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ABSTRACT

This paper describes basic properties of the Riemann zeta function and its
generalizations, indicates some of geometric analogies, and presents various for-
mulations of the Riemann hypothesis. It briefly discusses the approach of A.
Connes to a “spectral” interpretation of the Riemann zeros via noncommuative
geometry, which is treated in detail by Paula Tretkoff [33].
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1 Introduction

The origin of the Riemann hypothesis was as an arithmetic question concerning
the asymptotic distribution of prime numbers. In the last century profound
geometric analogues were discovered, and some of them proved. In particular
there are striking analogies in the subject of spectral geometry, which is the
study of global geometric properties of a manifold encoded in the eigenvalues
of various geometrically natural operators acting on functions on the manifold.
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This has led to the search for a “geometric” and/or “spectral” interpretation of
the zeros of the Riemann zeta function.

One should note that a geometric or spectral interpretation of the zeta ze-
ros by itself is not enough to prove the Riemann hypothesis; the essence of the
problem seems to lie in a suitable “positivity property” which must be estab-
lished. A hope is that there exists such an interpretation in which the positivity
will be a natural (and provable) consequence of the internal structure of the
“geometric” object.

2 Basics

The Riemann zeta function is an analytic device that encodes information about
the ring of integers Z. In particular, it relates to the multiplicative action of
Z on the additive group Z. In its most elementary form, the Riemann zeta
function can be defined by the well-known series

ζ(s) =
∞∑

n=1

n−s,

where the domain of convergence is the half-plane {s : <s > 1}. This series was
studied well before Riemann, and in particular Euler observed that it can be
rewritten in the product form

ζ(s) =
∏

p prime

(1 + p−s + p−2s + . . .)

=
∏

p prime

(1− p−s)−1.

The zeta function can be extended to a meromorphic function on the entire
complex plane. More specifically, if we define the completed zeta function ζ̂(s)
by

ζ̂(s) := π−
s
2 Γ(

s

2
)ζ(s),

then we have the following.

Theorem 2.1. The completed zeta function ζ̂ has an analytic continuation to
the entire complex plane except for simple poles at s = 0, 1. Furthermore, this
function ζ̂ satisfies the functional equation

ζ̂(s) = ζ̂(1− s).

Proof. With a suitable change of variables, the integral definition of Γ gives

Γ(
s

2
) = nsπ

s
2

∫ ∞

0

e−πn2xx
s
2−1dx, (1)

for every n ∈ Z+. Rearranging (1) and summing over n ∈ Z+, one can show
that for all s ∈ C with <s > 1,

ζ̂(s) = π−
s
2 Γ(

s

2
)ζ(s) =

∫ ∞

0

∞∑
n=1

e−πn2xx
s
2−1dx

=
1
2

∫ ∞

0

(θ(x)− 1)x
s
2
dx

x
, (2)
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where θ(x) =
∑

n∈Z e−πn2x. This θ-function satisfies the functional equation

θ(x−1) =
√

xθ(x).

Now, the integral in (2) can be split as∫ ∞

0

(θ(x)− 1)x
s
2
dx

x
=
∫ 1

0

(θ(x)− 1)x
s
2
dx

x
+
∫ ∞

1

(θ(x)− 1)x
s
2
dx

x
.

Applying the change of variables x 7→ x−1 in the first of these, we obtain

ζ̂(s) =
1

s(s− 1)
+

1
2

∫ ∞

1

(θ(x)− 1)(x
1−s
2 + x

s
2 )

dx

x
. (3)

This integral is uniformly convergent on {s : <s > σ} for any σ ∈ R, and thus
is an entire function of s. Therefore, (3) exhibits the meromorphic continuation
of ζ̂, and it clearly satisfies the functional equation.

It is now natural to define the entire function

ξ(s) =
1
2
s(s− 1)ζ̂(s).

