=
[, [T'] are the principal ideals (f(T')), where f(T') is a monic polynomial

(2.18) f(T):=T"+ap /T " +---+a;T + ag
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and has norm N(f(T')) = ¢". There are ¢" monic polynomials of degree n,
hence

o0
_ 1
(2.19) Co(s) =D q"a ™ = 1= -
n=1 q
Prime ideals of F,[T'] correspond to irreducible polynomials (f(7')) over F,,
hence the Euler product factorization of (x,(s) is

o0

(2.20) (x(s) = H(l — g ks ekla)

k=1

in which ¢ (¢q) counts the number of irreducible monic polynomials of degree
k over ;. The Mobius inversion formula gives

(2.21) Bela) = 3 D2 (@)
d|k

To determine the functional equation, we note that there is a unique divisor
at infinity %, which contributes

1
(2.22) Cf{%(s) = 1_7(1_5 ;
and the genus g(Ky) = 0. Thus (g, (s) = (x,(1 — s) for
R 1 -1
2.2 =q° = .
N il =D R s (e
The Riemann hypothesis for (x (s) asserts that all zeros of (x(s) lie on

the line Re(s) = 1/2. E. Artin [4] formulated it and proved it in special
cases. It is true for genus 0 curves by (2.16). In 1933 H. Hasse proved it
for genus 1 curves ([33], [34]), and around 1939 A. Weil proved it for all
nonsingular projective curves ([97]). The Riemann hypothesis for function

fields of one variable is often stated in the alternate form: the roots 6 of
P(z) in (2.17) all have || = ¢ /2.

2.3. Function Fields: Geometric Variable. In 1949 A. Weil [91]
defined a zeta function attached to a nonsingular projective variety V' of
arbitrary dimension defined over [F; which counts points on V' over extension
fields Fgx for K > 1. Let V' be described by a system of homogeneous
polynomial equations with coefficients in [F;, say

(2.24) Fi(z1,...,2,) =0, 1<i<k.

Let F, denote the algebraic closure of F,. If (z1,...,z,) € (Fy)" \ {0}
satisfies (2.24) then the point on V(IF,) associated to x is the equivalence
class

(2.25) [x] = {(Az1,...,Azn) : X € Fy \ {0}} .
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We say that [x] lies in V/(IF,x) if there is some x' € [x] with x' € (F )"
Weil defined the zeta function Zy(z) over Fy to be

©  _k
(2.26) Zy(z) 1= exp (Z %Nk(V;Fq)>

k=1
in which Ng(V;F,) := |V (F, )|, viewed as a projective variety. In this case

e Laorz() = 2D = 30 N(vim !

) dz Zy(z) — T

The Frobenius automorphism F'r : ]I_Tq — ]Fq is defined by

(2.28) Fr(z):=z7.
This map induces a well-defined map Fry on the points of V(F,) by
(2.29) Fry([x]) := [(Fr(z1), Fr(za),..., Fr(z,))] .
The fixed points of F r{i— on V are exactly the points of V(F ). Thus
(2.30) Zy(z) = exp (; ?|Fz'z(Fr{“,)|> :

We call the variable z a geometric variable because it appears in counting
points on the geometric object V (I, ). Weil observed? that for curves C this
zeta function has a simple relation to the projective zeta function introduced
by F. K. Schmidt.

THEOREM 2.1 (Weil). Let C be a complete nonsingular projective curve
defined over Fy. Then

(2.31) Ze(z) = Gela™’)
where (c(s) is the projective zeta function associated to the function field of
C over IFy.

PROOF. A fixed point of Fr{“, is primitive if it is not a fixed point of any
Frt, for I < k. Then, using (2.30)

Ze(z) = exp Z% Z —log(1 — 2F)

k=1 primitive
point

= exp Z Z —log(1 — 2¥)

k=1 primitive
orbits

(2.32) = H 1 — Z ﬂk(FTC) ,

2Weil was aware of this relation by 1942, see Weil [98, Section 8].
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in which 7, (Fre) counts the number of primitive orbits of period & of Fre.
Now

(2.33) Ge(s) = JJ (1 —phe)=2(F)

in which ¢x(K) counts the number of prime divisors of degree k of the
function field K = K(C). The primitive orbits of period k of Fr¢ are in
one-to-one correspondence with prime divisors of the function field K (C), so
7x(Fre) = ¢k (K(C)), which gives (2.31). O

As an example, the affine curve x1+x2 = —1 gives, after homogenization,
the projective line P!:

(2.34) T1+ 2o +23=0.

The equation x1 + 3 = —1 has ¢* solutions over GF(¢*) yielding the points
(z1,1—x1,—1), while the plane at infinity 3 = 0 contain one point (1, —1,0).
Thus N (V;F,;) = ¢* + 1, hence

Zpi(z) = exp (Z —(d" + 1)>

k=1
= exp(—log(l — 2q) —log(1 — 2))
1
. ek

The function field K(P') = F,(T), since Fy[z,t]/(z +t — 1) = F,[t]. A
periodic point {(xgz),mg),zgz)) :1 <4<k} inTFy with ac:(,’z) = 0 corresponds
to a prime divisor (f(7")) in F,[T"] which is the principal ideal given by

k
(2-36) f(T) = H(T —0;) € F,[T]

in which 6; = FrJ (xgl)), and f(T) is irreducible over F,.
Weil [99] conjectured that the zeta function Zy (z) of an n-dimensional
complete nonsingular variety V over F, satisfies a functional equation

o 1 ~
in which
(2.38) Zv(z) = 2252 Zy (2)

where x(V') is the Euler characteristic of V. He also conjectured that

. P ]
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in which Zy(z) =1— 2, Zop(2) =1 —q"2
By (V)
(2.40) Zn(2) = [[ (01— am2)
=1
where B (V) are the Betti numbers of V. Finally, he conjectured the Rie-
mann hypothesis for the variety V', which asserts that

(2.41) lani|l = g%, 1<i < By(V)

for 1 < h < 2n — 1. The first conjecture was proved by Dwork and the
Riemann hypothesis was proved by Deligne in 1974.

The method of solving these problems involved constructing suitable
cohomology theories on V, such that Zj(z) is expressed as the characteristic
polynomial of a linear operator Fr, associated to the Frobenius operator
Fry acting on cohomology, e.g.

(2.42) Zp(z) :=det(I — zFr,|HL(V,Q))

for [-adic etale cohomology. This formula gives a “spectral” interpretation
of the polynomials Zj(z).

3. Dynamical Zeta Functions

The notion of dynamical zeta function was introduced by M. Artin and
B. Mazur [6] in 1965. Let f : M — M be a diffeomorphism of a compact
manifold, such that its iterates f* all have isolated fixed points. They set

Xk
z .
(3.1) (f(2) == exp (Z ?#sz(f’“)) :
k=1
in analogy with the geometric zeta function attached function field. They
showed that for a dense set of f € Dif f(M), the power series converged in
a neighborhood of z =0, i.e.

#Fiz(ff) <<cf as k—o00.

Smale [88] conjectured that for Axiom A diffeomorphisms (f(z) is a rational
function, a result later proved by Manning [50], and he also proposed a
definition of a zeta function for a flow. About the same time Ruelle [75], [76],
[77], motivated by problems in statistical mechanics, introduced dynamical
zeta functions with weights. Ruelle’s general zeta function for a map f :
X — X on a compact space X, takes the form

ok m
(3.2) Cr(z, @) ==exp Z i Z exp (Z (I)(fk(x))>
k=1

k=1 zEFiz(fM)

in which @ : X — C is a weight function. Ruelle related one-parameter
families of weight functions ®3 which depend on a (thermodynamic) pa-
rameter § to the thermodynamic formalism, see Ruelle [78, Sect. 7.23].
The two-variable dynamical zeta function (3.4) below is a special case.
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For recent surveys on dynamical zeta functions see Baladi [8], Hurt [37],
Parry and Pollicott [67], and Ruelle [82].

3.1. Zeta Functions for Expanding Maps of the Interval. Dy-
namical zeta functions are especially well suited for studying the dynamics
of expanding maps (Ruelle [80], [82], Parry and Pollicott [67]). The sim-
plest case are piecewise C''-maps of the interval f : [0,1] — [0,] which are
erpanding in the sense that

(3.3) ()] >1 ae z€l0,1].
To such maps we associate a two-variable dynamical zeta function

—S

k
I1/ )

i=1

o Zk
61 Gles—en|PE
k=1

a:GFz:c(fk)
z;=f"(z)

The periodic points are each weighted by a factor based on the rate of
expansion of the map near the periodic orbit (which is unstable). The weight
depends on the parameter s, and the special case s = 0 gives the Artin-
Magzur zeta function. This particular weight exp(—log|f'(x;)|) appearing in
(3.4) is important in studying absolutely continuous invariant measures for
f(z) (when s = 1). It traces back to ideas of Bowen [12] and Sinai [87], see
Mayer [54], p. 312.

We say that a piecewise Cl-map f : [0,1] — [0,1] is a homogeneously
expanding map if

(3.5) |f'(z)] =B for almost all z € [0,1] ,

where the exceptional set is countable. Such maps are piecewise linear. A
simple example is the beta transformation

(3.6) f(x) =pz (mod 1),
whose ergodic theory properties were first studied in detail by Parry [64].

THEOREM 3.1. If a piecewise Cl-map f : [0,1] — [0,1] is a homoge-
neously expanding map, then

(3.7) Cr(z,8) = (f(267%,0) .

PROOF. The homogeneously expanding property gives

o0 Zk
G = e[ XE Y @9
k=1

z€Fiz(fk)

0 235k
— exp (Z %#Fz’x(f’“))

K=1
= ((287°,0),

as asserted. O
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Theorem 3.1 implies that homogeneously expanding maps have two-variable
zeta functions that are singly-periodic in the s-variable with pure imaginary

period lggiﬁ. In another direction, Margulis constructed for transitive Y-

flows a maximal entropy measure with respect to which the Y-flow has a
homogeneously expanding part, see Sinai [87, p. 42].

For homogeneously expanding maps the Artin-Mazur zeta function can
be explicitly computed using symbolic dynamics together with the kneading
theory of Milnor and Thurston [62]. This approach was taken by Takahashi
[90], and has recently been extended by Baladi and Ruelle [9]. When it
applies, the symbolic dynamics approach can be used to obtain substantial
information on the singularities of the Artin-Mazur zeta function in the
unit disk {z : |z| < 1}, and hence, by Theorem 3.1 of the two-variable zeta
function. This was carried out for the beta transformation in Flatto et al
[27], see §3.2 below.

There is a second method for computing dynamical zeta functions, which
is more general but usually gives less explicit information. It applies to gen-
eral piecewise-C'! expanding maps f : [0,1] — [0,1] and determines the
two-variable zeta function. It uses the family of Ruelle-Araki transfer oper-
ators Ls depending on the parameter s, where each L, is a linear operator
defined on a suitable Banach space B of functions A : [0,1] — C by

(3.8) Lih(z):= Y |f'(y)I°h(y), for heB.
Y
fly)=z
Under suitable hypotheses
(3.9) Crlz,8) = det(I — zLs) ,

where the right side is a Fredholm determinant. In the case of the (-
transformation the locations 2’ of poles of (g(z) in {|z| < 1} have 2’ = 1/X
where )\’ is an eigenvalue of £1. For more information see Ruelle [82].

In the rest of this section we describe in detail what is known about the
two-variable zeta functions associated to two expanding maps of particular
interest in number theory, the beta transformation and the Gauss continued
fraction map.

3.2. Zeta Function of the Beta Transformation. The beta trans-
formation is the map fz: [0,1] — [0,1] given by

fa(z) = Bz (mod 1),

for a given 8 > 1, see Figure 3.1. It is a homogeneously expanding map,
hence Theorem 3.1 applies. Thus to determine the analytic properties of the
two-variable zeta function (f,(2,s) it suffices to consider its Artin-Mazur
zeta function (g(2) := (f,(2,0). Flatto et al. [27] establish the following
results.
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THEOREM 3.2 (Flatto, Lagarias and Poonen). (i) The zeta function
C3(2) of the B transformation is given by

1—2N

(1-82) (oo Fp(0)=")

where N is the minimal value such fév(l) =0, and if no such iterate exists,
then 2V = 0.

(ii) (g(2) is a meromorphic function in the open unit disk {|z| < 1}. It is
holomorphic in the open disk {|z| < 1/8} and has a simple pole at z =1/p.
It has no other singularities on the circle |z| = 1/0.

(i) If the sequence of values {f3(1) : n = 1,2,...} is eventually pe-
riodic, then (g(z) is a rational function and continues meromorphically to
C. Otherwise (g(z) has the unit circle {|z| = 1} as a natural boundary to
analytic continuation.

(3.10) ¢ol2) =

PROOF. (i) is derived in [27] from a result of Takahashi [90]. (ii) and
(iii) appear as Theorem 2.2 and Theorem 2.4 in [27] respectively. O

More generally, one can analyze the zeta function for the linear mod one
transformation

fsa(z) =pPr+a (mod 1).
In this case more complicated behaviors occur, including a renormalization
phenomenon for certain (8,«) with 1 < # < 2, see Flatto and Lagarias
([23]-[25]). For a number-theoretic application of the dynamics of linear
mod one transformations, see Flatto, Lagarias and Pollington [26].

3.3. Zeta Function for the Gauss Continued Fraction Map. The
Gauss continued fraction map is

(3.11) fer(z) =1/ (mod 1),

and its graph is pictured in Figure 3.2. Its zeta function has been extensively
studied by D. Mayer and collaborators.

The continued fraction expansion for a real number z € [0, 1] is expressed
in terms of a symbolic dynamics for the map (3.11). We partition

[0’ 1] = U Xn,

n>1

in which X,, = (HLH, 1] and we assign the symbol S(z) = n to all z € X,
for n > 1. The continued fraction expansion of z € [0, 1) is

1
(3.12) z:=[0,a1,a9,...,0p,...] = ————,

1
0 e
2 ag+-

in which the partial quotients a,, are given by

(3.13) an = S(fop (), for n>1.
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The n't convergent fl’—: of the continued fraction expansion is

(3.14) Pn (0,an,... an] = ——

dn a1 + m
We now define a zeta function for the Gauss continued fraction map.
This map is clearly not homogeneously expanding. It has infinitely many
periodic points of each fixed period, hence the Artin-Mazur zeta function is
not well-defined. However the two-variable dynamical zeta function (3.4) is
well-defined for some range of z and s. It was introduced and extensively
studied by D. Mayer [51], [54], [56], [57]. The two-variable zeta function is

(3.15) Ccr(z,s) = exp (Z ?Zk(s)> ,

k=1
in which

(3.16) Zy(s) := Z Z (wt(z[ni,n2,...,ng])) "%,
ni=1 np=1

where z[n1, ..., ng] denotes the point in [0, 1] which has the periodic ordinary
continued fraction expansion

(3.17) z[ni,...,ng] = [0,71, ng, - .-, ng)

and which is assigned the weight

k
(318) wt(x[nl, e ,nk]) = H(iL‘[’l’LZ, Tit1yeee s Npy M1, ,ni_l])72 .
=1
The numbers z[n1, . . ., ng] are real quadratic irrationals, and wt(z[nq, ..., ng))

is a unit in the ring of integers of the real quadratic field generated by
z[ni,...,nk|. For example,

(3.19) Zi(s) =) €”
n=1

in which €, := 1/2(n + v/n2 +4). The function® Z;(s) meromorphically
continues to C and its only singularities are simple poles at s = 1/2 and
—1/2 with residue 1 (Mayer [55, Proposition 2]). Mayer determined the
analytic properties of (cr(z, s).