The factor of 1
2 here was introduced by Riemann and has stuck. Hadamard

showed that ξ has the product expansion

ξ(s) =
∏
ρ

(1− s

ρ
)e

s
ρ ,

where the product is over the zeros of ξ.
The location of the zeros of ξ is of great importance in number theoretic

applications of the zeta function. Euler’s product formula easily shows that
every zero ρ has <(ρ) ≤ 1, and the functional equation then gives that all zeros
lie in the closed strip {s : 0 ≤ <(ρ) ≤ 1}. In fact, it can be shown that all zeros
lie within the open strip {s : 0 < <(ρ) < 1}, although this is a non-trivial result.

Since ξ(s) is real-valued for real values of s, it is clear that we have

ξ(s̄) = ξ(s).

Thus if ρ is a zero of ξ, so are ρ̄, 1−ρ and 1− ρ̄. Consequently, zeros on the line
<(s) = 1

2 occur in conjugate pairs, and zeros off this line occur in quadruples.
The Riemann hypothesis is now stated simply as follows.

Conjecture. All zeros of ξ(s) lie on the line <(s) = 1
2 .

Riemann confirmed the position of many of the zeros of ξ(s) to be on this
critical line by hand, by making use of the symmetry from the functional equa-
tion. For if the approximate location of a zero close to the critical line is known,
one can consider a small contour C around the zero which is symmetric about
the critical line. By estimating the integral

1
2πi

∫
C

ξ′(s)
ξ(s)

ds,
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one can determine the number of zeros (including multiplicity) enclosed within
the curve C. If only one such zero exists, symmetry dictates that it must lie on
the critical line. To date, no double zeros have been found on the critical line.

The Riemann hypothesis can be reformulated in a number theoretic context
as follows. If we define

π(x) =
∑
p≤x

p prime

1

as usual, then the Riemann hypothesis is known to be equivalent to the veracity
of the following error term on the Prime Number Theorem:

π(x) =
∫ x

2

dt

log t
+ O(x

1
2 (log x)2).

Note that it is a theorem that

π(x) =
∫ x

2

dt

log t
+ O(x exp(−2

√
log x)).

Although Riemann’s zeta function was the original object of interest, it is
only one of a much larger set of “L-functions” with similar properties. These
functions arise in many applications, and a natural generalizations of the Rie-
mann hypothesis appears to hold for all of them as well. For example:

• Dirichlet L-functions:

L(s, χ) =
∞∑

n=1

χ(n)n−s,

where χ : (Z/qZ)× → C× is a character on (Z/qZ)×. The character χ is
extended to a q-periodic function on Z where we set χ(n) = 0 for all n
with gcd(n, q) 6= 1.

• L-functions of cuspidal automorphic representations of GL(N), cf. [24],
[16]. In the case of GL(2) this includes such exotic objects as L-functions
attached to Maass cusp forms.

The latter generalize to the “GL(N) case” the “GL(1) case” of the multi-
plicative group of a field acting on the additive group, which are just the Dirich-
let L-functions. The resulting L-functions all have a Dirichlet series representa-
tion, which converges for <(s) > 1. When multiplied by appropriate Gamma-
function factors and exponentials one obtains a “completed L-function”, which
analytically continues to C, except for possible poles at s = 0, 1 and which
satisies a functional equation relating values at s to values at 1 − s of another
such L-function. The generalized Riemann hypothesis asserts that all zeros of
such L-functions lie on the line <(s) = 1/2.

This generalization appears to be the most natural context in which to study
the Riemann hypothesis. In fact, from a number theoretic point of view, the
Riemann zeta function cannot really be segregated from the above generaliza-
tions. It seems plausible that a proof of the original Riemann hypothesis will
not be found without proving it in these more general circumstances.

At this point, it is also worth noting that much can be achieved in practi-
cal situations without the specificity of a proof of the Riemann hypothesis for
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particular cases. Many results, originally proven under the assumption of some
generalized Riemann hypothesis, have more recently been fully proven by using
results describing the behaviour of the Riemann hypothesis “on average” across
certain families of L-functions. Two such examples are:

• Vinogradov:

Every sufficiently large odd number can be written as a sum of three
primes (a relative of Goldbach’s conjecture).

• Cogdell, Piatetskii-Shapiro, Sarnak:

Hilbert’s eleventh problem. Given a quadratic form F over a number field
K, which elements of K are represented as values of F?