THEOREM 3.3 (Mayer). (i) The two-variable zeta function (cr(z,s) of
the Gauss continued fraction map 1/x (mod 1) is meromorphic in the z-
plane for each fized s with Re(s) > 1/2.

(ii) For z = —1, 0 and 1, the function (cr(z,s) extends to a meromor-
phic function of s in the entire s-plane.

31t seems likely that each Z(s) meromorphically continues to C and has simple poles
at s =1/2 and —1/2.
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PROOF. (i) Mayer [54] [56] considers the transfer operator

(3.20 st =3 () 1 (5)

n=1

where f € Ay (D), a Banach space of functions holomorphic inside the
closed disk D = {z : |z — 1] < 3/2} and continuous on its boundary. He
expresses (cr(z,s) as a quotient of two Fredholm determinants

det(I + zL441)

(3.21) Cor(z,8) = det(I — 2L,)

and obtains the result using Grothendieck’s Fredholm theory of nuclear op-
erators on suitable Banach spaces.

(ii) For z = 0 {cr(z,s) = 1. For z = 1 it follows from Corollary 7 of
Mayer [71]. The proof for z = —1 is similar to Corollary 7, as Mayer [56,
Theorem 1] indicates. O

Some further analytic continuation of {¢r(z, s) might be possible in the
s variable, in analogy with Theorem 5.1 below. Apparently z = 1 and —1
are “special values”, as indicated by Theorem 3.4 below.

Mayer [56] observed that the two-variable zeta function is related to the
Selberg zeta function Z(s) of the modular surface M = H/PSL(2,Z). The
Selberg zeta function for a surface H/T" has the general form

(3.22) Z(s) = H ﬁ(l — e~ (sHRIM)

v k=0

where the product is over the lengths of all isolated periodic geodesics on
S with prime period (). In the special case of the modular surface M it
is known that the values e{?) are algebraic integers, which are units in real
quadratic fields. Vigneras [93] showed that the Selberg zeta function for the
modular surface satisfies the functional equation

(3.23) Z(s)=2(1-5),

where

(3.24) 2(5) = Zpar(5) Zoo(5) Zes (5) Ze (5) Z(s)
is meromorphic on C, and

(3.25) Zpurls) = C(25—1)

(3.26) Ze(s) = [1 + tan (g - %)] k&
(3.27) Ze(s) = [1 + /3 tan (? . g)]w

(3.28) Zoo(s) = [[a(s)’T(s) ™" (2m)7*]"/¢
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where T'y(s) is Barne’s double gamma, function %, and the principal branch
is taken for Zs(s), Z3(00) and Z(s) on the positive real axis. (The multi-
valuedness of Z,(s), Ze,(3), Zoo(s) cancels out in Z(s).)

THEOREM 3.4 (Mayer). The Selberg zeta function Z(s) for H/PSL(2,7Z)
s given by

1
(3.29) gzllaEGIH
in which
(3.30) Csr(s) = Cer(1,8) Cer(=1,8) .

PROOF. The formula (3.29) appears in Mayer [56]. By Mayer’s defini-
tion

831) Cor(le) = e (f;gzn@G,As)):M

— det(I — Ls)
B = _det(I — Ly41)
(332) CC’F(_]-’S) = €xp (nZI TG5A5)> - det(I+ Es)

Thus we obtain
o0

Cor(1,8)¢or(—1,8) = exp (Z TG,AS)) = G(L,s) ,

and Mayer proves that (sr(s) = (2(1, s). O

The derivation of the formula (3.29) by Mayer used a symbolic encoding
of geodesics on the modular surface developed by Adler and Flatto [2] and
Series [86]. Mayer [56] observed that the function (gr(s) can be defined in
terms of Z(s) by
Z(s+1)

Z(s)
and noted that it can be viewed as the dynamical zeta function of a sus-
pension map over the Gauss map; such maps are discussed in Parry and
Pollicott [65].

Theorem 3.4 implies that the poles of the functions (¢r(£1, s) have an
interpretation connected with the discrete spectrum of the Laplacian on the
modular surface. In fact det(I + L;) is zero at the “odd” eigenvalues of the
Laplacian while det(I—Ly) is zero at the “even” eigenvalues of the Laplacian
and at the complex zeros of ((2s), see Efrat [21] and Eisele and Mayer [22].
(Here the odd eigenvalues are eigenvalues on the space Lgdd of L?-functions

(3.33) Csr(s) =

“Here " (s+1) = (2m)*/2e~1/2s(s 1) 1/27s? [1,5:(1 +s/n)% —s+s2/2n where ~ is Eu-
ler’s constant, and satisfies the functional equation I's(s + 1) = 13((:)) and I'>(1) = 1, see

also Voros [95].
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f(.Z‘ + Zy) on H \ PSL(2aZ) with f(:E + iy) = —f(—iE + iy)' Here Lgven

consists of L2-functions with f(z +4y) = —f(—=z +4y).) The formula (3.29)
is equivalent to

(3.34) Z(s) = det(I + L4)det(I — Ly) |

The functions det(I + L) have poles at s = £(1 — j), j > 1 hence Z(s) is
homomorphic except at these points. The zeros of det(I + L£;) are all on
the line s = %, as are those of det(I + £;) coming from the “even” zeros.
The zeros of (*(2s) lie in the strip 0 < Re(s) < 3. In particular the poles of
Ccr(l,s) for Re(s) > 0 are at the complex zeros of ((2s) and at the “even”
eigenvalues of the Laplacian acting on L?(H/PSL(2,7Z). A detailed analysis
of the zeros and poles of det(I £+ L) at the special points s = %(1 —7),7 >0,
was recently given by Chang and Mayer [15], who relate them to the space
of cusp forms of weight j and Maass wave forms of H/PSL(2,Z), and to
work of Lewis [48] and Zagier [103].

We next consider the two-variable zeta function (cr(z,s) at s = 1.
By Theorem 3.3 (cr(z,1) is meromorphic on C. This function contains
information on the ergodic behavior of the continued fraction map relative
to its unique absolutely continuum invariant measure on [0, 1], given by the
Gauss measure ug

1 dz
. dug = | ——
(3:35) Ha (log2> 1+z

on [0,1]. Gauss stated in a letter to Laplace that the event {z : fip(z) < a}
had probability log,(1 + @), which is now taken to mean

. 1 ¢ dx
(3.36) nll)ngo meas{z: T"z <a} = Tog 2 /0 vz logo(1+a) .
The Lebesgue measure of {z : fp(z) < a} depends on n, and the “relax-
ation dynamics” concerns the rate at which it converges to the limit (3.36) as
n — oo. This problem has a long history, including work of Levy, Kuzmin,

Wirsing and Babenko. It was studied at length by Mayer and Roepstorff
[58], [59]. One has

o0
(3.37) meas{z : fGp(z) < a} =logy(l +a)+ Z Alci(a)

=2
where A\ =1 > |A\g] > |A3| > -+ are real numbers with |\;| < 0o, and ¢;(a)
are certain continuous functions. One has Ao = .30366.... The quantities
{)‘% : 1 < i < oo} are the locations of the poles of (¢r(z,1), counted with
multiplicity. Mayer and Roepstorff [59, p. 343] conjecture that all the poles
of (cr(z,1) are simple, and that the eigenvalues alternate in sign

(—I)H—l/\i >0.
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Khinchin showed that under the Gauss measure dug the partial quotients
an of the continued fraction expansion are identically distributed with dis-
tribution

(3.38) Pm = pa({z : an(z) = m]) = log, (m) :

However the partial quotients {a,,} are not independent random variables.
The two-point correlation between {a,} and {a,1} drops off exponentially
as k — oo. The location of the pole of (¢r(z,1) closest to the origin encodes
information about the rate of decay of these correlations.