3 The Explicit Formula

Riemann’s original memoir included a formula relating zeros of the zeta function
to prime numbers. Early classical forms of the “ explicit formula” of prime num-
ber theory were found by Guinand [19] and [20]. However it was A. Weil [35],
[36], [37], who put the “explicit formula” in a elegant form that connects the
arithmetic context of the Riemann hypothesis with objects that appear geo-
metric in nature. This type of connection is central to most of the modern
approaches to the Riemann hypothesis.

To state the explicit formula, we require the Mellin transform. For a function
f : (0,∞) → C, the Mellin transform M[f ] of f is defined by

M[f ](s) =
∫ ∞

0

f(x)xs dx

x
(s ∈ C).

This is the Fourier transform on the multiplicative group R>0; if we put g(u) =
f(eu), we see that

M[f ](s) =
∫ ∞

−∞
f(eu)eus d(eu)

eu

=
∫ ∞

−∞
g(u)e−iu(is)du = ĝ(is),

where ĝ is the Fourier transform of g on the additive group R.
The convolution operation associated with the Mellin transform is

f ∗ g(x) =
∫ ∞

0

f(
x

y
)g(y)

dy

y
,

so that
M[f ∗ g](s) = Mf(s)M[g](s).

We also have an involution
f̃(x) =

1
x

f(
1
x

),

giving
M[f̃ ](s) = M[f ](1− s).
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The “explicit formula” is a family of assertions, for a set of “test functions”.
We consider the family of nice test functions to consist of f : (0,∞) → C such
that f is piecewise C2, compactly supported and has the averaging property at
discontinuities:

f(x) =
1
2
[ lim
t→x+

f(t) + lim
t→x−

f(t)].

The “spectral side” Wspec(f) of the explicit formula consists of three terms

Wspec(f) := W (2)(f)−W (1)(f) + W (0)(f),

in which

W (2)(f) = M[f ](1),

W (1)(f) =
∑

ρzeros of ξ

M[f ](ρ).

W (0)(f) = Mf(0).

The “arithmetic” side of the explicit formula consists of terms corresponding to
the finite primes p plus the “infinite prime” (the real place),

Warith(f) := W∞(f) +
∑

p prime

Wp(f)

in which

Wp(f) := log p

( ∞∑
n=1

f(pn) + f̃(pn)

)
,

and for p = ∞,

W∞(f) := (γ + log p)f(1) +
∫ ∞

1

[f(x) + f̃(x)− 2
x2

f(1)]
xdx

x2 − 1
.

Theorem 3.1 (Explicit Formula). For any nice test function f : (0,∞) → C
there holds

Wspec(f) = Warith(f).

The “explicit formula” has a formal resemblance to a fixed point formula of
Atiyah-Bott-Lefschetz type; Here the “spectral side” has the form of a gener-
alized Euler characteristic, in which the term W (j)(f) should measure the con-
tribution of the trace of an operator on j-th cohomology group of an unknown
object, while the “arithmetic side” would be viewed as contributions coming
from the fixed points of an map on an unknown object. This resemblance has
been noted by many authors, starting with Andre Weil, whose first proof of the
Riemann hypothesis in the one-variable function field case was based on exactly
this interpretation.

The statement of the explicit formula takes on the form

“spectral term” = “arithmetic term”.

Note that the “spectral” side of the “explicit formula” is expressed in terms of
the Mellin transform of f , while the terms in the “arithmetic” side are expressed
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directly in terms of values of f ; the proof below shows that the “arithmetic”
terms do have an expression in terms of the Mellin transform of f .

Using the explicit formula, Weil was able to reformulate the Riemann hy-
pothesis as a positivity statement.

Theorem 3.2 (Weil’s Positivity Statement). The Riemann hypothesis is equiv-
alent to

W (1)(f ∗ ˜̄f) ≥ 0,

for all nice test functions f .

Remark 3.3. For two “nice” functions f and g, we can define the intersection
product

〈f1, f2〉 := W (1)(f1 ∗ ˜̄f2).

The conjectural Castelnovo inequality states that

f̂(0)f̂(1) ≥ 1
2
Wspec(f ∗ ˜̄f).