There is ergodic theory information about the dynamical system & =
(for,dug) which can be extracted from (cp(z, s) using both variables. The
Kolmogorov-Sinai entropy® hx _g(S) is given by Pesin’s formula

7'('2

1
_ ' _
B39 hies(S) = [ loglfer(a)ldna(o) = i
Mayer [71, Appendix] observes that it can be recovered from (cr(z, s), as
follows. The pressure P([3) for real § > 1/2 is defined by
exp(P(B)) := sup{r : {(z, 8) is holomorphic in |z| < r} ,

i.e. log P(f) is the location of the pole of {(z,3) nearest the origin (which
is necessarily on the positive real axis). Then

d
This is a special case of the thermodynamic formalism discussed in Section
4.

(3.40) hic—s(S) = —

4. Statistical Mechanics of One Dimensional Lattice Gases

In this section we describe classical equilibrium statistical mechanics for
one-dimensional lattice gases and the associated thermodynamic formalism
of Ruelle [78]. The zeta function of a statistical mechanical system S is a
generating function that encodes information about passing to the thermo-
dynamic limit through a sequence of finite models of larger and larger size.
We define

X .n
(4.1) (sl B) = exp (Z %znw))

n=1
in which Z,(f) is the partition function for a finite model of size n, and
the systems are presumed to have a thermodynamic limit as n — oco. We
compute the zeta function for a simple “exactly solvable” model, the one
dimensional Ising model.

SThe denominator of the n'" partial quotient Bn of the continued fraction expansion
of a real number drawn randomly from (0,1) with distribution dug has lim, e (gn)"/" =
ﬁ, with probability 1.
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The statistical mechanics viewpoint provides an interpretation of the
variables appearing in multivariable dynamical zeta functions. The geomet-
ric variable z is a “scaling variable” for taking the thermodynamic limit. All
other variables s, h, etc. represent macroscopically measurable parameters
of the physical system such as temperature or magnetization. The singu-
larities of the statistical mechanics zeta function encode properties of the
associated physical system.

Ruelle’s definition of a dynamical zeta function with general weight ¢
in [75] was motivated by analogy with statistical mechanics. A connection
between invariant measures of dynamical systems and Gibbs measures of
one-dimensional statistical mechanics models was first observed by Sinai
[87]. This analogy permits the “thermodynamic formalism” to be carried
over to dynamical zeta functions of expanding maps. In the last subsection
we detail the analogy between expanding maps and one-dimensional lattice
gas models.

4.1. Equilibrium Statistical Mechanics and Thermodynamics.
Following Ruelle [74], we recall that statistical mechanics originated from
the desire to obtain a mathematical understanding of a class of physical
systems of the following nature.

(a) The system is an assembly of identical subsystems.

(b) The number of subsystems is large.

(c) The interactions between the subsystems are such as to produce a
thermodynamic behavior of the system.

The notion of thermodynamic behavior refers to a macroscopic descrip-
tion of the system, in which the subsystems are regarded as small and not
individually observed. Typically, thermodynamic behavior may be described
as follows.

(a') The state of an isolated system tends to an equilibrium state as
time tends to +oo (“approach to equilibrium”).

(b’) An equilibrium state of a system consists of one or more macro-
scopically homogeneous regions (called “phases”).

(c') Equilibrium states can be parametrized by a finite number of ther-
modynamic parameters which determine all thermodynamic func-
tions. The thermodynamic functions depend piecewise analytically
(or smoothly) on the parameters, and the singularities of the func-
tions correspond to changes in the phase structure of the system
(phase transitions).

A mathematical justification of (a’)—(c’) involves considering the limiting
case of an infinite number of subsystems, the thermodynamic limit.

We consider here equilibrium statistical mechanics, which is concerned
with the structure and nature of the set of equilibrium states, as a function of
the thermodynamic parameters. Furthermore we concentrate on the special
case of one-dimensional lattice gases. The prototype of such models is the
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one-dimensional Ising model, solved in 1925 by Ising [38]. One dimensional
lattice gases have been exhaustively studied, see Simon [86]. The translation
operator or shift operator on a one-dimensional lattice yields a dynamical
structure on the lattice gas configuration space, which leads to a relation
with dynamical systems.

A one-dimensional lattice gas is described by an infinite collection 2 of
configurations on a one-dimensional lattice Z with each configuration being
assigned an energy ( viewed as an energy-density per site on the lattice).
The infinite system consists of a one-dimensional lattice of sites indexed by
Z, and an infinite configuration is a set of values

(42) ( 7'%7253:*15‘%.0’:5153:27“')
in the values are drawn from a finite or countable alphabet® A. We let
(4.3) O c A”

denote the space of allowed configurations. The set of configurations is
required to be invariant under translations and an equilibrium state will be
a measure on ).

These infinite systems are viewed as arising as limits as n — oo of finite
systems on a finite “lattice” consisting M lattice sites in a line. That is,
the lattice gas model consists of a collection of finite models {(Q,, Ey,) : n =
1,2,3,...,}. The model on n sites has a configuration space

(4.4) Q, CA",
which is required to be translation-invariant under cyclic shift of states
(4.5) S((o1,09...,0p)) = (02,08,...,04,01) .

We view the points of €2, as corresponding to periodic configurations in
the limiting model. The finite model is completely specified by its energy
function E,, : Q, — R which assigns to each configuration o = (01,...,0p)
an energy FE,(c); We extend the energy function E, to A" by assigning
the energy +oo to all configurations in A" \ 2, (“hard core constraint”).
The energy function defines a probability distribution called the Gibbs dis-
tribution, which makes the probability of a configuration o proportional to
exp(—BE(o)), in which 3 is a positive constant. In gas models the param-
eter 0 traditionally denotes

1
/6 - ﬁa
where x is Boltzmann’s constant and T is the temperature. The Gibbs
distribution is then

(4.7) pin(0) =

(4.6)

7 B ))

6More general lattice gas models allow a continuous space A as alphabet, e.g., A =
SO(3,R) is used to describe continuous spins.
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in which the partition function Z,(() is the normalizing factor necessary to
get a probability distribution. We have

(4.8) Zn(B) =" exp(—BEn(0)) ,

in which the sum as taken over all legal configurations €,,, or over all A",
using the convention above on when E(og) = +o0o. We view the energy
function E, (o) as being a sum of local interactions over various distances,
so that

n n n
(4.9) Ep(o) := Z $1(o;) + Z #2(0i,0541) + Z¢3(Ui,0i+la‘7i+2) +ee
i=1 i=1 j=1

We require that the energy functions E, (o) for different n be compatible in
the sense that the local interaction functions ¢,(-) be the same for each n.
This is no loss of generality because once ¢1,...,¢, 1 are fixed, there are
still enough degrees of freedom in the function ¢, to describe any energy
function E,. However in physical applications one is interested in such
energy functions in which the interactions become small at large distances,
ie. ¢r(oc) = 0 as k — oo. In particular, an interaction is finite-range if
¢ = 0 for all large enough k.

All thermodynamic quantities associated to a finite system are encoded
in its Gibbs distribution. These include the average energy per site’

(4.10) <1En> = Zi Z E,(0)exp(—BEn(0)) ,

n

" e An
and quantities like the nearest-neighbor two-point correlation
1
(4.11) (0p0z41) = A Z o109 exp(—LE,(0)) .
" ecAn

The thermodynamic limit concerns the limiting behavior of the systems
(Qn, Ep) as n — co. Under some restrictions on the local interaction func-
tions {Ey : k > 1} a thermodynamic limit will exist. The thermodynamic
limit is often understood in the “classical” sense to be a suitably scaled limit-
ing behavior of the partition functions Z,,(3) as n — oc. In thermodynamics
one considers a family of energy functions E, (8, h, . ..) depending on a finite
number of thermodynamic parameters 3, h,... representing “macroscopic”
quantities such as temperature, magnetization per site, etc. A fundamental
quantity obtained in taking the thermodynamic limit is the pressure function

(4.12) p(B, 1) := Tim " log Z,(6, 1)

The subject of classical thermodynamics deals with the behavior of the pres-
sure function p(8,h) for specific systems. The pressure function p(s3) for
the thermodynamic limit of Gibbs distributions (4.8) contains information

We set Elog(—BE) = 0 if E = 400. Note that E, represents an energy across n
sites, so %En measures energy per site.
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about the limiting energy distribution per site. One can recover from it all
the moments (E*) of this limiting distribution, which are given by

(4.13) (EF) := lim <1(En)k> :

n—o0

These quantities can be expressed in terms of S-derivatives of p(f), via

(4.1 ®) = Jm (2220 —(o
(4.15) (B%) = p"(B)+0'(B)?
(4.16) (B3 = p"(B)+3p(B)p"(B) +p'(B)?,

and so on. We are assuming here that the interchange of the order of differ-
entiation and taking limits can be justified. There is a large mathematical
literature concerning circumstances when this can be done, cf. Ruelle [74],
[78], and Simon [86].

In Gibbs’ development of thermodynamics the fundamental macroscopic
quantity is the free energy per site, which is

(4.17) f(B.h) = —%p(ﬁ, h) .

Mathematically it is equivalent to knowing the pressure, and from it one can
derive other thermodynamic quantities. In gas models the internal energy
per site is

0
(4.18) u(pB) = %(ﬁf(ﬁ)) :
The specific heat per site is
(419) () = = u(P)

In the Ising model the magnetization (or average magnetic moment per site)
is

(1.20) M(B.) =318, h)

These are macroscopically measurable quantities.

More generally, the thermodynamic limit concerns the existence of well-
behaved invariant measures on infinite configurations €2 that describes a limit
of the Gibbs distributions on finite site models €2,,. An equilibrium state is
a translation invariant Borel measure on {2 such that when conditioned on
a finite set of consecutive sites {1,2,...,n} yields the Gibbs measure dyr,
for the n-site model (Qy, E,,). We say that a thermodynamic limit exists
(for given parameter values (3, h)) if at least one equilibrium state exists.
For given thermodynamic parameters a statistical mechanics model may
have one or many equilibrium states; these correspond to different phases
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possible at those parameter values. Associated to an equilibrium state du
are its n-point correlation functions

(4-21) <U$0m+1 s Uz—l—n—l) = / OgO0zi1" " Opin_10 ,
Q

which measure how states on the lattice are related at fixed distances. The
correlation functions are independent of the choice of equilibrium state at
the given thermodynamic parameter values. That is, all equilibrium states
produce the same thermodynamic quantities. In general the multi-point
correlation functions contain information that cannot be obtained from the
pressure function.

Equilibrium states have been proved to exist for a wide variety of energy
functions, for one-dimensional lattice gases, see Sinai [87]. He considers a
symbolic dynamical system ¥ C A% given with an invariant measure 7 of
maximum entropy equal to the topological entropy. For a large class of
energy functions f he proves there is a unique Gibbs measure 7(f), see
Sinai [87, Theoreml].

Finally we consider phase transitions, which are abrupt changes in phys-
ical state as a thermodynamic parameter is varied, e. g. gas to liquid.
In statistical mechanics models this is reflected in abrupt changes in the
nature of the set of equilibrium states. For definiteness we consider the in-
verse temperature 3 as the parameter to be varied. For many systems the
pressure p(f3) is an analytic function of the parameter 3 in a neighborhood
of an interval on the real axis 01 < 8 < 09. In 1952 Lee and Yang [47],
[102] proposed that phase transitions in some statistical mechanical systems
would manifest themselves as singularities of the pressure function viewed
as an analytic function of the inverse temperature parameter 8. Phase tran-
sitions might similarly be detected in failures of analyticity of correlation
functions as a function of the parameter 3. For further elaboration of this
mathematical mechanism for phase transitions, see Kac [40].

In the special case of one-dimensional lattice gases, it is known that for
finite-range interactions phase transitions cannot occur, i.e. the pressure
function p(B) is analytic on the entire range 0 < < oo. The term “gas”
for such systems reflects the fact that such systems are ergodic and have
exponential decay of correlations as a function of distance; they have a
unique equilibrium state. (That is, they never “freeze.”) However phase
transitions can occur for infinite range interactions. Typically the pressure
function p(B) will be analytic in some vertical strip o1 < Re(8) < 09, with
0 < 01 < 09 < 0, and one studies the system in this range. The failure of
analyticity of the pressure function may be reflected in the behavior of the
singularities of the zeta function ((z, ) in the z-variable, as the -variable
is varied. This motivates the study of the analytic properties of ((z, ) in
both variables.
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4.2. Statistical Mechanics Zeta Functions. We formally define sta-
tistical mechanics zeta functions of a statistical mechanics model S by

X _n

4.22 (s(z,B) == exp Z—Zn I} )

(422 (2 6) (223 "~ Za(5)

We can apply this definition to any classical statistical mechanics model
which comes with a family of partition functions{Z,(8) : n = 1,2,3,...}
for finite size systems, e.g. the two-dimensional Ising model. We call the
variable z the scaling variable because it is the variable incorporating the
thermodynamic limit. This zeta function also is a function of all the macro-
scopic thermodynamic variables that are present in the partition functions.

If the model S is a one-dimensional lattice gas, then the definition (4.22)
is a special case of the Ruelle dynamical zeta function defined in §3. Here we
take the dynamical system (£, s, ) where S : Q — Q where Q C A” is the
limiting configuration space and S is the shift operator, and ¢ = E(0) is the
energy function on periodic orbits . Ruelle’s definition of the dynamical
zeta function in §3 was motivated by this analogy.

A converse assertion seems useful as a heuristic principle: it appears that
mostt dynamical systems (X, f,¢) can be “reverse engineered” to give an
energy function (Hamiltonian) for a one-dimensional lattice gas whose sta-
tistical mechanics zeta function (4.22) is identical to the Ruelle zeta function
Cf(z,5) in (3.4), with s = . The resulting Hamiltonian may be quite compli-
cated and physically unnatural as a lattice gas model, however. For example,
consider the map f(z) = Bz (mod 1) with 3> 1. Let Q5 C A" be the shift
describing the allowed symbolic dynamics for f, where A = {0,1,2,..., 8]}
Let Qf} C AZ the closed two-sided subshift that is the natural extension
of Qg, which consists of all infinite two-sided strings such that each suffix
(0§,0j41,0j+2,--.) € Q3. The set Qf; is closed, and is specified by its set
.7-"; of forbidden blocks for j € Z. We produce a one-dimensional lattice gas
(23, S, E) that produces the same zeta function using the energy function

log g if n=1,

+oo if (01,...,0p)is a minimal

(4.23) E(01,...,00) = forbidden block for QE ,

0 otherwise .

This Hamiltonian consists of a constant self-interaction term and “hard-core
conditions” which specify the symbolic dynamics QE It gives a finite range
interaction if and only if Q}} has a finite set of minimal forbidden blocks, i.e.
it is a shift of finite type (see Lind and Marcus [49], Chapter 2.) When this
occurs (f(z) is rational function of z. For most values of 3 the zeta function
(¢(2) has the unit circle{z : |z2| = 1} as a natural boundary; however there
are values of 3 such that Q7 is not a shift of finite type but (¢(2) is still a
rational function.
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The two-variable zeta function (s(z,s) encodes information about the
thermodynamic limit in its singularities. Under suitably strong hypotheses
one can prove results like:

(1) The function (s(z, s) is meromorphic on the domain
{z:|z| <1} x {s: Re(s) > 0}.