This connects with Weil’s positivity statement above.

The “explicit formula” was originally given by Weil [35] in terms of the
Fourier transform; the Mellin transform version given here can be found in
Patterson [30], whos proves it for a wide class of test functions; one needs the
test functions to have Mellin transforms M[f ](s) that are holomorphic in a
region −ε < <(s) < 1 + ε. A proof for a certain explicit set of test functions
is given in [5], [4]. There are a number of proofs of the “explicit formula”, all
based on similar ideas, which we indicate below.

Proof sketch of explicit formula. Consider the logarithmic derivative of the com-
pleted zeta function ζ̂,

ζ̂ ′(s)

ζ̂(s)
=

d

ds
[log ζ̂(s)].

We assume the function M[f ](s) extends to an analytic function in the closed
strip −ε < <(s) < 1 + ε and has rapid enough decay vertically. We evaluate in
two ways the contour integral

− 1
2πi

∫
�T

M[f ](s)
ζ̂ ′(s)

ζ̂(s)
ds, (4)

around a closed box �T on the vertical lines <(s) = 1+ 1
2ε, and <(s) = − 1

2ε, go-
ing from height −iT to height +iT , oriented counterclockwise, and then letting
the height of the box T → ∞. Firstly, taking the logarithm of the Hadamard
factorization for ξ(s) gives

log ζ̂(s) = log 2− log s− log(s− 1) +
∑

ρ zeros of ξ

′
(

log(1− s

ρ
)
)

,

where the prime indicates the zeros must be summed in pairs ρ, 1− ρ. Differen-
tiating,

d

ds
[log ζ̂(s)] = −1

s
− 1

s− 1
+
∑

ρ zeros of ξ

′ 1
s− ρ

.
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Adding up the residues of the poles these contribute in the box (as T → ∞)
gives the geometric term; the terms W (0)(f) and W (2)(f) come from the poles
of ζ̂(s) at s = 0 and s = 1, respectively.

Secondly, the Euler product form gives

ζ̂ ′(s)

ζ̂(s)
=

d

ds

log π−
s
2 Γ(

s

2
)−
∑

p a prime

log(1− p−s)

 .

The derivative of the sum is

−1
2

log π +
1
2

Γ′( s
2 )

Γ( s
2 )

−
∑

p a prime

(log p)p−s

1− p−s
.

This is substituted in the right vertical side of the box integral and evaluated
for each term separately. The integral, with <(s) > 1, evaluates to

1
2πi

∫ c+i∞

c−i∞
M[f ](s)

( ∞∑
n=1

(log p)p−ns

)
ds = (log p)

∞∑
n=1

f(pn),

since each term separately is an inverse Mellin transform. For the left vertical
side integral with <(s) < 0, we use the functional equation and obtain similarly
the contribution (log p)

∑∞
n=1 f̃(pn). The horizontal sides contribute zero in the

limit T →∞.
The contour integral for the Gamma function term requires delicate care to

convert the answer to the form for W∞(f) given above; see [5], [4], [30].

For spectral and trace formula interpretations of the “explicit formula”, see
Goldfeld [17], [18] Haran [21], [22], Hejhal [23], as well as the recent work of
Connes [9], [10], [11]. A number of other interesting viewpoints on the “explicit
formula” appear in Burnol [6] and Deninger [13].

4 The Function Field Case

We now consider the Riemann hypothesis for function fields over finite fields,
or equivalently, for zeta functions attached to complete nonsingular projective
varieties. For function fields of one variable the Riemann hypothesis was for-
mulated in E. Artin’s 1923 thesis, in analogy with the number field case. It
was proved for genus one function fields by H. Hasse in 1931, and It was then
proved for all one-variable function fields by A. Weil in the 1940’s. Weil’s key
idea was to introduce an underlying geometric object—a projective variety—
which allows the translation of the problem to a problem in algebraic geometry.
Finally in 1973 Deligne proved the Riemann hypothesis for the zeta functions
of complete nonsingular projective varieties of any dimension.