(2) For s = 0 the closest singularity to the origin in the z-variable is
at z = e ™5 where h(S) > 1 is the topological entropy of the
space 2 of limiting configurations of §. This singularity is a simple
pole, and there are no other singularities of ((z,0) in the closed
disk {|z] < e MS)},

(3) Let r(8) denote the radius of the closest singularity in the z-variable
to the origin of (s(z, s) for s = (3 a positive real, 0 < § < co. Then
the pressure is given by

(4.24) M):%(ﬁ), 0<p<l.

Such results hold for the one-dimensional Ising model considered below
as well as for the homogeneously expanding maps considered in Section 3.

4.3. Zeta Function for the One-Dimensional Ising Model. We
compute the three-variable zeta function of the one-dimensional Ising model
and describe its thermodynamic properties. The one-dimensional model was
solved exactly by Ising [38] in 1925. Ising observed that this model has no
phase transition, and (erroneously) inferred from this that the n-dimensional
model for each n > 2 should also have no phase transitions.

We first describe the Ising model on a finite part of the one-dimensional
lattice consisting of n consecutive sites. with periodic boundary conditions.
Each site is assigned a spin o; € {+1,—1} so there are 2V configurations

o = (01,09,...,0,). The energy E(o) of a configuration is given by
n n
(4.25) E(O’) = —JZO’Z'O'Z'_H — HZ ag; ,
i=1 i=1

in which 0,11 = o1 (periodic boundary condition) and J, h are parameters
with h representing magnetization. We set 8 := kiT and h := kiT, and the
partition function becomes

(4.26) Zn(B,h) == Y exp (ﬁ > oioipi+hy ai> .
=1 i=1

oc{1,-1}n

Ising [38] found that the partition function Z, (3, h) has a closed form which
permitted him to compute the thermodynamic limit and obtain the pressure
(or equivalently, the free energy per site). We follow Baxter [10, p. 33]. The
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partition function (4.26) factors into a product of nearest-neighbor interac-
tions as

n
(4.27) ZnBh)= Y. [[Viewoi1),
oe{-1,1}ri=1
in which
V(o,0') = exp(Boo’ + %h(a +0")),
using the convention that 0,41 = 01. We introduce the transfer matriz

V(1) V@, -1) ]:[em o ]

(4.28) V= V(-1,1) V(-1,-1) e”h  efh

The nearest-neighbor factorization (4.27) corresponds to

(4.29) Zn(B,h) = Trace [V"] .
Thus
(4.30) Zn(B,h) = AT + AT,

where Ay = A1 (B,h) and A_ = A_(0, h) are the eigenvalues of V', given by

h 4 ,—h h _o=h\?2 1 1/2
a e (TEE e (0 (25 o)

For 8 > 0, h real, the matrix V is a real symmetric matrix so both eigen-
values are real, with A; > A_, and the pressure is

(4.32) p(B, k) =log Ay .

The three-variable zeta function associated to the Ising model is

(4.33) Clsing(zaﬁa h) = exp (Z %Zn(ﬁ, h)) ;

n=1
The formulae above yield:
THEOREM 4.1. The one-dimensional Ising model T has three-variable
zeta function

1
sing(% 1) = TR op Ry, 1 (B e )2

(4.34)
When there is no magnetic field (h = 0), the two-variable zeta function is

1
4.35 i = .
(4.35) CIsmg(Z’ 2 1—2efz+ (28 + 1)22
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PROOF. Using (4.30) we have
oo zn . .
CIsz'ng(z’ﬁ’ h) = eXP(Z ;()\Jr + "))

n=1

= exp(—log(l — Ay2) —log(1 — A_2))

= (1- >\+Z)_1(1 — )\_z)_l

(de‘u(I—zV))*1 .
This gives (4.34). O

By inspection we see that (z(z, 3, h) meromorphically continues to C3.
For fixed 8 and h it has two poles in the z-variable, except that it can have
a double pole for certain special values of the parameters (3,h). For 8 > 0
and real h the pole closest to the origin in the z-plane is at the positive real
number

1

(4.36) I exp(—log A1) = exp(—p(B; h)) -

Thus the location of the pole of (z(z, 3, h) in the scale variable z closest to
the origin determines the pressure function, from which the free energy per
site and other thermodynamic quantities (4.17)—(4.20) can be derived.

Recall that associated to an equilibrium state there are n-point correla-
tion functions

(4.37) (020gtiy « - Ogti, 1) 1= / OgOgtiy - - Ogti, A (L) -
Q

Some combinations of these functions are partial derivatives of the pressure.
For the Ising model the one-point correlation (o) is the magnetization per
site 5
<Um> = M(/B, h’) = _%p(ﬂa h) '
The two-point correlation at distance 1 is given by
0
030 = — h) .

The two-point correlation functions (0,04 4,) for m > 2 cannot in general be
deduced from the pressure. For the one-dimensional Ising model one can use

a transfer matrix calculation to determine all two-point point correlations,
to obtain, for 8 > 0 and h real, that

m|
(4.38) (020 51m) — (0e){(0prm) = (5in2¢)? (i—;) , formeZ.

where (sin ¢, cos ¢) is a left-eigenvector of the transfer matrix (4.28) that has
eigenvalue A, cf. Baxter [10, p. 36]. These correlation functions exhibit
exponential decay with distance |m|. This manifests the “gas” nature of
the interaction, and demonstrates that there is no phase transition in the
one-dimensional Ising model at finite temperature.



NUMBER THEORY ZETA FUNCTIONS AND DYNAMICAL ZETA FUNCTIONS 29

The one-dimensional Ising model is sometimes considered to have a
phase transition in the Lee-Yang sense at “absolute zero” g = 400, when
there is no magnetic field (h = 0). The two poles of ( Ismg(z,ﬁ) in the
z-variable then approach each other as 8 — oo through real values.

4.4. Lattice Gases and Dynamical Systems. The thermodynamic
formalism was developed by Ruelle [77] for lattice gases, and then carried
over to expanding linear maps. In Table 4.1 we give a dictionary of parallel
concepts relating the one-dimensional lattice gas framework to the discrete
dynamical system framework. Below we comment on specific entries in this
table.

(1) We assume that f : X — X has a symbolic dynamics with a finite or
countably infinite alphabet A corresponding to a partition X = (J,c 4 Xas
with the property that each x € X is uniquely determined by its symbolic
itinerary i(z) = (So(x), S1(x), S2(z),...) where S,(z) := S(f"(z)) is the
symbol « such that f™(z) € X,.

(2) An automorphism f : X — X has a two-sided infinite symbolic
dynamics obtained by following the orbit of x forwards and backwards. An
endomorphism f : X — X only has a one-sided infinite symbolic dynamics
on a half-infinite lattice N. B B

(3) An extension of f is any pair (f, X, x) such that f : X — X is an
automorphism together with an onto projection 7 : X — X such that the
following diagram commutes

x L x
s s
x L x

A minimal (f, X) with this property is called the natural extension of f. It
is defined by the universal property that any other extension factors through
it. When it exists it is unique up to isomorphism. It always exists when f
is onto. The natural extensions of maps of the interval can sometimes be
expicitly represented as maps of a two-dimensional set to itself, e.g. maps
of the square. This can be done for the additive continued fraction map, see
Lagarias and Pollington [46].

In the dynamical system case the space X of the natural extension cor-
responds to the set of infinite configurations in the statistical mechanics
model. Thus the thermodynamic limit n — oo has already been taken in
the dynamical system model; its domain represents a space of infinite con-
figurations.

Baladi [8, Sect. 1.3] discusses the problem of going in the reverse di-
rection from two-sided infinite dynamics to one-sided infinite dynamics in
special cases; there can be many ways to do this and they are classified by
a suitable cohomology group.
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Discrete Dynamical System
One-Dimensional Lattice Gas f: X =+ X, X compact
(1)  configuration symbols A symbolic dynamics alphabet A
(Markov partition)
(2) S(o) =o' with g, = oy 41 flx) =2
left-translation operator (left-shift) on iteration of
one-sided infinite lattice N f : X — X endomorphism
two-sided infinite lattice Z f: X — X automorphism
(3)  configuration space Q C A% domain X of natural extension of f
(4)  periodic n-site configurations periodic points
N, () = #{periodic n-site configurations} | N,(f) := #{periodic points of period n}
(5) interaction energy E: Q — R weight ¢ : X — C
(6)  Partition function (n-sites) Gibbs weight function (periodic points)
n—1
)= Y 2= 3 o (-5 00
period (z) 1=0
period n periodic
4 period n
(7)  Configurational entropy Topological entropy
1
= limsup — log (N, (2 = limsup,,_,, = log(NV,
hoonpia(F) = i sup 2 10g(Nn(€2)) heop(f) Prsoo w 108(Nn(f))
(8)  Transfer matrix Transfer operator
Ruelle-Araki transfer operator Perron-Frobenius operator
(9)  Gibbs state S~ (dp) = du; invariant Borel measure f~'(du) = dp
(10) exponential decay rate of two-point mixing rate for f with
correlation respect to du
(11) metric entropy h(dp) metric entropy h(dp)

TABLE 1. Analogies between statistical mechanics of a lat-
tice gas and discrete dynamical systems

(5) One can allow complex-valued interaction functions in statistical me-
chanics models. These can occur in quantum statistical mechanics models.
(6) In the case of piecewise differentiable functions f : [0,1] — [0,1] an
important case is where the weight function on periodic points of period n
given by

n—1
#z) = - 3 log ()
1=0
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where z; = f%(z). When extended to all points this ¢(x) measures the
“average expansion rate” on an orbit.

(8) There is a precise relation between transfer matrices and transfer
operators, which is described in Mayer [52, Chapter II]. A transfer matrix
is the matrix of a linear operator £,, on the finite-dimensional space C(Ay)
of complex-valued functions on the set A, of n-point configurations. For the
Ising model C(A,) is a vector space of dimension 2". In order to obtain a
limiting operator on infinite configurations we have to consider its n-th root
(ﬁn)l/ " whose eigenvalues measure per-site quantities. A suitable infinite
limit of ([,n)l/ "™ will define a transfer operator on a suitable Banach space
B of functions on the space 2 of infinite configurations, the Ruelle-Araki
transfer operator. Formally such a transfer operator has the general form

(Lsh)(x) = Y w(y)h(y)
f(yy)Zw

in which w(-) is a suitable weight function. When the weights are nonneg-
ative real numbers such operators are sometimes called Perron-Frobenius
operators. 'The functions h(xz) € B are interpreted as observables of the
system, and the transfer operator can be interpreted as taking an (unnor-
malized) conditional expectation of h with respect to the action of the map
f:Q — Q, see Mayer [52, p. 53].

(9) The Gibbs probability distribution p for a finite system with a given
energy function has two different characterizations. One is the formula (4.7)
expressing it in terms of a partition function. The other in the Variational
Principle, which is that this distribution maximizes the function

(4.39) U(p) :=S(p) = Y _p(o)E(0)
o
over all probability distributions p on configurations, where

S(p) = - _p(o)logp(o)

is the entropy of p.

These two characterizations of Gibbs distributions lead to two different
generalizations to infinite systems, when the thermodynamic limit is taken.
Gibbs states are Borel probability measures dy on the infinite configuration
space () that generalize the property (4.7). Equilibrium states are Borel
probability measures on the configuration space {2 that maximize the vari-
ational function, generalizing (4.39). Under some circumstances these sets
of measures coincide, see Ruelle [77, Chapter 5]. For more information on
Gibbs states and equilibrium states, see Bowen [12] and Sinai [87].

(10) The exponential decay rate of correlations arises only for ergodic
systems which are very strongly mixing. In statistical mechanics this corre-
sponds to a “gas” state, in which there is a unique equilibrium state which
is a Gibbs state.
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(11) For an expanding piecewise C'-map on [0, 1] the metric entropy can
be computed using Pesin’s formula

h(dy) = / 1 (@)ld(z)

5. Two-Variable Zeta Functions in Number Theory

We propose and study some two-variable zeta functions attached to alge-
braic function fields and algebraic number fields that are formally analogous
to the two-variable dynamical zeta function in §3.1.

5.1. Function Fields. In §2 we described two independent develop-
ments of the theory of zeta functions attached to an algebraic function field
K over a finite field F;, one in term of an arithmetic variable s and the other
in terms of a geometric variable z. By analogy with Theorem 3.1, we define
a two-variable zeta function that keeps the arithmetic variable s and geo-
metric variable z separate, from which one can recover both the arithmetic
and geometric version of the zeta function. For a complete n-dimensional
nonsingular projective variety V' defined over I, we define the two-variable
zeta function Cy(z,s) by

(5.1) Cvlzs)=exp| >, = >, ()7

k=1 Fiz(Frk)

To each algebraic divisor A defined over V(IF;) consisting of k£ points this
definition associates to each of these points individually the weight

(5.2) wt(A) :=N(A) = ¢* .

The weights (5.2) treat the Frobenius automorphism Fr, formally as if it
were the natural extension of a uniformly expanding map with expansion
factor q. With this definition we obtain

(53) CV(za 8) = CV(zq_sa 0) = CFTq (zq—s) .

There is a two-variable version of the functional equation for the two-
variable zeta function (y(z,s). Let V be a complete nonsingular projective
variety of dimension d defined over F,. If we set

(5.4) bv(z,8) i= (2q ) XMy (2, 5)

where x(V') is the Euler characteristic of V', then we have the functional
equation

(5.5) vz ) = £lv (q”iz’ 1— 8) :
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We note that the corresponding two-variable extension for the arithmetic
zeta function of a Dedekind ring R has the Euler product

(5.6) Crlz,s) = [ [ - 2P (WP) )"
P

This differs from (5.1) in not including the Euler factors for “primes at
infinity”.

It would be nice if the formal analogy between two-variable function
field zeta functions and dynamical zeta functions could be made exact. It
is an open problem to construct a statistical mechanics model or dynamical
system that would produce (5.1) as its associated two-variable zeta function.
In attempting to construct such a dynamical system model, we note that
the set of points on an algebraic variety V defined over II_Tq comprise the set
of periodic points of the Frobenius automorphism acting on V. Can one add
“transcendental points” to the variety together with a suitable topology in
a natural way such that the Frobenius map extends to act on these points
to give a symbolic dynamics that is a full shift on g letters? Perhaps one can
use a ring of Laurent series in an auxiliary indeterminate, with a suitable
multiplication, to do this. Can one also construct in a canonical fashion
a non-invertible function with q inverse images of each point, which has
a natural extension which is the Frobenius automorphism acting on this
object? This is not known, but see the discussion in Baladi [8, Sec. 1.3].

Finally we remark that the two-variable zeta function (5.1) is distinct
from the two-variable zeta function for a curve recently introduced by Pel-
likaan [68].

5.2. Number Fields. The Riemann zeta function ((s) is not known
to have a naturally associated “geometric variable” z, as in the function field
case. However we can formally define a two-variable zeta function for the
Dedekind ring Z according to the prescription (5.6) above, provided that we
have a definition of the degree of a prime ideal.

The naive definition of degree is to view each finite prime ideal in Z as
having degree one. In this case we obtain the two variable zeta-function

(5.7) Cz(z,8) == H(l —zp )7t

P
We have

(5.8) (alz,8) =Y 2%Wns
n=1

where Q(n) denotes the number of prime factors of n, counted with multi-
plicity.

What is the behavior of (z(z, s) as a function of two complex variables?
The infinite product (5.2) defines it as a holomorphic function in the domain

{z:|z]| <1} x {s:Re(s) > 1} .
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Its behavior under analytic continuation was determined in 1943 by Wintner
[101]. His results are most elegantly stated by setting

(5.9) Ch(23) 1= oalz,5)

He studied (z(z, s) for fixed z and variable s. We reformulate his result as
follows:

THEOREM 5.1 (Wintner). (i) For each z € C the function F,(s) :=

gég;; extends to a meromorphic function on the half-plane Re(s) > 0, whose

singularities are simple poles.