Let Fq be the finite field with q = pk elements for some prime p and some
k ∈ Z+, and let K be a function field in one variable T over Fq. Let OK denote
the ring of integers of K. We exclude one prime from OK which we define to be
the “prime at infinity”. For instance, if K = Fq(T ), then we can let OK = Fq[T ],
the ring of polynomials in T , where the prime 1

T is excluded as the prime at
infinity.
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We now define a zeta function for K by

ζK(s) =
∑

I∈IK

(N(I)))−s,

where IK denotes the set of ideals contained in the ring of integers OK , and
N(I) = #(OK/I) is the norm of I. In our example above, all ideals I = (f)

are principal, generated by a monic polynomial f(T ), with norm

N((f)) = q− deg f .

Therefore we have

ζK(s) =
∑

f monic
polynomials over Fq

q−(deg f)s

=
∞∑

n=1

qnq−ns,

since there are qn monic polynomials of degree n over Fq. Thus,

ζK(s) =
1

1− q1−s
.

We complete this to a function ζ̂K(s) by including a term corresponding to
the prime at infinity. In the present example, we obtain

ζ̂K(s) =
(

1
1− q1−s

)(
1

1− q−s

)
.

Now ζ̂(s) satisfies the functional equation

q−sζ̂K(s) = q−(1−s)ζ̂K(1− s),

Here the additional non-vanishing factor q−s plays the role of a “conductor,”
analogous to the conductor term appearing in the functional equation of a
Dirichlet L-function.

Weil made several celebrated conjectures about these zeta functions, all of
which are now proven. A major implication of the Weil conjectures is that
ζ̂(s) can be expressed in terms of L-functions arising from the structure of an
underlying geometric object, namely a non-singular projective variety V having
K as a function field. Essentially, ζ̂K can be written as a quotient of L-functions
arising from the cohomology of V :

ζ̂K(s) =
L(s,H1)

L(s,H0)L(s,H2)
.

For instance, consider the line

X1 + X2 = 1

over Fq. We projectivize to obtain

V (Fq) = P1(Fq) : X1 + X2 = X0,
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with (X1, X2, X3) 6= (0, 0, 0), subject to the usual equivalence relation

(λX1, λX2, λX3) ∼ (X1, X2, X3), for all λ ∈ F×q .

Thus V consists of q points of the form (x, 1 − x, 1) for x ∈ Fq, plus the point
at infinity (1,−1, 0). We now extend this space to the projective space V (Fq)
over the algebraic closure Fq of Fq.

Such a projective variety has a natural dynamical system induced by the
Frobenius automorphism,

Frob : V −→ V

(x1, x2, x3) 7−→ (xq
1, x

q
2, x

q
3).

Associated to this dynamical system is a dynamical zeta-function, defined by

ζ̂dyn(T ) = exp

( ∞∑
n=1

Tn

n
#Fix(Frobn)

)
,

where #Fix(Frobn) is the number of fixed points of Frobn. For instance, the
example above yields

ζ̂dyn(T ) = exp

( ∞∑
n=1

Tn

n
(qn + 1)

)
= exp (− log(1− Tq)− log(1− q))

=
1

(1− q)(1− Tq)
.

Therefore, putting T = q−s, we get

ζ̂arith(s) = ζ̂dyn(q−s).

This connection is remarkable. As a heuristic analogy, a similar situation
arises in statistical mechanics. Associated to a one-dimensional system, Ruelle
defined a (two-variable) statistical mechanics zeta function by

ζ(s, T ) = exp

( ∞∑
n=1

Tn

n
pn(s)

)
.

Here, pn(s) is the partition function of a finite system Σn of “size” n , given by

pn(s) =
∑

σ∈Σn states

e−sH(σ),

where H is the Hamiltonian function. Here Σn could represent a system on the
line with periodic boundary conditions of period n.

An analogous result in statistical mechanics to the number theoretic state-
ment above is the following, cf [26, Theorem 3.1].

Theorem 4.1. For “uniformly expanding maps” on [0, 1],

ζ(s, 1) = ζ(0, β−s),

where β = exp(entropy).
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Here a “uniformly expanding map” f : [0, 1] → [0, 1] is a (possibly discon-
tinuous) C1- map all of whose pieces are linear with slopes ±β with β > 1;
an example is f(x) = βx (mod 1). For the function field zeta function above,
the Frobenius automorphism acts like a uniformly expanding map with entropy
log q.