(7i) For all values of z € C\ {—1,0,1} the function F,(s) has Re(s) =0
as a natural boundary to analytic continuation. If z € {—1,0,1} then F,(s)
continues to a meromorphic function of s on C.

(iii) For each z € C the singularities of F,(s) in the region Re(s) > 1/2
consist of a simple pole with residue —z at s = 1 and simple poles with
residue z at the nontrivial zeros of ((s) which have Re(s) > 1/2.

PROOF SKETCH. Wintner [101] actually studies (s — 1)7%((z, s); here
we have reformulated his results in terms of F,(s). He observes that for any
z € C\ {0} there is a unique formal expansion {8,(z) : n =1,2,3,...} with
Brn(z) € C such that

o
(5.10) 1—21 = [[(1 -1
n=1
agree as formal power series, with the two properties:
(a) Infinitely many £,(z) # 0 unless z = 1 or —1.
(b) The infinite product converges absolutely in the disk {T" : |T| <
o
Applying this identity to individual terms in the Euler product for {g(z, s)
yields

(5.11) Calz8) = [] ¢ns)™) .
n=1
Thus,
) X Cns)

To prove (i), for any € > 0, only finitely many terms in (5.11) have poles
with Re(s) > ¢, and the rest converges to an analytic function on Re(s) > e.

To prove (ii), the function F,(s) has poles contained in s = 1 together
with the set of zeros of ((ns) whenever §,(z) # 0. If this set is infinite, then
these points approach all points on the line Re(s) > 0. Some care is needed
to show that sufficiently many pole locations are actual poles to give the
general result. Wintner actually shows it only for z € Z\ {—1,0,1}. For the
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three “special values” z = —1,0,1 we have (z(—1,s) = CC((ZS“;)), (z(0,5) =0
and CZ(]-’S) = C(S)
Finally, for (iii) we observe that all terms on the right side of (5.12)

are analytic for Re(s) > 1/2 except the first term, which is 258 gince

(s)
Bi(z) = 2. ‘

The result (ii) above seems to be in parallel with the analytic continua-
tion properties of the continued fraction zeta function {¢p(z,s) in Theorem
3.3.

Result (iii) implies that the Riemann hypothesis holds for ((s) if and
only if for some fixed z # 0 the function

G.(s) := (1 —2)°((z,s)

is holomorphic for Re(s) > 1/2. Thus the two-variable zeta function (z(z, s)
encodes information on the Riemann hypothesis for variable z, but in an
unenlightening way.

One can define another two-variable zeta function using a different no-
tion of degree, suggested by the the arithmetic intersection theory of Arakelov
[3], see also van der Geer and Schoof[30]. Here the prime ideal (p) in Z is
assigned the degree logp. The resulting two-variable zeta function is

(5.13) Calz,9) = [J(1—2%Pp ") ",

p

where we take

(5.14) 21°8P := ezp(log plog z).
In this case we formally obtain the identity
(5'15) 5%(2,3) = 5%(26_8,0),

which is analogous to the function field case.
Finally, in connection with statistical mechanics models, we note that
Knauf ([42]-[45]) has recently constructed a collection of finite lattice gas

models whose partition functions Z,(s) approach the function C(Cs(;)l) in the

thermodynamic limit (for Re(s) > 2). (See also Contucci and Knauf [17]
[18].) One can formally construct from Knauf’s models a two-variable zeta
function according to the prescription (4.22); its properties have not been
investigated.

6. Concluding Remarks

In this paper we considered two-variable zeta functions. We observed
that function field zeta functions can be developed in terms of either an
arithmetic variable s or of a geometric variable z, and that both of these
variables can be made simultaneously present in a two-variable zeta func-
tion. This two-variable zeta function is analogous to Ruelle’s two-variable
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dynamical zeta function of an expanding map. There is a functional iden-
tity relating the two variables so that each can be expressed in terms of
the other: z = ¢7°. In this way, questions about the “Riemann hypothe-
sis” in the s-variable can be transferred to questions of the z-variable. The
z-variable has an interpretation in terms of “spectral geometry”; the behav-
ior of the zeta function in the z-variable can be related to cohomology of
the underlying variety. No such interpretation is currently known for the
s-variable. It remains an open problem to construct a statistical mechanics
model associated to a function field K which would give the two-variable
zeta function (x(z, s) as its associated zeta function.

For the number field case, in §5 we presented two different notions of
a two-variable zeta function that extend the Riemann zeta function in a
way analogous to the function field case. The naive version preserves the
“Riemann hypothesis” but offers no substantial new insight into the truth
of the Riemann hypothesis. The version using Arakelov’s notion of degree
preserves the function field relation (1.2). A dynamical system interpretation
is lacking for either of these two-variable zeta functions.

Deninger [19] [20] has recently outlined an approach which attempts
in the number field case to associate a (conjectural) cohomology theory to
the s-variable in number field zeta functions, with an associated dynamical
system. If this can be done, it would seem to assign a geometric meaning
directly to the s-variable. One may also consider the suggestive evidence
for a spectral interpretation of zeta zeros in Katz and Sarnak [41]. Thus it
may be that in the number field case it is not appropriate to introduce an
auxiliary “scaling variable” z.

We conclude with various speculations. One may view the integers Z as a
dynamical system with an N*°-action is given by a semigroup of commuting
endomorphisms {M, : a € Z}, which are defined by

(6.1) My(n) =an, nez.

This semigroup is generated by { M} for p prime, together with the torsion
element M ;. This suggests that one must add a “geometric variable” z,
separately for each prime, and consider the zeta function

(6.2) ((s,2) = []A —207")7",

p

which has an infinite number of variables. Some interesting information can
be gained from this viewpoint, see Hedenmalm, Lindgvist and Seip [35].
We also note that each multiplication operator M, acts as an expanding
map on Z with entropy logp. These different expansion rates suggest that
any underlying dynamical system associated to Z to which a hypothetical
two-variable zeta function is attached will not be homogeneously expanding.
This analogy seems an obstacle to a direct “spectral geometry” interpreta-
tion of the Riemann hypothesis. On the other hand, if we extend Z to
obtain a minimal space A on which the natural extensions M, of all the
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maps {M, : a € Z} act as automorphisms, then A is a space of adeles. In
this connection there is a recent interpretation of the Riemann hypothesis
by Connes [16] via a trace formula on adeles. See also Bost and Connes [11]
and Goldfeld [32].

Finally we note that the functional equation for the projective zeta func-
tion of an algebraic curve requires a global “normalizing factor” ¢=(1=9)5 in
(2.14) to obtain a symmetric functional equation (2.13). For the Riemann
zeta function the term 7—*/2 seems to play a similar role in the functional
equation. Weil [96, p. 238] suggests a definition of “genus” for a number
field K; for K = Q his formula assigns genus ggo = 0. With this inter-
pretation of g, the factor 7'/ plays a role analogous to g. Since log ¢ is
the entropy assigned to the Frobenius operator in §5, this would suggest
the possibility of viewing %log 7 as the “global entropy” of an hypothetical
dynamical system attached to ((s). On the other hand van der Geer and
Schoof [30, Proposition 1] recently formulated a Riemann-Roch formula for
number fields using Arakelov divisors; in this case log |dx| plays the role of
29K — 2, so that Q cab be assigned a genus gg = 1. (This notion of genus is
however not the same as the one given in [30].) With this interpretation the
“global entropy” of an hypothetical dynamical system associated to ((s)
must be infinite, and the value %logﬂ might then represent a “renormal-
ized” entropy for a quotient dynamical system.

Acknowledgments. I am indebted to E. Bombieri, A. Borisov, and J. A.
Reeds for helpful comments.
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