Can Weil’s ideas be extended to the number field case of the Riemann hy-
pothesis? This suggests, in particular, three questions. Firstly, what is the
“geometrical” or “dynamical” zeta function which should be considered in the
number field case? Secondly, how is this geometrical object related to the arith-
metic zeta function? Thirdly, what property in the number field case is the
analogue of the Castelnuovo positivity property that provides a “geometric” ex-
planation of the truth of the Riemann hypothesis in the function field case? For
possible ideas in these directions, see Connes [9], [10], [11], and Deninger [12],
[14].

5 The Number Field Case and Non-commutative
Geometry

Polya and Hilbert postulated the following idea as a possible approach to the
Riemann hypothesis. Suppose some geometric considerations can lead to the
construction of a Hilbert space H and an unbounded operator D, such that

Spectrum(D) = {ρ : ξ(ρ) = 0}.

One might then hope to be able to understand the location of the zeros using
operator theory—ideally, by showing that

(D − 1
2
)∗ = −(D − 1

2
).

This hope is plausible, at least in philosophy, for several reasons. First, there
is some analogy with the work of Selberg. Selberg’s work considered the Laplace
operator, which has form

∆ = (D − 1
2
)2.

The behaviour of “primes” (prime geodesics) is related to the spectrum of this
operator via Selberg’s trace formula. Second, work of Montgomery indicates
that the distribution of the zeros of ξ(s) compares well with results on the
distribution of eigenvalues of random matrices, cf. [2], [25]. This has been
strikingly supported by numerical computations of Odlyzko [29]. This suggests
that spectral considerations lie beneath the theory of the zeta function.

Connes’ recent idea is that the philosophy of Polya and Hilbert might be
realized using non-commutative geometry. In the function field case above, a
space is produced from the action of the Frobenius automorphism on the un-
derlying variety V . Spectral methods in this context yield Weil’s proof of the
Riemann Hypothesis for function fields. In the number field case, Connes’ pro-
posal is that appropriate space is generated by the action of the multiplicative
group k× of the number field on the adèle space1 A. The space A/k× is ex-
tremely badly behaved from the classical point of view, but the hope is that it

1More generally, we should be looking at the action of GLn(k) on Mn(A).
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may be handled effectively as a non-commutative space. The development of
this idea is the focus of Paula Tretkoff’s paper [33].

6 Equivalent Forms of the Riemann Hypothesis

To conclude this survey, we present four equivalents of the Riemann hypothesis.
These demonstrate connections of the Riemann hypothesis with other areas of
mathematics, and some of them have a geometric flavor.

6.1 Ergodicity of Horocycle Flows

Consider the group Γ = PSL(2, Z) acting on the hyperbolic plane H in the
familiar way, so that the group is generated by the isometries

z 7→ z + 1

and z 7→ −1
z

of the upper half-plane model of H. Let us denote by ht the horocycle in
the upper half-plane having constant imaginary part y = t. We look at the
projection of this horocycle onto the quotient space H/Γ. Since ht is invariant
under the mapping z 7→ z + 1, this is a periodic horocycle, and we can restrict
our attention to the segment of ht lying within the vertical strip {z : 0 ≤ z ≤ 1}.
Let γt denote the image of this segment in H/Γ. The length of γt is 1

t , and in
particular, length(γt) → ∞ as t → 0. Furthermore, γt satisfies the following
ergodic property as t → 0.

Theorem 6.1. For any “nice” open set S in H/Γ,

length(γt ∩ S)
length(γt)

−→ vol(S)
vol(H/Γ)

as t → 0.

Here vol(H/Γ) = π
3 . Here “nice” can be taken to be that the boundary

∂(S) = S̄\S has finite 1-dimensional Hausdorff measure, see Verjovsky [34]. A
connection on the rate of convergence to ergodicity was noted by Zagier [38, pp.
279–280]. The Riemann hypothesis is equivalent to the following bound on the
rate of convergence of the above ([32, p. 738]); here a “smooth test function” is
needed.

Theorem 6.2. The Riemann hypothesis holds if and only if, for any “nice” test
function f ∈ C∞

00 (SH/Γ), where SH/Γ is the unit tangent bundle over H/Γ, for
t → 0 there holds

1
t

∫
γt

f(z)dνtz =

∫
H/Γ

f(z)dµz

vol(H/Γ)
+ O(t

3
4+ε),

for any ε > 0. Here νt is the arc-length measure on the horocycle at height t
and µ is Poincare measure on (SH/Γ), which gives it volume 2πvol(H/Γ).

A subtlety in this criterion is that if a test function is used that is not suffi-
ciently smooth, then slower rates of convergence can hold even if the Riemann
hypothesis is valid. See Verjovsky [34] for an example involving the character-
istic function of a open set S lifted to the unit tangent bundle.
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6.2 Brownian motion

Gnedenko and Kolmogorov observed that the Riemann zeta function arises nat-
urally in relation to Brownian motion, see [3]. Consider, for example, the case
of “pinned Brownian motion” on R. This is a standard Brownian motion on the
line Bt ∈ R, t ≥ 0, started at B0 = 0 and conditioned on the property B1 = 0.
Now let

Z = max
0≤t≤1

Bt − min
0≤t≤1

Bt

be the length of the range of Bt. Then the expectation of Zs is known to be

E[Zs] = ξ(s) =
1
2
s(s− 1)π−

s
2 Γ(

s

2
)ζ(s).

In another Brownian system, we obtain the following equivalent of the Rie-
mann hypothesis [1].

Theorem 6.3 (Balazard, Saias, Yor). Consider two-dimensional Brownian mo-
tion in the plane, starting at (0, 0). Let ( 1

2 ,W ) be the first point of contact with
the line X = 1

2 . Then the Riemann hypothesis is equivalent to

E [log |ζ(W )|] = 0.

This statement is actually a restatement of the following integral.

Theorem 6.4. The Riemann hypothesis is equivalent to∫ ∞

0

log |ζ( 1
2 + it)|

1
4 + t2

dt = 0.

Note that it is known unconditionally ([1], [7, Theorem 1.5]) that

1
2π

∫
<(s)=1/2

log |ζ(s)|
|s|2

|ds| = 1
π

∫ ∞

0

log |ζ( 1
2 + it)|

1
4 + t2

dt =
∑

ρ zeros of ξ

<ρ> 1
2

log
ρ

1− ρ
.

6.3 Li’s Positivity Criterion

Define for n ≥ 0 the Li coefficient

λn :=
1

(n− 1)!
dn

dsn
(sn log ξ(s)))|s=1.

Note that these quantities are given at s = 1, which can be computed in the
absolute convergence region <(s) > 1 of the Euler product, as a limit s → 1+.
These coefficients have a power series interpretation as:

1
(z − 1)2

ξ′( 1
1−z )

ξ( 1
1−z )

=
∞∑

n=0

λn+1z
n.

The Riemann hypothesis can be rephrased as the positivity of these coefficients
([28]).
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Theorem 6.5 (Li). The Riemann hypothesis is equivalent to

λn ≥ 0 for all n ≥ 1.

In fact, this criterion is related to Weil’s explicit formula, since it can be
shown ([5]) that

λn = W (1)(φn ∗ ˜̄φn)

for a certain sequence of test functions (φn); this sequence of test functions falls
outside the class of test functions considered in §3 but the “explicit formula”
can be justified for them, in a slightly modified form.

6.4 An Elementary Formulation

Because the Riemann hypothesis is such a fundamental question, it seems ap-
propriate to give a completely elementary statement of it. In Lagarias [27] it is
shown that the following problem is equivalent to the Riemann hypothesis.

Problem. Let Hn =
∑n

j=1
1
j be the nth harmonic number, and let σ(n) =∑

d|n d be the sum of the divisors of n. Prove that for each n ≥ 1,

σ(n) ≤ Hn + exp(Hn) log(Hn),

with equality only for n = 1.

This problem essentially encodes a necessary and sufficient condition for the
Riemann hypothesis due to Guy Robin [31].
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